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Abstract

:

Background: Researchers have noted that the advent of artificial intelligence (AI) heralds a promising era, with potential to significantly enhance diagnostic and predictive abilities in clinical settings. The aim of this meta-analysis is to evaluate the discrepancies in identifying anatomical landmarks between AI and manual approaches. Methods: A comprehensive search strategy was employed, incorporating controlled vocabulary (MeSH) and free-text terms. This search was conducted by two reviewers to identify published systematic reviews. Three major electronic databases, namely, Medline via PubMed, the Cochrane database, and Embase, were searched up to May 2024. Results: Initially, 369 articles were identified. After conducting a comprehensive search and applying strict inclusion criteria, a total of ten studies were deemed eligible for inclusion in the meta-analysis. The results showed that the average difference in detecting anatomical landmarks between artificial intelligence and manual approaches was 0.35, with a 95% confidence interval (CI) ranging from −0.09 to 0.78. Additionally, the overall effect between the two groups was found to be insignificant. Upon further analysis of the subgroup of cephalometric radiographs, it was determined that there were no significant differences between the two groups in terms of detecting anatomical landmarks. Similarly, the subgroup of cone-beam computed tomography (CBCT) revealed no significant differences between the groups. Conclusions: In summary, the study concluded that the use of artificial intelligence is just as effective as the manual approach when it comes to detecting anatomical landmarks, both in general and in specific contexts such as cephalometric radiographs and CBCT evaluations.
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1. Introduction


The development of computer systems with the ability to perform tasks requiring human intelligence is referred to as AI [1]. The emergence of AI is a promising era and has the potential to greatly enhance diagnostic and predictive capabilities in clinical settings [2]. AI has made considerable progress in various aspects of dentistry, presenting promising developments for both dental professionals and patients alike [3]. In dentistry, AI has been utilized to aid in the acquisition of digital data, including the tasks of scan cleaning, scan assistance, and the automation of the alignment process between the scanned body of an implant and the planning procedures for implants [4]. Deep learning models have proven to be highly effective in detecting temporomandibular joint arthropathies with a high degree of sensitivity and specificity [5].



Similarly, AI has made considerable advancements in orthodontics, and this area has generated significant interest among orthodontists [6]. AI can aid in diagnosing orthodontic issues by analyzing clinical photographs, radiographs, and three-dimensional scans [7]. AI can identify various irregularities, including those related to tooth alignment, jaw relation, and tooth structure [8]. The use of AI in this context expedites the diagnostic process and enhances the accuracy of the results [9]. This study aimed to carry out a meta-analysis to evaluate the disparities in the identification of anatomical landmarks between artificial intelligence and manual approaches.




2. Materials and Methods


2.1. Protocol and Eligibility Criteria


This systematic review adheres to the guidelines specified in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, as outlined in reference [10]. The central question of this review is as follows: how accurate is automated landmarking using deep learning in comparison to manual tracing for cephalometric analysis? The participants in this study are three-dimensional data images that are suitable for landmarking. The intervention is landmarking performed by a deep learning machine, and the comparison is manual landmarking. The outcomes of interest are accuracy, precision, and reliability. Studies published in languages other than English were excluded from this review.




2.2. Information Sources and Search Strategy


A solitary reviewer, affiliated with the library and identified by the initials N.J.K., executed an extensive search using a combination of controlled vocabulary (MeSH) and free-text terms. This approach was designed to locate published systematic reviews. Additionally, two reviewers, identified by the initials Y.J.L. and J.H.P., performed comprehensive searches of three major electronic databases, including Medline via PubMed, the Cochrane database, and Embase, up to 15 May 2024. The results of the search were carefully transferred to the EndNote reference management software (Version 21, Clarivate, Philadelphia, PA, USA) for an extensive process of deduplication. This step was deemed essential to ensure that the research findings would not be compromised by any duplicate entries or redundant references. To optimize the accuracy and relevance of our search, the search strategy employed was carefully tailored to align with the specific criteria and nuances of each database. This tailored approach allowed us to effectively harness the full potential of each database, maximizing the retrieval of relevant and valuable information for our research objectives. Further details about the initial search strategy can be found in Supplementary Material Table S1.




2.3. Study Selection and Data Extraction


The evaluation of the retrieved articles’ titles and abstracts for eligibility criteria was conducted blindly by two reviewers (Y.J.L. and J.H.P.). Any discrepancies were settled through discussions with a third author (S.H.H.). The full text of the remaining articles was then assessed independently and in duplicate by Y.J.L. and J.H.P. before final selection. Data were obtained from the selected studies and organized according to the PICOS question, including general information (author name and publication year), participant details (number of samples and landmarks measured, anatomic landmarks), intervention/comparison (deep learning vs. manual landmarking), and outcomes (mean radial error, successful detection rate).




2.4. Risk-of-Bias Assessment


Two independent reviewers, Y.J.L. and J.H.P., assessed the risk of individual bias in the eligible studies using the QUADAS-2 tool [11]. This tool consists of four domains: patient selection, index test, reference standard, and flow and timing. Each domain is evaluated for the risk of bias, and the first three domains are also assessed for applicability concerns. The domains can be classified as “high risk”, “uncertain risk”, or “low risk”. When the reviewers had divergent opinions, they resolved their differences through discussion. If no consensus was reached, a third author, S.H.H., was consulted to make a final decision.




2.5. Data Synthesis and Analysis


Meta-analysis was performed using R (version 3.5.0; R Project for Statistical Computing). The mean difference (MD) and the 95% confidence interval (CI) were utilized as summary statistics. In conducting the meta-analysis, a random-effects model was adopted, with a significance level of 0.05. To assess the variability among the studies, both the I2 static and the chi-squared test were performed.





3. Results


3.1. Study Selection and Data Extraction


The literature search initially yielded 369 articles. Following the exclusion of 86 duplicates, the titles and abstracts of the remaining articles were assessed, resulting in the exclusion of 191 articles that did not meet the inclusion criteria. Thereafter, the full-text versions of the 92 articles that remained were evaluated based on the inclusion and exclusion criteria. Of these, 82 articles were found to be ineligible for further analysis, leaving 10 studies that were assessed for eligibility. The flowchart depicting the screening process is presented in Figure 1, while Supplementary Material Table S2 provides a list of the excluded articles along with the reasons for their exclusion. Table 1 offers an overview of the key characteristics of the studies that were ultimately included in this analysis.




3.2. Risk of Bias Assessment


The summary of the risk of bias and overall risk of bias score for each field in the included articles are depicted in Figure 2 and Supplementary Material Table S3 Considering all four bias assessment domains, four studies were found to have a low concern of bias, four studies had unclear concerns regarding bias, and two studies showed a high risk of bias. Most studies presented a low risk of bias for the domains of patient selection (70%, 7/10), index test (90%, 1/10), and reference standard (80%, 2/10). However, for flow and timing, 20% of studies showed a high risk, and 30% of studies indicated an unclear risk of bias due to issues with the time interval. Regarding applicability, nearly all papers received a low-risk evaluation across all domains, with only one paper receiving a high concern of applicability in the index test domain. Overall, the concern for applicability was mainly low, given that only one high risk was obtained in the index test domain. Rationale for each question in the QUADAS-2 assessment is shown in in Supplementary Material Table S4.




3.3. Meta-Analysis


A total of ten articles (Shahidi et al., 2014 [12]; Wang et al., 2018 [13]; Hwang et al., 2020 [14]; Muraev et al., 2020 [15]; Kim et al., 2021 [16]; Kim et al., 2021 [17]; Gil et al., 2022 [18]; Le et al., 2022 [19]; Blum et al., 2023 [20]; and Han et al., 2024 [21]) were examined in a study to explore the differences in the identification of anatomical landmarks between deep learning and manual approaches. Taking into account the diverse designs of the studies, a random-effects model was used. The high level of I2 values (99%; p < 0.01) indicated substantial heterogeneity among the studies. To account for this heterogeneity, a subgroup analysis was performed, dividing the literature into two subgroups based on the type of radiographic analysis and cone-beam computed tomography. The results of the meta-analysis showed that the pooled mean difference for accuracy in detecting the anatomical landmarks between artificial intelligence and manual approaches was 0.35 (95% CI, −0.09 to 0.78), and the overall effect between the groups was insignificant (p > 0.01) (Figure 3).



Seven articles (Han et al., 2024 [21]; Le et al., 2022 [19]; Gil et al., 2022 [18]; Kim et al., 2021 [16]; Muraev et al., 2020 [15]; Hwang et al., 2020 [14]; and Wang et al., 2018 [13]) investigated the accuracy of detecting anatomical landmarks using cephalometric radiographs. The studies revealed a high level of heterogeneity (I2 values of 99%; p < 0.01). The meta-analysis revealed a pooled mean difference of 0.09 (95% CI, −0.18 to 0.36; p > 0.01) between artificial intelligence and manual approaches in detecting anatomical landmarks (Figure 3).



Three articles (Blum et al., 2023 [20]; Kim et al., 2021 [17]; and Shahidi et al., 2014 [12]) assessed the disparities in identifying anatomical landmarks using cone-beam computed tomography. The high level of I2 values (99%; p < 0.01) indicated substantial heterogeneity among the studies. The meta-analysis showed a pooled mean difference of 0.95 (95% CI, −0.21 to 2.11; p > 0.01) between artificial intelligence and human in detecting anatomical landmarks. The forest plot did not demonstrate superiority between artificial intelligence and humans (Figure 3).



Six articles (Wang et al., 2018 [13]; Kim et al., 2021 [16]; Kim et al., 2021 [17]; Gil et al., 2022 [18]; Le et al., 2022 [19]; and Han et al., 2024 [21]) were examined in a study to access the successful detection rate (SDR) of deep learning with a margin of error of 2 mm, considering that a margin of error of 2 mm is clinically acceptable (Kim et al., 2021 [16]). Given the diverse designs of the studies, a random-effects model was used. The high level of I2 values (99%; p < 0.01) indicated very high heterogeneity among the studies. The meta-analysis showed a pooled proportion of 0.77 (95% CI, 0.69 to 0.84). The forest plot demonstrates relatively consistent high SDR of deep learning with a margin of error of 2mm above 70%, with the exception of one article (Kim et al., 2021 [17]) (Figure 4).




3.4. Sensitivity Meta-Analysis


A sensitivity analysis was performed by excluding a single study (Shahidi et al., 2014 [12]) from the total of ten studies, which was found to affect the aggregate outcomes of the meta-analysis (Figure 5). When comparing the comprehensive meta-analysis encompassing all studies to the meta-analyses performed after individually excluding each study, the mean difference, confidence intervals, and heterogeneity index generally remained consistent. Hence, a new meta-analysis was conducted by excluding the Shahidi et al. study (2014) [12]. The test for overall effect was insignificant (p > 0.05), and it also revealed that there were no significant differences between subgroups (p > 0.05) (Figure 6).




3.5. Publication Bias Analysis


The funnel plot revealed an asymmetric pattern, indicating potential publication bias (Figure 7). Most studies were clustered around the center, suggesting a concentration near the average effect size. Egger’s regression test yielded a t-value of 1.69 with 8 degrees of freedom and a corresponding p-value of 0.13, suggesting no substantial evidence of publication bias or small study effects in the meta-analysis. Results for the adjusted trim-and-fill analysis are shown in Supplementary Material Figure S1 and Supplementary Material Table S5.





4. Discussion


This systematic review and meta-analysis was conducted to compare the effectiveness of artificial intelligence and manual methods in identifying anatomical landmarks. The goal of this study was to examine the discrepancies in the identification of anatomical landmarks between artificial intelligence and manual approaches. The results of the study showed that artificial intelligence was just as effective as manual methods in detecting anatomical landmarks in both cephalometric radiographs and CBCT.



As manual landmarking is a labor-intensive task, automated detection of landmarks could be greatly beneficial, as it expedites access to cephalometric analysis [22]. Clinicians, particularly those who are not experts in the field, may significantly benefit from using AI for evaluating disorders [5]. Automated landmark identification can expedite the manual analysis process for dental professionals, thereby enabling more prompt diagnosis and treatment planning [14]. Leveraging AI technology in the diagnostic procedure, dental practitioners can optimize their workflow, resulting in a more efficient journey from diagnosis to treatment [23]. The performance of AI models is not solely determined by their ability to provide accurate or complete information, but also by how well they engage, assist, and satisfy users, too [24]. AI may identify anatomical points more consistently, which minimizes variability that can arise from manual identification by practitioners with varying levels of expertise [25]. Presently, AI-based automatic diagnosis techniques primarily function as assistant tools, and the need to make judgments or adjustments to AI results from this [26].



Cephalometric analysis is a quantitative diagnostic tool that is frequently utilized by orthodontists to assess skeletal and dentoalveolar relationships, morphometric characteristics, and growth patterns of their patients [22]. To address the limitations of two-dimensional radiographs, such as the superimposition of left and right cranial structures, unequal magnification of bilateral structures, and the potential for distortion of mid-facial structures, three-dimensional CBCT has been implemented to assess craniofacial structures with reduced distortion compared to conventional radiographic images [12]. CBCT is an advanced radiological method that generates detailed three-dimensional reconstructions and slice images [20]. As familiarity with CBCT images grows within the field, diagnostic techniques that optimize their potential are being developed, and over time, through a process of trial and error, the full capabilities of CBCT will be more fully understood and realized [27]. The customary method of evaluating the performance of an automated identification system has been to assess its ability to successfully detect skeletal landmarks with a variance of 2 mm, which has historically been considered a clinically acceptable range of error at AI performance contests [14]. According to another report, the average automated detection error was 1.36 ± 0.98 mm [16]. This study showed that the use of artificial intelligence was as accurate as the manual approach when it comes to detecting anatomical landmarks.



Establishing the gold standard of the anatomical landmarks in cephalomaetric radiographs or CBCT differed between the studies. In one study, the gold standard was defined as the mean value of the positions of the landmarks identified two orthodontists with clinical experience [16]. In another study, the initial manual identification of cephalometric landmarks on CBCT-synthesized PA images was established as the standard of truth [17]. The initial annotation of the points was performed by students, and subsequently, an orthodontist and maxillofacial surgeon collaborated to review and rectify the positions of the points [15]. The mean inter-examiner difference of the landmarks identified by the orthodontists was 1.31 ± 1.13 mm [16]. It was also reported that AI landmark identification demonstrated improved consistency when contrasted with manual identification [17]. In a previous report, the experiment for landmark localization was performed by 20 dental students as beginners for human–AI collaboration [19]. In another study, a second-year orthodontic resident identified the anatomic landmarks [16].



The main limitations of this systematic review and meta-analysis are associated with the studies included for qualitative and quantitative assessment. The number of studies included in the review may be restricted due to the relatively recent emergence of AI and automated landmarking [22]. The studies included in the review have different designs, particularly regarding the number and type of landmarks and algorithms, which can introduce variability in the results [28]. Specifically, Shahidi et al. (2014) used a regression analysis model, an early model introduced in the application of AI to medical image analysis [12]. It is considered to have significant heterogeneity compared to the studies published after the introduction of CNNs. Previous research with differences in the quality of data, sophisticated algorithms, rigorous training methods, and practical application settings can lead to variations in the accuracy of AI-generated content [29,30]. Moreover, it was not possible to draw statistical conclusions for specific landmarks due to the variability in the number and type of landmarks examined across different studies, as well as the lack of reporting on localization errors for each specific landmark [31]. Establishing the optimal criteria for anatomical landmarks in cephalometric radiographs or CBCT may be necessary [18]. As AI and analysis techniques advance over time, they may produce different performance in diagnosis [32]. The rapid progress in artificial intelligence has led to the possibility that certain findings may quickly become outdated due to the development of newer and more precise AI models. This analysis of this study may be limited by the number of eligible studies. Further research is necessary to determine the general applicability of the AI-learned techniques in managing orthodontic patients and to assess the effectiveness of the learning process in different clinical settings when treating various patient populations [33].




5. Conclusions


The findings of the study indicate that the application of artificial intelligence was as effective as the manual approach in identifying anatomical landmarks, both in general and when using cephalometric radiographs and CBCT evaluations.
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Figure 1. Flow chart illustrating the process regarding the articles that have been encompassed within the systematic reviews. 
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Figure 2. Results of risk of bias assessment with its graphic representation and bar plot of risk of applicability concerns assessment through QUADAS-2. 
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Figure 3. Forest plot illustrating the comparison between artificial intelligence and the manual approach in detecting the anatomical landmarks [12,13,14,15,16,17,18,19,20,21]. 
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Figure 4. Forest plot illustrating the SDR of deep learning with a margin of error of 2 mm [13,16,17,18,19,21]. 
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Figure 5. Forest plot illustrating the results of sensitivity tests [12,13,14,15,16,17,18,19,20,21]. 
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Figure 6. Forest plot illustrating the comparison between artificial intelligence and humans in detecting the anatomical landmarks after sensitivity analysis [13,14,15,16,17,18,19,20,21]. 
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Figure 7. Funnel plot without added studies illustrating the publication bias analysis. 
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Table 1. Main characteristics of the included studies.
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	Study, Year
	Country
	Imaging Examination
	Architecture
	Number of Experts Involved in Manual Landmarking
	Number of Training/Testing
	Numbers of Landmark
	MRE ± SD (mm)
	SDR < 2 mm (%)
	Results





	Shahidi et al., 2014 [12]
	Iran
	CBCT
	Image registration method using MATLAB

software language
	3
	8/20
	14
	3.40 ± 1.48
	NR
	The mean errors for all 14 landmarks were less than 4 mm, and over 63% of them had a mean error of less than 3 mm when compared to manual measurements.



	Wang et al., 2018 [13]
	China
	Lateral cephalograms
	Multiresolution decision tree regression voting using scale invariant feature transform-based patch features
	2
	150/150
	19
	1.69 ± 1.43
	73.37
	The algorithm’s average 73% succe