A Comparative Study of Deep Learning and Manual Methods for Identifying Anatomical Landmarks through Cephalometry and Cone-Beam Computed Tomography: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Study Selection and Data Extraction
2.4. Risk-of-Bias Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Study Selection and Data Extraction
3.2. Risk of Bias Assessment
3.3. Meta-Analysis
3.4. Sensitivity Meta-Analysis
3.5. Publication Bias Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.H.; Kim, I.; Kim, Y.J.; Kim, M.; Cho, J.H.; Hong, M.; Kang, K.H.; Lim, S.H.; Kim, S.J.; Kim, N.; et al. The prediction of sagittal chin point relapse following two-jaw surgery using machine learning. Sci. Rep. 2023, 13, 17005. [Google Scholar] [CrossRef]
- Park, J.B.; Park, S.Y.; Park, J.C.; Kim, Y.G.; Ahn, H.T.; Shin, S.Y. Revolutionizing scholarly publishing by integrating artificial intelligence into editorial and peer review processes. J. Periodontal Implant. Sci. 2024, 54, 63–64. [Google Scholar] [CrossRef]
- Mahesh Batra, A.; Reche, A. A New Era of Dental Care: Harnessing Artificial Intelligence for Better Diagnosis and Treatment. Cureus 2023, 15, e49319. [Google Scholar] [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Sailer, I.; Kois, J.C.; Rokhshad, R. An overview of artificial intelligence based applications for assisting digital data acquisition and implant planning procedures. J. Esthet. Restor. Dent. 2024. [Google Scholar] [CrossRef] [PubMed]
- Rokhshad, R.; Mohammad-Rahimi, H.; Sohrabniya, F.; Jafari, B.; Shobeiri, P.; Tsolakis, I.A.; Ourang, S.A.; Sultan, A.S.; Khawaja, S.N.; Bavarian, R.; et al. Deep learning for temporomandibular joint arthropathies: A systematic review and meta-analysis. J. Oral Rehabil. 2024, 51, 1632–1644. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Shan, Z. Application of Artificial Intelligence in Orthodontics: Current State and Future Perspectives. Healthcare 2023, 11, 2760. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Nożewski, J.; Janiszewska-Olszowska, J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review. J. Clin. Med. 2024, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Z.; Zhao, J.; Yu, Y.; Li, X.; Shi, K.; Zhang, F.; Yu, F.; Shi, K.; Sun, Z.; et al. Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: A preliminary study. BMC Oral Health 2023, 23, 358. [Google Scholar] [CrossRef] [PubMed]
- Karalis, V.D. The Integration of Artificial Intelligence into Clinical Practice. Appl. Biosci. 2024, 3, 14–44. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Shahidi, S.; Bahrampour, E.; Soltanimehr, E.; Zamani, A.; Oshagh, M.; Moattari, M.; Mehdizadeh, A. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images. BMC Med. Imaging 2014, 14, 32. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Li, J.; Zhang, Y.; Zou, B. Automatic Analysis of Lateral Cephalograms Based on Multiresolution Decision Tree Regression Voting. J. Healthc. Eng. 2018, 2018, 1797502. [Google Scholar] [CrossRef]
- Hwang, H.W.; Park, J.H.; Moon, J.H.; Yu, Y.; Kim, H.; Her, S.B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.J. Automated identification of cephalometric landmarks: Part 2-Might it be better than human? Angle Orthod. 2020, 90, 69–76. [Google Scholar] [CrossRef]
- Muraev, A.A.; Tsai, P.; Kibardin, I.; Oborotistov, N.; Shirayeva, T.; Ivanov, S.; Ivanov, S.; Guseynov, N.; Aleshina, O.; Bosykh, Y.; et al. Frontal cephalometric landmarking: Humans vs artificial neural networks. Int. J. Comput. Dent. 2020, 23, 139–148. [Google Scholar] [PubMed]
- Kim, J.; Kim, I.; Kim, Y.J.; Kim, M.; Cho, J.H.; Hong, M.; Kang, K.H.; Lim, S.H.; Kim, S.J.; Kim, Y.H.; et al. Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 59–67. [Google Scholar] [CrossRef]
- Kim, M.J.; Liu, Y.; Oh, S.H.; Ahn, H.W.; Kim, S.H.; Nelson, G. Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomographysynthesized posteroanterior cephalometric images. Korean J. Orthod. 2021, 51, 77–85. [Google Scholar] [CrossRef]
- Gil, S.M.; Kim, I.; Cho, J.H.; Hong, M.; Kim, M.; Kim, S.J.; Kim, Y.J.; Kim, Y.H.; Lim, S.H.; Sung, S.J.; et al. Accuracy of auto-identification of the posteroanterior cephalometric landmarks using cascade convolution neural network algorithm and cephalometric images of different quality from nationwide multiple centers. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e361–e371. [Google Scholar] [CrossRef] [PubMed]
- Le, V.N.T.; Kang, J.; Oh, I.S.; Kim, J.G.; Yang, Y.M.; Lee, D.W. Effectiveness of Human-Artificial Intelligence Collaboration in Cephalometric Landmark Detection. J. Pers. Med. 2022, 12, 387. [Google Scholar] [CrossRef] [PubMed]
- Blum, F.M.S.; Möhlhenrich, S.C.; Raith, S.; Pankert, T.; Peters, F.; Wolf, M.; Hölzle, F.; Modabber, A. Evaluation of an artificial intelligence-based algorithm for automated localization of craniofacial landmarks. Clin. Oral Investig. 2023, 27, 2255–2265. [Google Scholar] [CrossRef]
- Han, S.H.; Lim, J.; Kim, J.S.; Cho, J.H.; Hong, M.; Kim, M.; Kim, S.J.; Kim, Y.J.; Kim, Y.H.; Lim, S.H.; et al. Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study. Korean J. Orthod. 2024, 54, 48–58. [Google Scholar] [CrossRef]
- Serafin, M.; Baldini, B.; Cabitza, F.; Carrafiello, G.; Baselli, G.; Del Fabbro, M.; Sforza, C.; Caprioglio, A.; Tartaglia, G.M. Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: Systematic review and meta-analysis. Radiol. Med. 2023, 128, 544–555. [Google Scholar] [CrossRef]
- Dhopte, A.; Bagde, H. Smart Smile: Revolutionizing Dentistry With Artificial Intelligence. Cureus 2023, 15, e41227. [Google Scholar] [CrossRef] [PubMed]
- Daraqel, B.; Wafaie, K.; Mohammed, H.; Cao, L.; Mheissen, S.; Liu, Y.; Zheng, L. The performance of artificial intelligence models in generating responses to general orthodontic questions: ChatGPT vs Google Bard. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 652–662. [Google Scholar] [CrossRef]
- Bowness, J.S.; Metcalfe, D.; El-Boghdadly, K.; Thurley, N.; Morecroft, M.; Hartley, T.; Krawczyk, J.; Noble, J.A.; Higham, H. Artificial intelligence for ultrasound scanning in regional anaesthesia: A scoping review of the evidence from multiple disciplines. Br. J. Anaesth. 2024, 132, 1049–1062. [Google Scholar] [CrossRef]
- Chen, J.; Che, H.; Sun, J.; Rao, Y.; Wu, J. An automatic cephalometric landmark detection method based on heatmap regression and Monte Carlo dropout. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Baumrind, S.; Curry, S.; Carlson, S.K.; Boyd, R.L.; Oh, H. Reliability of 3D dental and skeletal landmarks on CBCT images. Angle Orthod. 2019, 89, 758–767. [Google Scholar] [CrossRef]
- Pittayapat, P.; Limchaichana-Bolstad, N.; Willems, G.; Jacobs, R. Three-dimensional cephalometric analysis in orthodontics: A systematic review. Orthod. Craniofac. Res. 2014, 17, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- von Cramon-Taubadel, N.; Frazier, B.C.; Lahr, M.M. The problem of assessing landmark error in geometric morphometrics: Theory, methods, and modifications. Am. J. Phys. Anthropol. 2007, 134, 24–35. [Google Scholar] [CrossRef]
- Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Tanikawa, C.; Kajiwara, T.; Nagahara, H.; Yamashiro, T. The validation of orthodontic artificial intelligence systems that perform orthodontic diagnoses and treatment planning. Eur. J. Orthod. 2022, 44, 436–444. [Google Scholar] [CrossRef]
- Wang, C.W.; Huang, C.T.; Hsieh, M.C.; Li, C.H.; Chang, S.W.; Li, W.C.; Vandaele, R.; Marée, R.; Jodogne, S.; Geurts, P.; et al. Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Trans. Med. Imaging 2015, 34, 1890–1900. [Google Scholar] [CrossRef]
- Bermejo, E.; Taniguchi, K.; Ogawa, Y.; Martos, R.; Valsecchi, A.; Mesejo, P.; Ibáñez, O.; Imaizumi, K. Automatic landmark annotation in 3D surface scans of skulls: Methodological proposal and reliability study. Comput. Methods Programs Biomed. 2021, 210, 106380. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Yun, J.P.; Yeom, H.G.; Kim, H.K.; Kim, B.C. Deep-Learning-Based Detection of Cranio-Spinal Differences between Skeletal Classification Using Cephalometric Radiography. Diagnostics 2021, 11, 591. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Kim, M.; Bae, H.J.; Park, J.W.; Kim, N. Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations. Sci. Rep. 2021, 11, 12563. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, J.B.; Chang, M.S.; Ryu, J.J.; Lim, W.H.; Jung, S.K. Influence of the depth of the convolutional neural networks on an artificial intelligence model for diagnosis of orthognathic surgery. J. Pers. Med. 2021, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, H.; Li, P.; Pei, Y.; Guo, Y.; Xu, T.; Zha, H. Deformable registration of lateral cephalogram and cone-beam computed tomography image. Med. Phys. 2021, 48, 6901–6915. [Google Scholar] [CrossRef]
- Dolatabadi, N.; Boyd, R.L.; Oh, H. Comparison between a human judge and automatic landmark identification on digital models. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 257–263. [Google Scholar] [CrossRef]
- Gokdeniz, S.T.; Kamburoğlu, K. Artificial intelligence in dentomaxillofacial radiology. World J. Radiol. 2022, 14, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Lian, C.; Xiao, D.; Deng, H.; Thung, K.H.; Yuan, P.; Gateno, J.; Kuang, T.; Alfi, D.M.; Wang, L.; et al. Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning. IEEE Trans. Med. Imaging 2022, 41, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gong, Q.; Li, H.; Chen, S.; Liu, Y.; Ruan, G.; Zhu, L.; Liu, L.; Chen, H. Automatic location scheme of anatomical landmarks in 3D head MRI based on the scale attention hourglass network. Comput. Methods Programs Biomed. 2022, 214, 106564. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.R.; Morais, P.; Fritze, A.; Burkhardt, W.; Kaufmann, M.; Oliveira, B.; Veloso, F.; Hahn, G.; Rüdiger, M.; Fonseca, J.C.; et al. Anthropometric Landmarking for Diagnosis of Cranial Deformities: Validation of an Automatic Approach and Comparison with Intra- and Interobserver Variability. Ann. Biomed. Eng. 2022, 50, 1022–1037. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, F.; Xie, Z.; Sun, J.; Sun, Y.; Zhang, M.; Zhou, J.; Feng, Q.; Zhang, G.; Xing, K.; et al. Evaluation of automated detection of head position on lateral cephalometric radiographs based on deep learning techniques. Ann. Anat. 2023, 250, 152114. [Google Scholar] [CrossRef]
- Weingart, J.V.; Schlager, S.; Metzger, M.C.; Brandenburg, L.S.; Hein, A.; Schmelzeisen, R.; Bamberg, F.; Kim, S.; Kellner, E.; Reisert, M.; et al. Automated detection of cephalometric landmarks using deep neural patchworks. Dentomaxillofac. Radiol. 2023, 52, 20230059. [Google Scholar] [CrossRef]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Jankowski, T.; Jankowska, A.; Janiszewska-Olszowska, J. Skeletal facial asymmetry: Reliability of manual and artificial intelligence-driven analysis. Dentomaxillofac. Radiol. 2024, 53, 52–59. [Google Scholar] [CrossRef]
- Noothout, J.M.H.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.M.; Takx, R.A.P.; Leiner, T.; Viergever, M.A.; Isgum, I. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Trans. Med. Imaging 2020, 39, 4011–4022. [Google Scholar] [CrossRef]
- Shahidi, S.; Oshagh, M.; Gozin, F.; Salehi, P.; Danaei, S.M. Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac. Radiol. 2013, 42, 20110187. [Google Scholar] [CrossRef]
- Gupta, A.; Kharbanda, O.P.; Sardana, V.; Balachandran, R.; Sardana, H.K. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1737–1752. [Google Scholar] [CrossRef]
- Gupta, A.; Kharbanda, O.P.; Sardana, V.; Balachandran, R.; Sardana, H.K. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 1297–1309. [Google Scholar] [CrossRef]
- Lindner, C.; Wang, C.W.; Huang, C.T.; Li, C.H.; Chang, S.W.; Cootes, T.F. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci. Rep. 2016, 6, 33581. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, M.A.; Baba, M.S.; Malek, S.; Almaktari, R.A. Ceph-X: Development and evaluation of 2D cephalometric system. BMC Bioinform. 2016, 17, 499. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Wang, L.; Tang, Z.; Xia, J.J.; Shen, D. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features. IEEE Trans. Biomed. Eng. 2016, 63, 1820–1829. [Google Scholar] [CrossRef] [PubMed]
- Arık, S.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 2017, 4, 014501. [Google Scholar] [CrossRef]
- Codari, M.; Caffini, M.; Tartaglia, G.M.; Sforza, C.; Baselli, G. Computer-aided cephalometric landmark annotation for CBCT data. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 113–121. [Google Scholar] [CrossRef]
- Ed-Dhahraouy, M.; Riri, H.; Ezzahmouly, M.; Bourzgui, F.; El Moutaoukkil, A. A new methodology for automatic detection of reference points in 3D cephalometry: A pilot study. Int. Orthod. 2018, 16, 328–337. [Google Scholar] [CrossRef]
- Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Automatic 3-dimensional cephalometric landmarking based on active shape models in related projections. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 449–458. [Google Scholar] [CrossRef]
- Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, V.; Gupta, A.; Vasamsetti, S.; Balachandran, R.; Sardana, H.K. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull. Dentomaxillofac. Radiol. 2018, 47, 20170054. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeon, K.; Kim, H.J.; Seo, J.K.; Lee, S.H. Automatic Three-Dimensional Cephalometric Annotation System Using Three-Dimensional Convolutional Neural Networks. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, S189–S190. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, H.P.; Jeon, K.; Lee, S.H.; Seo, J.K. Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning. Phys. Med. Biol. 2019, 64, 055002. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Sotsuka, Y.; Kawai, K.; Ishise, H.; Kakibuchi, M. Personal Computer-Based Cephalometric Landmark Detection With Deep Learning, Using Cephalograms on the Internet. J. Craniofac. Surg. 2019, 30, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hwang, H.W.; Moon, J.H.; Yu, Y.; Kim, H.; Her, S.B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.J. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019, 89, 903–909. [Google Scholar] [CrossRef]
- Kim, H.; Shim, E.; Park, J.; Kim, Y.J.; Lee, U.; Kim, Y. Web-based fully automated cephalometric analysis by deep learning. Comput. Methods Programs Biomed. 2020, 194, 105513. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Lee, J.H.; Yu, H.J.; Kim, M.J.; Kim, J.W.; Choi, J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health 2020, 20, 270. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, A.; Lam, J.; Wesarg, S. Automated cephalometric landmark localization using a coupled shape model. Biomed. Tech. 2020, 65, S16. [Google Scholar] [CrossRef]
- Yun, H.S.; Jang, T.J.; Lee, S.M.; Lee, S.H.; Seo, J.K. Learning-based local-to-global landmark annotation for automatic 3D cephalometry. Phys. Med. Biol. 2020, 65, 085018. [Google Scholar] [CrossRef]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 37–42. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, F.; Syben, C.; Roser, P.; Mill, L.; Maier, A. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med. Image Anal. 2021, 70, 102028. [Google Scholar] [CrossRef]
- Hwang, H.W.; Moon, J.H.; Kim, M.G.; Donatelli, R.E.; Lee, S.J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021, 91, 329–335. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, K.C. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network. Prog. Orthod. 2021, 22, 14. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeon, K.; Kang, S.H.; Lee, S.H. 3D cephalometric landmark detection by multiple stage deep reinforcement learning. Sci. Rep. 2021, 11, 17509. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, C.; Ha, E.G.; Choi, Y.J.; Han, S.S. A fully deep learning model for the automatic identification of cephalometric landmarks. Imaging Sci. Dent. 2021, 51, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Oh, I.S.; Le, V.N.T.; Lee, D.W. Deep Anatomical Context Feature Learning for Cephalometric Landmark Detection. IEEE J. Biomed. Health Inform. 2021, 25, 806–817. [Google Scholar] [CrossRef]
- Tanikawa, C.; Lee, C.; Lim, J.; Oka, A.; Yamashiro, T. Clinical applicability of automated cephalometric landmark identification: Part I-Patient-related identification errors. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 43–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, L.; Li, Y.; Niu, K.; He, Z. A DCNN system based on an iterative method for automatic landmark detection in cephalometric X-ray images. Biomed. Signal Process. Control 2021, 68, 102757. [Google Scholar] [CrossRef]
- Zeng, M.; Yan, Z.; Liu, S.; Zhou, Y.; Qiu, L. Cascaded convolutional networks for automatic cephalometric landmark detection. Med. Image Anal. 2021, 68, 101904. [Google Scholar] [CrossRef]
- Ahn, J.; Nguyen, T.P.; Kim, Y.J.; Kim, T.; Yoon, J. Automated analysis of three-dimensional CBCT images taken in natural head position that combines facial profile processing and multiple deep-learning models. Comput. Methods Programs Biomed. 2022, 226, 107123. [Google Scholar] [CrossRef]
- Ali, S.M.; Saloom, H.F.; Tawfeeq, M.A. Cephalometric Variables Prediction from Lateral Photographs Between Different Skeletal Patterns Using Regression Artificial Neural Networks. Turk. J. Orthod. 2022, 35, 101–111. [Google Scholar] [CrossRef]
- Çoban, G.; Öztürk, T.; Hashimli, N.; Yağci, A. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software. Dental Press J. Orthod. 2022, 27, e222112. [Google Scholar] [CrossRef] [PubMed]
- Dot, G.; Schouman, T.; Chang, S.; Rafflenbeul, F.; Kerbrat, A.; Rouch, P.; Gajny, L. Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning. J. Dent. Res. 2022, 101, 1380–1387. [Google Scholar] [CrossRef]
- Jiang, F.; Guo, Y.; Zhou, Y.; Yang, C.; Xing, K.; Zhou, J.; Lin, Y.; Cheng, F.; Li, J. Automated calibration system for length measurement of lateral cephalometry based on deep learning. Phys. Med. Biol. 2022, 67, 225016. [Google Scholar] [CrossRef]
- Mahto, R.K.; Kafle, D.; Giri, A.; Luintel, S.; Karki, A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health 2022, 22, 132. [Google Scholar] [CrossRef]
- Ristau, B.; Coreil, M.; Chapple, A.; Armbruster, P.; Ballard, R. Comparison of AudaxCeph®’s fully automated cephalometric tracing technology to a semi-automated approach by human examiners. Int. Orthod. 2022, 20, 100691. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef] [PubMed]
- Uğurlu, M. Performance of a Convolutional Neural Network- Based Artificial Intelligence Algorithm for Automatic Cephalometric Landmark Detection. Turk. J. Orthod. 2022, 35, 94–100. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, W.; He, T.; Zhou, S.; Zhang, Y.; Guo, J.; Tang, W. Automatic localization of cephalometric landmarks based on convolutional neural network. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e250–e259. [Google Scholar] [CrossRef]
- Yun, H.S.; Hyun, C.M.; Baek, S.H.; Lee, S.H.; Seo, J.K. A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography. PLoS ONE 2022, 17, e0275114. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhang, K.; Yu, C.; Li, H.; Cao, D.; Shu, H.; Liu, L.; Yan, B. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. BMC Oral Health 2023, 23, 191. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, Z.; Wang, F.; Dou, J.; Zhang, Y.; Bai, Y. Automatic analysis of lateral cephalograms based on high-resolution net. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 501–508.e4. [Google Scholar] [CrossRef]
- Chen, Z.; Ishikawa, H.; Wollstein, G.; Wang, Y.; Schuman, J.S. Deep-Learning-Based Group Point-Wise Spatial Mapping of Structure to Function in Glaucoma. Investig. Ophthalmol. Vis. Sci. 2023, 64, 344. [Google Scholar]
- Duran, G.S.; Gökmen, Ş.; Topsakal, K.G.; Görgülü, S. Evaluation of the accuracy of fully automatic cephalometric analysis software with artificial intelligence algorithm. Orthod. Craniofac. Res. 2023, 26, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Gillot, M.; Miranda, F.; Baquero, B.; Ruellas, A.; Gurgel, M.; Al Turkestani, N.; Anchling, L.; Hutin, N.; Biggs, E.; Yatabe, M.; et al. Automatic landmark identification in cone-beam computed tomography. Orthod. Craniofac. Res. 2023, 26, 560–567. [Google Scholar] [CrossRef]
- Hong, W.; Kim, S.M.; Choi, J.; Ahn, J.; Paeng, J.Y.; Kim, H. Automated Cephalometric Landmark Detection Using Deep Reinforcement Learning. J. Craniofac. Surg. 2023, 34, 2336–2342. [Google Scholar] [CrossRef]
- Indermun, S.; Shaik, S.; Nyirenda, C.; Johannes, K.; Mulder, R. Human examination and artificial intelligence in cephalometric landmark detection-is AI ready to take over? Dentomaxillofac. Radiol. 2023, 52, 20220362. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Guo, Y.; Yang, C.; Zhou, Y.; Lin, Y.; Cheng, F.; Quan, S.; Feng, Q.; Li, J. Artificial intelligence system for automated landmark localization and analysis of cephalometry. Dentomaxillofac. Radiol. 2023, 52, 20220081. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Widmaier, L.M.; Zeman, F.; Boldt, J. Assessment of the quality of different commercial providers using artificial intelligence for automated cephalometric analysis compared to human orthodontic experts. J. Orofac. Orthop. 2023. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Cho, J.M.; Ryu, S.; Ryu, S.; Chang, E.; Jung, Y.S.; Kim, J.Y. Automatic identification of posteroanterior cephalometric landmarks using a novel deep learning algorithm: A comparative study with human experts. Sci. Rep. 2023, 13, 15506. [Google Scholar] [CrossRef]
- Lu, G.; Shu, H.; Bao, H.; Kong, Y.; Zhang, C.; Yan, B.; Zhang, Y.; Coatrieux, J.L. CMF-Net: Craniomaxillofacial landmark localization on CBCT images using geometric constraint and transformer. Phys. Med. Biol. 2023, 68, 095020. [Google Scholar] [CrossRef]
- Prince, S.T.T.; Srinivasan, D.; Duraisamy, S.; Kannan, R.; Rajaram, K. Reproducibility of linear and angular cephalometric measurements obtained by an artificial-intelligence assisted software (WebCeph) in comparison with digital software (AutoCEPH) and manual tracing method. Dental Press J. Orthod. 2023, 28, e2321214. [Google Scholar] [CrossRef]
- Rashmi, S.; Srinath, S.; Patil, K.; Murthy, P.S.; Deshmukh, S. Lateral Cephalometric Landmark Annotation Using Histogram Oriented Gradients Extracted from Region of Interest Patches. J. Maxillofac. Oral Surg. 2023, 22, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Cheng, Z.; Ungvijanpunya, N.; Chen, W.; Cao, L.; Gou, Y. Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification? BMC Oral Health 2023, 23, 467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yuan, Z.; Luo, S.; Wang, W.; Ren, Z.; Yao, X.; Wu, T. Automatic recognition of cephalometric landmarks via multi-scale sampling strategy. Heliyon 2023, 9, e17459. [Google Scholar] [CrossRef]
- Gaonkar, P.; Mohammed, I.; Ribin, M.; Kumar, C.D.; Thomas, P.A.; Saini, R. Assessing the Impact of AI-Enhanced Diagnostic Tools on the Treatment Planning of Orthodontic Cases: An RCT. J. Pharm. Bioallied Sci. 2024, 16, S1798–S1800. [Google Scholar] [CrossRef]
- Guinot-Barona, C.; Alonso Pérez-Barquero, J.; Galán López, L.; Barmak, A.B.; Att, W.; Kois, J.C.; Revilla-León, M. Cephalometric analysis performance discrepancy between orthodontists and an artificial intelligence model using lateral cephalometric radiographs. J. Esthet. Restor. Dent. 2024, 36, 555–565. [Google Scholar] [CrossRef]
- Jiao, Z.; Liang, Z.; Liao, Q.; Chen, S.; Yang, H.; Hong, G.; Gui, H. Deep learning for automatic detection of cephalometric landmarks on lateral cephalometric radiographs using the Mask Region-based Convolutional Neural Network: A pilot study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 137, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kim, I.; Kim, Y.J.; Kim, N.; Baek, S.H.; Sung, S.J. Accuracy and clinical validity of automated cephalometric analysis using convolutional neural networks. Orthod. Craniofac. Res. 2024, 27, 64–77. [Google Scholar] [CrossRef]
- Dot, G.; Rafflenbeul, F.; Arbotto, M.; Gajny, L.; Rouch, P.; Schouman, T. Accuracy and reliability of automatic three-dimensional cephalometric landmarking. Int. J. Oral Maxillofac. Surg. 2020, 49, 1367–1378. [Google Scholar] [CrossRef]
- Lee, M.; Chung, M.; Shin, Y.G. Cephalometric landmark detection via global and local encoders and patch-wise attentions. Neurocomputing 2022, 470, 182–189. [Google Scholar] [CrossRef]
- Kolsanov, A.V.; Popov, N.V.; Ayupova, I.O.; Tsitsiashvili, A.M.; Gaidel, A.V.; Dobratulin, K.S. Cephalometric analysis of lateral skull X-ray images using soft computing components in the search for key points. Stomatologiia 2021, 100, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Wang, S.F.; Zuo, F.F.; Wang, F.; Gong, B.W.; Wang, Y.J.; Xie, X.J. Automated diagnostic classification with lateral cephalograms based on deep learning network model. Zhonghua Kou Qiang Yi Xue Za Zhi 2023, 58, 547–553. [Google Scholar] [CrossRef]
- Gong, B.W.; Chang, S.; Zuo, F.F.; Xie, X.J.; Wang, S.F.; Wang, Y.J.; Sun, Y.Y.; Guan, X.C.; Bai, Y.X. Automated cephalometric landmark identification and location based on convolutional neural network. Zhonghua Kou Qiang Yi Xue Za Zhi 2023, 58, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Country | Imaging Examination | Architecture | Number of Experts Involved in Manual Landmarking | Number of Training/Testing | Numbers of Landmark | MRE ± SD (mm) | SDR < 2 mm (%) | Results |
---|---|---|---|---|---|---|---|---|---|
Shahidi et al., 2014 [12] | Iran | CBCT | Image registration method using MATLAB software language | 3 | 8/20 | 14 | 3.40 ± 1.48 | NR | The mean errors for all 14 landmarks were less than 4 mm, and over 63% of them had a mean error of less than 3 mm when compared to manual measurements. |
Wang et al., 2018 [13] | China | Lateral cephalograms | Multiresolution decision tree regression voting using scale invariant feature transform-based patch features | 2 | 150/150 | 19 | 1.69 ± 1.43 | 73.37 | The algorithm’s average 73% successful detection rate, which falls within a precision range of 2.0 mm, was validated by the clinical database. |
Hwang et al., 2020 [14] | Korea | Lateral cephalograms | You Only Look Once, Version 3 (YOLOv3) | 2 | 1028/283 | 80 | 1.46 ± 2.97 | NR | Artificial intelligence achieved an accuracy in identifying cephalometric landmarks that was on par with that of human examinations. |
Muraev et al., 2020 [15] | Russia | Frontal cephalograms | ANN | 13 | 300/30 | 45 | 2.87 ± 0.99 | NR | The outcome of this study reveals that artificial neural networks attained accuracy levels comparable to human experts in identifying cephalometric landmarks. |
Kim, J. et al., 2021 [16] | Korea | Lateral cephalogram | A cascaded CNN | 2 | 440/100 | 20 | 1.36 ± 0.98 | 83.6 | The total automatic detection mistake was 1.36 ± 0.98 mm, and the average error for identifying each landmark ranged from 0.46 ± 0.37 mm for maxillary incisor crown tip to 2.09 ± 1.91 mm for distal root tip of the mandibular first molar. |
Kim, M. et al., 2021 [17] | Korea | Posteroanterior CBCT | A multi-stage CNN | 1 | 345/85 | 23 | 2.23 ± 2.02 | 60.88 | Automatic identification of cephalometric landmarks using CBCT synthesis did not achieve a clinically acceptable level of accuracy, as the error range fell short of the desired threshold of less than 2 mm. |
Gil et al., 2022 [18] | Korea | Posteroanterior cephalogram | A cascaded CNN | 1 | 2418/99 | 16 | 1.52 ± 1.13 | 83.3 | The cascade convolution neural network algorithm for automatically identifying posteroanterior cephalometric landmarks demonstrated potential as a viable alternative to manual identification. |
Le et al., 2022 [19] | Korea | Lateral cephalogram | The deep anatomical context feature learning model | 20 | 1193/10 | 41 | 1.87 ± 2.04 | 73.17 | The use of beginner-artificial intelligence collaboration was successful in identifying cephalometric landmarks. |
Blum et al., 2023 [20] | Germany | CBCT | Densilia® (Munich, Germanay): software using CNN algorithm | 4 | 931/114 | 35 | 2.73 ± 2.37 | NR | The level of accuracy achieved in automatic landmark detection falls within the clinically acceptable range, and it is comparable to the precision of manual landmark determination, while also requiring significantly less time. |
Han et al., 2024 [21] | Korea | Posteroanterior cephalogram | A cascaded CNN | 2+2 | 2150/377 | 9 | 1.26 ± 1.94 | 83.2 | The cascaded-convolutional neural network model can be considered a useful tool for automatically identifying midline landmarks and determining the extent of midline deviation in posteroanterior cephalograms of adult patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Pyeon, J.-H.; Han, S.-H.; Kim, N.J.; Park, W.-J.; Park, J.-B. A Comparative Study of Deep Learning and Manual Methods for Identifying Anatomical Landmarks through Cephalometry and Cone-Beam Computed Tomography: A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 7342. https://doi.org/10.3390/app14167342
Lee Y, Pyeon J-H, Han S-H, Kim NJ, Park W-J, Park J-B. A Comparative Study of Deep Learning and Manual Methods for Identifying Anatomical Landmarks through Cephalometry and Cone-Beam Computed Tomography: A Systematic Review and Meta-Analysis. Applied Sciences. 2024; 14(16):7342. https://doi.org/10.3390/app14167342
Chicago/Turabian StyleLee, Yoonji, Jeong-Hye Pyeon, Sung-Hoon Han, Na Jin Kim, Won-Jong Park, and Jun-Beom Park. 2024. "A Comparative Study of Deep Learning and Manual Methods for Identifying Anatomical Landmarks through Cephalometry and Cone-Beam Computed Tomography: A Systematic Review and Meta-Analysis" Applied Sciences 14, no. 16: 7342. https://doi.org/10.3390/app14167342
APA StyleLee, Y., Pyeon, J. -H., Han, S. -H., Kim, N. J., Park, W. -J., & Park, J. -B. (2024). A Comparative Study of Deep Learning and Manual Methods for Identifying Anatomical Landmarks through Cephalometry and Cone-Beam Computed Tomography: A Systematic Review and Meta-Analysis. Applied Sciences, 14(16), 7342. https://doi.org/10.3390/app14167342