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Abstract: Ground settlement resulting from consolidation may lead to tilted buildings, cracks in
the pavement, damage to underground utilities, etc. Therefore, it is crucial to understand the
consolidation behaviors (including primary consolidation and secondary compression) of the soil
of the subgrade. There is a large amount of soft clay deposited in Nanjing, located in the Yangtze
River Basin. The consolidation behavior of Nanjing soft clay can significantly affect foundation
design and the cost of construction. In this study, experimental measurements of the consolidation
behavior of Nanjing soft clay were conducted, and parameters (such as pre-consolidation pressure,
secondary consolidation index and secondary consolidation ratio) related to consolidation were
assessed. The concept of simulated over-consolidation ratio (OCRs) was proposed, and the close
relationship between primary consolidation and secondary compression settlement and the OCRs of
Nanjing clay was investigated.

Keywords: soft clay; secondary compression index; pre-consolidation pressure; secondary compression
ratio; simulated over-consolidation ratio

1. Introduction

The consolidation of soft clay may result in different construction problems, such
as ground settlement, building tilting and damage to underground utilities. Soft clay is
commonly characterized with high compressibility, high natural water content and low
shear strength. Foundations with soft clay may experience extreme settlement with time,
which in turn may have negative impacts on the stability of buildings and their foundations.
Moreover, Nanjing is located in the lower reaches of the Yangtze River and is part of the
Yangtze River valley, which is located in a low mountainous hilly area [1]. In Nanjing,
buildings are commonly constructed on the subgrade, which is not fully consolidated, and
ground settlement continues after residents move in. As a result, it is crucial for design
engineers to understand the consolidation behavior (including primary consolidation and
secondary compression) of soft clay to assess the stability of designed facilities. In this study,
the consolidation behaviors of soft clay in Nanjing were investigated using oedometer tests
of different soil specimens taken in Pukou, in Nanjing.

Kie [2] proposed a rheological constitutive equation from both macro and micro
perspectives, along with the quadratic time effect and the frame-by-frame theory, in a
representation of the consolidation behavior of soft clay. Terzaghi’s one-dimensional consol-
idation theory suggests that deformations after the inflection point of the logarithmic time-
deformation curve are primarily due to secondary compression deformation. Currently,
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there are two main hypotheses regarding the relationship between soil creep and primary
consolidation and secondary compression. There are debates on the mechanism of consoli-
dation, which consist of primary consolidation and secondary compression: (1) Mesiri and
Choi [3] consider that secondary compression occurs after the pore water is drained, with a
temporal precedence relationship to primary consolidation; (2) Mitchell et al. [4] consider
that primary consolidation and secondary compression occur simultaneously. Leroueil
et al. [5] suggested that, based on one-dimensional creep test results using Batiscan clay at
different vertical stress levels, as shown in Figure 1, the relationship between creep strain
and time can be summarized into three types. Type I corresponds to over-consolidated
soil, where the vertical consolidation pressure is less than the pre-consolidation pressure,
with no obvious intersection between primary consolidation and secondary compression.
Type II and Type III both exhibit a more distinct intersection of primary consolidation and
secondary compression settlement. Type II corresponds to normally consolidated soil in
which the vertical consolidation pressure is close to the pre-consolidation pressure, and the
slope of the secondary compression line is significantly greater than that of Type I. Type
III corresponds to over-consolidated soil in which the vertical consolidation pressure is
much greater than the pre-consolidation pressure, and the vertical deformation of the soil
specimen decreases gradually with time in a clear inverted S-shape.
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Figure 1. Illustration of different types of creeping behavior for Batiscan clay from Leroueil et al. [5],
where Type I corresponds to over-consolidated soil, Type II corresponds to normally consolidated
soil, and Type III corresponds to over-consolidated soil.

The one-dimensional oedometer is one type of equipment commonly used to investi-
gate the consolidation behavior of clay soil. As shown in Figure 2, experimental data of
a long-duration consolidation creep test using an oedometer shows an inverted S-shape.
From the results of the one-dimensional oedometer test, both the compression index Cc
and the secondary compression ratio Ca can be determined.
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The compression index Cc can be calculated following The Standard for Soil Test
Methods (GBT50213-2019) [6], as illustrated in Equation (1):

Cc =
ei − ei+1

lgpi+1 − lgpi
(1)

where Cc is the compression index; pi and pi+1 are the pressure values of a certain unit, and
ei and ei+1 represent the void ratios corresponding to pressures pi and pi+1, respectively.

Taylor and Merchant [7] first considered the secondary compression of soils, and
initially proposed the concept of the secondary compression ratio Ca for the definition of
the plasticity of the soil. Taylor and Merchant [7] also proposed a mathematical model for
the determination of Ca. Casagrande and Fadum [8] suggested a graphical method for the
determination of Ca, and the steps in this graphical method were introduced as follows:

(1) Extend the straight sections in the middle and end parts of the curve;
(2) Determine the intersection point of the extended lines, and the horizontal coordi-

nate of this point represents the boundary time between primary consolidation and
secondary compression. Time point t1 in the figure corresponds to the end of pri-
mary consolidation, while subsequent times correspond to secondary compression
deformation.

(3) Calculate the slope of the line passing through points corresponding to t1 and t2,
which represents the sought-after coefficient for secondary compression settlement.

Consequently, Ca can be defined using Equation (2), as follows:

Ca =
e1 − e2

lgt2 − lgt1
(2)

where Ca is the secondary compression ratio; t2 represents the end time of the test, t1 denotes
the primary consolidation time; and e1 and e2 represent the void ratios corresponding to
times t1 and t2, respectively.

Mesri [9] analyzed the results of one-dimensional consolidation creep tests for 22 types
of undisturbed cohesive soils from the published literature, and observed a linear relation-
ship between the secondary compression ratio Ca and the compression index Cc. Mesri [9]
indicated that the values of Ca/Cc varied from 0.025 to 0.100, and that a higher organic
content in the soil resulted in a greater value of Ca/Cc. Zhou and Chen [10] conducted a
series of consolidation tests on the undisturbed soft soil in Guangzhou, and observed that
the loading ratio had a certain impact on the differentiation of the primary consolidation
and secondary compression of soft soil. The value of Ca primarily varied with increases
in the net stress, and it was also observed that when the stress increased beyond the pre-
consolidation pressure, Ca/Cc approached a constant value of 0.03. Cao [11] indicated that
the value of Ca increased linearly with increases in water content. Yu et al. [12] indicated
that the value of Ca increased with increases in the applied load for over-consolidated soil,
while the value of Ca decreased with increases in the applied load for normally consolidated
soil. Wu et al. [13] indicated that the level of perceptibility of the endpoint of primary con-
solidation in the e-lgt curves of soil increased with the value of the consolidation pressure.
Zhu [14] indicated that the value of Ca for the soft soil in Shanghai increased with increases
in moisture content, void ratio and time, and as time increased, the rate of increase of Ca
gradually decreased, and eventually stabilized.

Meanwhile, Becker et al. [15] and Conte et al. [16] concluded that Casagrande’s [17]
method, illustrated in Figure 3, is relatively stronger in immunizing the effects of human
subjectivity in the determination of pre-consolidation pressure Pc. There are three major
steps, introduced as follows, in Casagrande’s [17] method for the determination of Pc.
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Figure 3. Determination of pre-consolidation pressure suggested by Casagrande [17].

(1) Locate point A on the curve with the minimum radius of curvature;
(2) Draw a horizontal line (I) and a tangent line (II) through this point, and determine the

bisecting line (III) of these two lines;
(3) Find the straight part in the high pressure range, and extend it so that line IV and line

III cross each other. The pressure corresponding to the intersection (point B) of line III
and line IV defines Pc.

It has been observed that the determination of the point with the minimum radius
of curvature (Pi) using visual judgement in conventional graphical methods is subjective,
and may result in uncertainty regarding the determined Pc. Zhai et al. [18] best fitted
experimental data from an oedometer test using Fredlund and Xing’s [19] model, as
illustrated in Equation (3), and proposed a mathematical equation for the determination of
the point with minimum curvature.

e = e0

{
ln

[
e + (

p′

a f
)n f

]}−m f

(3)

where af, mf and nf are fitting parameters [19], e0 represents the initial void ratio, p’ is
effective stress and e is the natural constant.

After the compression curve is defined using Equation (3), the pre-consolidation
pressure can be computed directly using an equation from Zhai et al. [18], as illustrated in
Equation (4).

pc = 10(k3lgp1
′−knlgpn

′+en−e1)/(k3−kn) (4)

where definitions of parameters p1, pn
′, k3, kn, e1 and en can be found in Zhai et al. [18].

2. Experimental Program
2.1. One-Dimensional Compression Test

Soil specimens were taken from the muddy silty clay layer at the construction site,
with depths varying from 8 to 20 m, as shown in Figure 4.
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After soil samples were taken in the field, they were immediately wrapped with tape
and sealed with wax to minimize disturbance to the specimens during transportation and
testing. These soil samples were a typical coastal water rich soft soil, mainly composed of
clay and silty clay, which is gray to grayish brown and plastic, as shown in Figure 5. Table 1
illustrates the index properties of soils at different depths.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 12 
 

2. Experimental Program 
2.1. One-Dimensional Compression Test 

Soil specimens were taken from the muddy silty clay layer at the construction site, 
with depths varying from 8 to 20 m, as shown in Figure 4. 

 
Figure 4. Soil strata from the soil investigation report.  

After soil samples were taken in the field, they were immediately wrapped with tape 
and sealed with wax to minimize disturbance to the specimens during transportation and 
testing. These soil samples were a typical coastal water rich soft soil, mainly composed of 
clay and silty clay, which is gray to grayish brown and plastic, as shown in Figure 5. Table 
1 illustrates the index properties of soils at different depths. 

  

Figure 5. Undisturbed soil specimens collected from site. 

Table 1. Index properties of soils at different depths. 

Depth (m) Water Content 
w (%) 

Unit Weight 
γ (kN·m−3) 

Void Ratio 
e 

Liquid Limit 
wl (%) 

Plastic 
Limit wp 

(%) 

Liquidity Index 
Il 

Compression 
Coefficient α1-2 

(MPa−1) 

Figure 5. Undisturbed soil specimens collected from site.

Table 1. Index properties of soils at different depths.

Depth
(m)

Water
Content w

(%)

Unit Weight
γ (kN·m−3)

Void Ratio
e

Liquid Limit
wl (%)

Plastic Limit
wp (%)

Liquidity
Index Il

Compression
Coefficient α1-2

(MPa−1)

7.8 30.42 1.812 0.856 47.18 35.23 −0.403 0.387
8.0 33.42 1.824 0.887 — — −0.152 0.433
14.8 37.02 1.869 0.892 63.80 37.22 −0.007 0.492
15.0 36.63 1.862 0.893 — — −0.022 0.421
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2.2. Measurement Equipment

The sixteen-oedometer combined equipment, as illustrated in Figure 6, which was
manufactured by Nanjing Soil Instrument Factory Co., Ltd. (Nanjing, China), was adopted
for the one-dimensional consolidation tests. Using this combined equipment, specimens
from the same soil sample could be simultaneously tested using different loading. The
height and cross-area of soil specimens were 20 mm and 30 cm2, respectively.
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2.3. Experimental Methodology

Oedometer tests were conducted following procedures described in The Standard
for geotechnical testing method (GB/T 50213-2019) [6]. There were seven different loads,
including 25 kPa, 50 kPa, 100 kPa, 200 kPa, 400 kPa, 800 kPa and 1600 kPa, applied to obtain
the compression curve. The next level of load was applied only when the equilibrium of
the previous stage was reached. The equilibrium condition was defined as the deformation
of the specimen being less than 0.005 mm/d. The loading scheme for the oedometer is
illustrated in Table 2.

Table 2. Loading scheme for the oedometer test.

Sample Depth (m) Soil Specimen
Number Loading Method Loading Sequence

7.8 a

Hierarchical loading 25-50-100-200-400-
800-1600

8.0 b
14.8 c
15.0 d

2.4. Specimen Preparation and the Oedometer Test

A thin sharp knife was used to prepare soil specimens to fit into the ring for the
oedometer test. Prepared specimens for the oedometer test are illustrated in Figure 7.
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To prevent water loss due to evaporation, all specimens were covered with black
plastic bags, as shown in Figure 8. In the experiment, all test data were automatically
recorded by the automatic consolidator, and the next level of load was manually applied
when the equilibrium condition was reached.
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3. Results and Discussions

The obtained compression curves for the four specimens are illustrated in Figure 9. Ex-
perimental data were used to best fit with Equation (3). Subsequently, the pre-consolidation
pressure for each specimen was computed using Zhai et al. [18]’s method, as illustrated in
Table 3.
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Figure 9. Compression curves for four specimens.

Table 3. The pre-consolidation stress of specimens.

Soil Specimen Number a b c d

Pre-consolidation stress pc
(kPa) 584.514 529.916 611.243 499.980
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The obtained pc, as shown in Table 3, agreed well with data from the soil investigation
report. Variation in the pc, as shown in Table 3, may have been due to soil disturbance, as
explained by Brumund et al. [20].

Values of Cc for different specimens, computed from experimental data illustrated in
Figure 9 using Equation (1), are illustrated in Table 4.

Table 4. Determined results of Cc for soil from different specimens.

Soil Specimen Number a b c d

Compression index Cc 0.242 0.235 0.267 0.260

As shown in Table 4, the value of Cc varied from 0.235 to 0.267. The least and largest
pre-consolidation pressures were observed for specimens d and c, respectively. It was
expected that the compression index for specimen d would give the largest Cc, while that
of specimen c would give the lowest Cc. However, experimental data did not match these
expectations, as shown in Figure 10. This indicated that there was spatial variability in the
engineering properties of the soft clay taken from the same construction site.
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Figure 10. The obtained compression index versus the pre-consolidation pressure (pc).

Deformation data of each specimen with respect to each level of loading were used to
compute the Ca, as illustrated in Table 5.

Table 5. Determination results of secondary compression ratio Ca.

Applied Load (kPa) Soil Specimen

a b c d

25 0.00458 0.00707 0.00221 0.01476
50 0.00237 0.00394 0.00341 0.00442

100 0.00523 0.00794 0.00504 0.00504
200 0.00557 0.00817 0.00808 0.00942
400 0.00656 0.00702 0.00824 0.00767
800 0.00672 0.00479 0.00665 0.00661

1600 0.00672 0.00589 0.00688 0.00711
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The results in Table 5 indicate that the value of Ca varied with respect to specimens at
different levels of applied loads. To compare the variability of the obtained Cc and Ca, the
variability y is defined as follows:

y =
|xobs − xave|

xave
× 100% (5)

where xobs denotes measured data, xave denotes average data from four specimens, and y
denotes the variability of measured data.

Variabilities in obtained Cc and Ca are illustrated in Table 6, which indicates that
variability in the obtained Ca using low loading levels was much larger than that obtained
for the Cc. It was also observed that the variability in Ca decreased with increases in the
applied loading. The results in Table 6 are interesting, and indicate that measurement of
Ca was dependent on the stress level, and that a higher stress level gave more consistent
results of Ca.

Table 6. The variability in obtained Cc and Ca from different specimens.

Loading Level (kPa) Ca

a b c d

25 35.99% 1.19% 69.11% 106.29%
50 32.96% 11.46% 3.54% 25.04%

100 10.02% 36.60% 13.29% 13.29%
200 28.68% 4.61% 3.46% 20.61%
400 11.02% 4.78% 11.77% 4.04%
800 8.52% 22.65% 7.39% 6.74%

1600 1.05% 11.43% 3.46% 6.92%
Cc 4.67% 5.05% 10.14% 9.85%

Variabilities in the calculated Ca from different specimens at different loading levels
are illustrated in Figure 11.
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The applied load may not represent the actual in situ vertical stress level. In this case,
define the ratio between the applied load and pc as the simulated over-consolidation ratio
(OCRs). Next, the Ca can be replotted with respect to the OCRs, as shown in Figure 12.
Figure 12 indicates that the Ca decreased with increases in the OCRs. Zhang and Cao [21]
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indicated that if the applied load was less than pc, the Ca of soft clay in Jiangsu decreased
with increases in the applied load. On the other hand, if the applied load was larger than pc,
the Ca increased with increases in the applied load. It seems that Figure 12 shows different
results compared to those of Zhang and Cao [21].
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4. Conclusions

A series of oedometer tests was conducted on the soft clay of Nanjing. It was observed
that variability in determined Ca was higher than that in determined Cc. The variability in
Ca decreased with increases in the applied load. The determination of Ca was dependent on
the applied load, and the Ca decreased with increases in the simulated over-consolidation
ratio (OCRs), which defines the ratio between the applied load and the pc. The experimental
results indicate that more specimens are required to determine the Ca of soil near the
ground’s surface than are required for the Ca of deep ground. In addition, it seems that the
effect of the creep behavior of soft clay on the ground settlement decreased with increases
in the deposit depth, because the Ca decreased dramatically with increases in the OCRs.
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