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Abstract: By means of material testing, truck testing and numerical simulation, the structural param-
eters of the shrink tube anti-climb device for high-speed trains were determined. The effects of cone
angle, tube thickness, friction coefficient and axial length of the friction cone on the crashworthiness
of the shrink tube were studied, and the main causes were analyzed. Using cone angle and tube wall
thickness as input variables, and peak crush force, mean crash force and specific energy absorption
as crashworthiness indexes, a proxy model was constructed using a radial basis function. The global
response surface methodology was adopted to optimize the design of the shrink tube’s structural
parameters. The results showed that the crashworthiness of the shrink tube was positively correlated
with the cone angle, the thickness of the shrink tube and the friction coefficient, and the influence
decreased successively, while the influence was negatively correlated with the axial length of the
friction cone, which had the least influence. Through the optimized design, the peak force of the
shrink tube increased by only 5.41%, while the specific energy absorption increased by 31.03%. Addi-
tionally, the mean force was closer to the technical requirements of 600 kN, and the crashworthiness
was optimized.

Keywords: vehicle engineering; crashworthiness; response surface methodology; shrink tube; multi-
objective optimization; trolley test

1. Introduction

Improving crashworthiness can reduce injuries [1,2]; therefore crashworthiness design
is a necessary means and method to improve crashworthiness. In order to reduce passenger
injuries from collision impacts, energy-absorbing structures are often designed and installed
in unoccupied areas at the front end of the train [3–6], where collision energy is absorbed
through the deformation of circular tubes. Thin-walled circular tubes can be compressed by
molds to produce a specific deformation pattern with stable reaction forces and high specific
energy absorption [7–9], which makes them ideal energy-absorbing structures and has led
to their wide use in automotive, railway transportation and aerospace industries [10–13].
Some deformation modes of circular tubes have attracted a large number of scholars, such
as expansion [14–19], outward turning [20–25] and splitting [26–30]. Li [31] found that
the energy absorption efficiency of shrink circular tubes is significantly greater than that
of expanded circular tubes for different dimensional parameters by means of numerical
simulation combined with experimental methods. Compared with the long rod structure
of the expanding tube, the shrink tube has a more compact structure, a more stable energy
absorption process, a higher mean force and a greater energy absorption efficiency, making
it suitable to be used as the energy-absorption structure for the train anti-climbing device.
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The deformation mechanism of the shrink circular tube is similar to that of the ex-
panding circular tube, but there are fewer studies on shrink tubes. Yao et al. [32] proposed
a straight taper shrinking (STS) tube and used quasi-static experiments and finite element
simulations to study the crashworthiness of the STS tube. They found that the STS tube
could form two deformation modes, shrinking (S) and buckling (B), and that matching the
structural parameters, such as taper angle and tube wall thickness, could lead to different
deformation modes. Additionally, the cone angle had the most significant effect on the
crashworthiness of STS tubes. Liu et al. [33] proposed a theoretical model for the shrinkage
of metal tubes by classifying the deformation into three modes based on the relationship
between the actual mold radius, the critical mold radius and the conical vertebral angle.
By comparing the results with numerical simulations over a wide range of geometrical
parameters, it was found that the range of applicability of the theoretical model was conical
angles less than or equal to 40◦ and diameter–thickness ratio greater than or equal to 10,
respectively. Almeida et al. [34] investigated the shrinkage process of round tubes as a
forming method to produce round tubes with specific diameters. Alves et al. [35] addressed
the forming limit of aluminum tubes with expansion and contraction and observed ex-
perimentally and through simulation the occurrence of toughness fractures, wrinkles and
local buckling as phenomena. They found that the geometric parameters and lubrication
conditions were the key factors for the success of the shrinkage process. Guan et al. [36]
proposed a novel energy absorber for high-speed trains using a combined shrinkage round
tube and found that the rate of increase in the maximum crushing force was much greater
than the rate of increase in specific energy absorption as the wall thickness increased.
They chose to use multi-objective particle swarm optimization to obtain a Pareto bound
for the dual optimization objective. Tanaskovic et al. [37] found that by combining the
simultaneous action of both the shrinkage and splitting modes, the combined mode energy
absorption efficiency was about 60% higher than that of a single contraction absorber.

From the above review, it can be seen that the shrink tube has high mean force and
specific absorption energy, light mass and stable deformation. They have been applied
to energy-absorbing structures, but the application of shrink tubes in train anti-climb
devices is rare. In this paper, in view of the narrow installation space at the end of the
train and the requirement for a compact but large energy-absorbing stroke in the anti-
climbing device, a kind of shrink tube anti-climbing device is designed for crashworthiness
optimization. The effects of the cone angle, the thickness of the shrink tube, the coefficient
of friction and the axial length of the friction cone surface on the crashworthiness of the
shrink tube are investigated through methods of material tests and trolley collision tests
combined with numerical simulation. Then, the main causes are analyzed and the GRSM
(global response surface methodology) is used to obtain the optimal configuration of its
structural parameters.

2. Geometry and Finite Element Modeling
2.1. Shrink Tube Anti-Climb Structure

The anti-climb device is located at the front end of the train, as shown in Figure 1a. In
a collision accident, it meshes with the anti-climb device of the opposite train to prevent
the car from climbing. The structure of this shrink tube anti-climbing device is shown in
Figure 1c, which consists of four parts: a shrink tube, a flange, an anti-climbing tooth plate
and a fixed plate. The flange plate is fixedly installed on the front end of the train through
four bolts and the fixed plate securely connects the shrink tube to the flange plate. When the
anti-climbing tooth plate undergoes an impact and pushes the shrink tube to move axially,
the inner conical surface of the flange squeezes the shrink tube, causing it to deform. This
generates friction with the outer surface of the shrink tube, absorbing the kinetic energy of
the collision and generating a stable resistance force. The shrink tube is machined from 45#
steel, the flange is machined from 40 Cr steel and other parts are machined from Q235 steel.
Figure 1d shows a half-section view, where L is the maximum energy absorption stroke
of the shrink tube. The size design of the shrink deformation part is shown in Figure 1b,
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where T represents the thickness of the shrink tube and R1 and R2 are the diameters of the
shrink tube before and after deformation, respectively. The difference between the large
diameter and the small diameter represents the amount of shrinkage. α is the cone angle
of the shrink tube and S is the axial length of the friction cone surface, where S is set to
fine-tune the cone angle within a certain range and is defined as the projected length of the
tapered surface in the axial direction of the shrink tube. In the initial plan, the cone angle,
thickness, major diameter and minor diameter of the shrink tube are 15◦, 9 mm, 65 mm
and 60 mm, respectively.
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Figure 1. Structure description of the shrink tube anti-climb device: (a) installation diagram; (b) size
detail drawing; (c) axonometric drawing; (d) semi-sectional view.

2.2. Finite Element Modeling

The LS-DYNA software (R12.1) was used to simulate the mechanical behavior of the
shrink tube during the collision process. The shrink tube was a deformation component.
The “Mat.24” material was used to simulate 45 steel, and the “Mat.20” material was used
for other components. According to the material testing standard [38] (ISO 6892-1:2009,
MOD.) [39], the MTS 647 hydraulic wedge clamping tensile testing machine was used
to conduct a quasi-static tensile test to obtain the mechanical property curve of 45 steel.
The test equipment and specimen clamping status are shown in Figure 2a. The test was
conducted at room temperature and the tensile speed was 2 mm/min. The standard size of
the material sample is shown in Figure 2b, and the fracture sample and the true stress-strain
curve are shown in Figure 2c. Among them, the material parameters for 45 steel were as
follows: a density of 7850 kg/m3, a Poisson’s ratio of 0.3, an elastic modulus of 206 GPa
and a yield strength of 367 MPa.

The finite element model was consistent with the real test scenario. An anti-climb
device was installed at the front end of the test trolley, which hit a fixed rigid wall at
the required mass and speed. The finite element model was established, as shown in
Figure 3. In order to take into account both calculation accuracy and calculation efficiency,
a convergence analysis was performed, as shown in Table 1. The size of the shrink tube
and the shrink mold flange was selected to be 3 mm for meshing, a size of 5 mm was
used for other parts of the anti-climb device and a size of 30 mm was used for the trolley.
The collision test finite element model after meshing had a total of 518,540 nodes and
454,685 elements. Automatic face-to-face contact was set between the contact surfaces of
the components, with both the kinetic friction coefficient and static friction coefficient set to
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0.1. The shrinkable circular tube was also set to have automatic single-surface contact, with
both the kinetic friction coefficient and static friction coefficient set to 0.05 [40].
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Table 1. Grid convergence analysis.

Mesh Size/mm Mean Force/kN Relative Error (%)

5 × 5 × 5 700 22.16
4 × 4 × 4 587 2.44
3 × 3 × 3 573 -

3. Test Verification and Crashworthiness Evaluation
3.1. Test Verification

A trolley test was conducted on the shrink tube anti-climb device at the High-speed
Train Research Center of Central South University. The test scene is shown in Figure 4.
There was a trigger speedometer under the front end of the test vehicle to record the
collision speed. Three pressure sensors were arranged on the rigid wall to record changes
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in the impact force. A high-speed photography system was installed directly above and on
the side of the impact position to record deformation images and displacement data during
the impact. The mass of the test vehicle was 27 t and the impact speed was 3.64 m/s.
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Figure 4. Test scenario.

The deformation sequence, as well as the force and displacement curves under test
conditions and simulation conditions, are shown in Figure 5. It can be seen that the test
curves and simulation curves were in good agreement, and the deformation process of the
shrink tube was smooth and orderly. The final displacements of the test and simulation
after the collision were 303.64 mm and 307.86 mm, respectively, with a relative error of
1.39%. The energy absorption values of the test and simulation were 175.55 kJ and 178.87 kJ,
respectively, with a relative error of 1.89%. The average forces of the test and simulation
were 578.15 kN and 581.01 kN, respectively, with a relative error of 0.49%. The results
of the experimental mean force and the simulated mean force in this model were almost
consistent. This indicates that the finite element model is reliable and effective and can be
used for subsequent research.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 
Figure 5. Shrink tube deformation plots and force versus displacement curves: (a) test deformation 
diagram; (b) simulation deformation diagram; (c) comparison of simulation and test force and dis-
placement curves. 

3.2. Evaluation Index 
The energy-absorbing structure should have maximum energy absorption and min-

imum peak force based on a controllable deformation mode. This article uses the follow-
ing five index parameters to evaluate the crashworthiness [41–43]: energy absorption (EA), 
specific energy absorption (ESA), mean force (FMC), peak force (FPC) and impact force effi-
ciency (EIF). 

EA represents the total energy absorbed by the structure during the deformation pro-
cess, which can be expressed by the following formula: 

max

A 0
( )S F s dsE =   (1)

where F(s) is the function of impact force and displacement, and s is the effective impact 
displacement. 

ESA is an important indicator for crashworthiness evaluation. It represents the 
amount of energy absorbed per unit mass and directly reflects the quality of the energy-
absorbing structure design. Its formula is expressed as follows: 

A
SA

m

=E E
W

 (2)

where Wm represents the mass of the energy-absorbing circular tube. 
FPC refers to the maximum impact force during the energy absorption process, which 

generally occurs in the initial stage. The magnitude of the peak force has a great impact 
on the safety of the train structure and passenger comfort, and it is required to be as close 
to the mean force as possible. 

FMC refers to the average impact force under a given shrinkage displacement, and its 
formula is expressed as follows: 

A
MC = EF

s
 (3)

EIF refers to the uniformity of impact force and displacement response during the 
energy absorption process, which reflects the efficiency of the mean force. The calculation 
formula is as follows: 

Figure 5. Shrink tube deformation plots and force versus displacement curves: (a) test deformation
diagram; (b) simulation deformation diagram; (c) comparison of simulation and test force and
displacement curves.



Appl. Sci. 2024, 14, 7347 6 of 15

3.2. Evaluation Index

The energy-absorbing structure should have maximum energy absorption and mini-
mum peak force based on a controllable deformation mode. This article uses the following
five index parameters to evaluate the crashworthiness [41–43]: energy absorption (EA),
specific energy absorption (ESA), mean force (FMC), peak force (FPC) and impact force
efficiency (EIF).

EA represents the total energy absorbed by the structure during the deformation
process, which can be expressed by the following formula:

EA =
∫ Smax

0
F(s)ds (1)

where F(s) is the function of impact force and displacement, and s is the effective impact
displacement.

ESA is an important indicator for crashworthiness evaluation. It represents the amount
of energy absorbed per unit mass and directly reflects the quality of the energy-absorbing
structure design. Its formula is expressed as follows:

ESA =
EA
Wm

(2)

where Wm represents the mass of the energy-absorbing circular tube.
FPC refers to the maximum impact force during the energy absorption process, which

generally occurs in the initial stage. The magnitude of the peak force has a great impact on
the safety of the train structure and passenger comfort, and it is required to be as close to
the mean force as possible.

FMC refers to the average impact force under a given shrinkage displacement, and its
formula is expressed as follows:

FMC =
EA
s

(3)

EIF refers to the uniformity of impact force and displacement response during the
energy absorption process, which reflects the efficiency of the mean force. The calculation
formula is as follows:

EIF =
FMC
FPC

× 100% (4)

4. Main Causes and Response Surface Analysis
4.1. Design of Experiments

DOE (design of experiments) is a methodology that is widely used in optimization
design. The research goal of DOE is to define a series of tests, analyze the impact of
the influencing factors and construct an approximation model that can be used as an
alternative model to the computationally intensive real model. Analyzing the principle
of energy absorption, the shrink tube anti-climbing device mainly relies on the shrinkage
deformation of the shrink tube and the friction of the cone surface to absorb energy. The
main factors influencing the energy absorption effect include the cone angle of the shrink
tube α, the thickness of the shrink tube T, the coefficient of friction u and the axial length of
the friction cone surface S. The specific range of values for these parameters is shown in
Table 2. In this paper, we adopt the DOE method to screen the influencing factors on the
input variables of the energy-absorbing structure of the shrink tube anti-climbing device,
in order to improve the efficiency of the subsequent optimization design. According to the
design parameters in Table 2, we generated 300 groups of sample points for simulation
calculations using the full factorial method to determine the effects of the design parameters
on peak force, mean force and specific energy absorption.
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Table 2. Variable values.

Variable Names Cone Angle α/◦ Thicknesses
T/mm Friction Coefficient u Axial Length

S/mm

Variable values 5, 15, 25 3, 6, 9, 12 0.02, 0.04, 0.06, 0.08, 0.1 21, 23, 25, 27, 29

4.2. Analysis of the Main Causes

Analysis of the main causes was used to compare the extent to which each variable
affects the outcome, generally ignoring the effect of other variables when examining the
effect of one of them. Linear effects were calculated using a linear regression model, where
the range of design variables was set to [0, 1] in proportion to the change and expressed as
a linear effect. The slope of the linear regression model represents the degree of influence of
the parameter on the results; the larger the slope, the greater the influence of the parameter
on the results. In this paper, we analyzed the degree of influence of variables such as the
shrink tube cone angle α, shrink tube thickness T, friction coefficient u, and axial length
of the friction cone surface S on the three responses, peak shrink tube force FPC, mean
shrink tube force FMC and the specific energy absorption ESA. The results of the main
cause analysis are shown in Figure 6. The peak force FPC was positively correlated with
the cone angle α, the shrinkage tube thickness T and the friction coefficient u. The degree
of influence, in descending order, was the cone angle α, the shrinkage tube thickness T
and the friction coefficient u, and it was negatively correlated with the axial length of the
friction cone surface S. The influence was the least for the axial length of the friction cone
surface S. The effects of the four variables on FMC and FPC were basically the same, with
only the amplitude being slightly reduced. The cone angle α had the greatest effect on ESA,
and the gap with the other influencing factors was large. The friction coefficient u had a
greater effect on ESA than that of the thickness T, and the axial length of the friction cone
surface S showed the same negative correlation with ESA. Through the main cause analysis,
it could be seen that the main factors affecting the energy absorption index were the cone
angle α and the thickness of the shrinkage tube T. The friction coefficient was related to
the lubrication method used in the actual working conditions, and the axial length of the
friction cone had a small influence on the collision resistance index. In this paper, the outer
surface of the shrink tube was evenly coated with lithium grease for lubrication. In order
to improve efficiency, the cone angle α and the thickness of the shrinkage tube T were used
as the input variables in the subsequent optimal design.

4.3. Response Surface Modelling and Agent Modelling

In order to obtain the three-dimensional cloud map of each output response, the two
variables with less influence were set to the midpoint of their variation ranges. The other
two design variables were both used as independent variables to construct each response
surface, as shown in Figure 7, in accordance with the calculation results of the sample
points in the experimental design. Figure 7 shows the response surface model of the peak
force FPC, mean force FMC and specific energy absorption ESA of the energy-absorbing
structure, from which we can see the impact of each variable on the response index. Both
the peak force and the mean force of the shrink tube increased with the increase in the cone
angle α and thickness T. The degree of influence of the two factors was relatively close,
with the influence of the two factors having a greater effect on the peak force than on the
average force. The specific energy absorption increased positively with the influence of
the two factors. It grew faster with the increase in the cone angle α and relatively slower
with the increase in the thickness T. Within the variable design interval, the mean force
increased by 476.42% with thickness and by 515.72% with the angle, and the specific energy
absorption increased by 58.59% with thickness and by 531.19% with the angle.
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Practical engineering problems are often complex, usually do not have an explicit
functional relationship between design variables and target performance, and manifest
themselves as multi-parameter, high-dimensional, strongly nonlinear problems, which
are difficult to compute with a simplified physical model and often need to be fitted to
discrete data through a proxy model. In order to obtain optimization results efficiently
and accurately, proxy methods are used to fit discrete data and build efficient models to
replace the actual model without reducing the accuracy of the model. These models are also
referred to as proxy models. Among them, the radial basis function is an efficient surrogate
method, especially effective in predicting ESA with good accuracy. The mechanical behavior
of the shrink tube anti-climb device during the impact energy absorption process is highly
nonlinear; therefore, we used the radial basis function (RBF) to construct a proxy model for
response surface analysis.

In order to evaluate the accuracy of the response model, corresponding error analysis
and evaluation of the output indicators need to be performed using the coefficient of
determination R2, the mean absolute error Eraa and the root mean square error Erms as
evaluation parameters to verify the effectiveness of the proxy model [44]. These are
calculated as follows:

R2 = 1 − ∑ (ŷi−yi)2

∑ (ŷi−yi)2 (5)

Eraa =

1
N ∑N

i=1|yi − ŷi|√
1
N ∑N

i=1|yi − yi|2
(6)
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Erms =

√
∑ (ŷi−yi)2

N
(7)

where ŷi is the predicted value of the proxy model at the point i; yi is the actual finite
element calculation value of the point; yi is the average of the actual response values of
all sample points; and N is the number of sample points. When R2 is closer to 1 or Eraa
and Erms are smaller, it indicates that the accuracy of the proxy model is higher. The error
analysis results are shown in Table 3. It can be seen that the R2 of the agent model is
above 0.99, indicating a high fitting accuracy and small error. The use of surrogate models
can effectively reduce calculation time, and the high-precision fitting of FPC, FMC and ESA
ensures the validity of subsequent optimization results.
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Figure 7. Response surface model diagram: (a) effect on peak force; (b) effect on mean force; (c) effect
of specific energy absorption.

Table 3. Error analysis results.

Variant R2 Eraa Erms

FPC 0.999 0.007 7.789
FMC 0.991 0.052 18.986
ESA 0.999 0.008 0.133

5. Multi-Objective Optimization
5.1. Optimal Algorithm

Commonly used optimization algorithms include ARSM (adaptive response surface
method), GRSM (global response surface method), GA (genetic algorithm) and MOGA
(multi-objective genetic algorithm). Among them, GRSM can generate a response surface
based on very few data points for computational optimization and will only stop opti-
mization when the solution reaches the optimal value, unlike other algorithms that stop
calculation after reaching the convergence criterion. After each iteration, GRSM generates
new sampling points in the unsampled intervals of the global design domain based on
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the distribution of existing sampling points and constructs a new DOE. In this paper, the
specific energy absorption ESA, peak force FPC and mean force FMC are taken as the opti-
mization objectives, and the variables are designed for the cone angle α and the thickness
of the shrinkage tube T. A series of sample points and their corresponding objective values
of the sample points are generated through the design of experiments. The sample point
data are then fitted using the Hyper-Study software (2019) to construct the agent model.
Finally, the global response surface method (GRSM) is used to obtain the optimal solution
for the structural parameters of the energy absorption device based on the agent model.
The optimal solution of the structural parameter configuration of the device is obtained
based on the proxy model using the GRSM. Due to the superior global search capability
of the GRSM, computational optimization using response surfaces is well-suited for the
optimal design of crashworthiness indexes for shrink tubes. The response surface fitted
in this article has high accuracy, with errors generally less than 1%. This fitted response
surface can be used for optimization analysis. Therefore, this article used the GRSM for
multi-objective optimization, and the optimization design process is shown in Figure 8.
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5.2. Optimization Objectives and Boundary Conditions

For this shrink tube anti-climb device, the technical requirements were as follows:
an energy absorption of 228 kJ, an energy absorption stroke of 395mm, an average force
range of 600 kN ± 7.5%, a small gap between the peak force and the average force and an
original average force efficiency of more than 93%. The space for optimization of mean
force efficiency was limited. In the crashworthiness design, the energy-absorbing structure
is required to have the highest possible specific energy absorption ESA. Therefore, the first
objective of the optimization was to maximize the specific energy absorption ESA, and at the
same time, the peak force FPC needed to be reduced as much as possible in order to avoid
excessive deceleration during the collision, which could lead to heavy casualties among
occupants. Hence, the second objective of the optimization was to minimize the peak force
FPC. In addition, for this shrink tube design, the mean force is required to be as close as
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possible to 600 kN while meeting the first two targets. Therefore, the third target of the
optimization was to take the absolute value of the difference between the mean force FMC
and 600 kN as the target of the mean force and to minimize it. Referring to the main cause
analysis results, only two input variables, the cone angle α and the shrink tube thickness T,
were considered in the optimal design. The friction coefficient u is related to the lubrication
method used in the actual working conditions. This paper selected the original value of the
friction coefficient u as 0.1 for the case of no lubrication, and the axial length of the friction
cone S had a relatively small influence on the three indexes, and an intermediate value
of 25 mm was used. In summary, this paper carried out the mathematical description of
the multi-objective optimization problem and the boundary conditions, as shown in the
following equation: 

Max ESA(α, T)
Min FPC(α, T)
Min |FMC − 600|
5◦ ≤ α ≤ 25◦

3 mm ≤ T ≤ 12 mm

(8)

5.3. Optimization Results

When there are multiple objectives, a solution that is best for one objective may be
worse for others due to the presence of conflicting and incomparable objectives. These
solutions, which necessarily weaken at least one other objective function while improving
another, are called Pareto solutions. The set of optimal solutions for a set of objective
functions is called a Pareto front. In a multi-objective optimization problem, there is more
than one objective function to be maximized or minimized, so the ultimate goal is not to
seek a single optimal solution but to seek a Pareto front. This Pareto front needs to be
selected from the set of Pareto optimal solutions according to the specifics of the problem.
In order to obtain an ideal shrink tube energy-absorbing structure, it is required that the
peak force FPC is the minimum and the specific energy absorption ESA is the maximum.
In this paper, multi-objective optimal design was carried out using the GRSM algorithm
with cone angle α and pipe wall thickness T as design variables, and the obtained Pareto
front solution set is shown in Figure 9. Figure 9 shows that the peak force FPC of the
shrinkage tube and the specific absorption energy ESA have a positive correlation, and as
the specific absorption energy ESA increases, the peak force FPC of the shrinkage tube also
increases. Therefore, the two objectives of the minimum peak force FPC and the maximum
specific absorption energy ESA have mutual exclusivity, which makes it difficult to select
the optimal structural parameters.
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Although the Pareto solution set has more advantages in solving optimal design
solutions, the optimal solution must be selected to quantitatively analyze the optimization
results. Combined with the technical requirements of the actual engineering problems on
the mean force, a set of solutions with the mean force FMC closest to 600 kN was selected as
the optimal solution when the optimization objective three took the minimum value. The
optimized parameters were a cone angle α value of 20.2◦, a pipe wall thickness T value
of 7.1 mm, a peak force FPC of 658.16 kN, a specific energy absorption ESA of 29.73 kJ/kg
and a mean force FMC of 613.23 kN. The error between the mean force and the design
objective was 2.2%, which meets the requirement of a mean force error of less than or
equal to 7.5%. In order to verify the reliability of the optimization prediction results, finite
element simulation calculations were performed on the structural parameters obtained
from the optimization results. The comparison between the optimization prediction results
and the finite element simulation calculation results is shown in Table 4. It could be seen
that the finite element calculation results were close to the optimization prediction results.
The peak force error was 1.46%, the specific energy absorption error was 1.33%, and the
mean force error was 1.31%. All errors were less than 1.5%, indicating that the optimization
results have high accuracy and reliability.

Table 4. Comparison of simulation and optimization results.

Indicator FPC/kN ESA/(kJ/kg) FMC/kN

optimal value 658.16 29.73 613.23
simulation value 648.71 29.34 605.32

errors 1.46% 1.33% 1.31%

5.4. Comparison of Crashworthiness

The comparison between the optimized crashworthiness index and the original struc-
ture is shown in Table 5. In order to more intuitively show the improvement of crash-
worthiness, a radar chart of various crashworthiness indexes was drawn, as shown in
Figure 10. The radar chart shows that, except for the average force efficiency, which re-
mained almost unchanged, the other four indicators improved to varying degrees. The
most important improvement was the specific energy absorption index, reaching 31.03%.
The energy absorption, peak force and average force increased by 5.5%, 5.41% and 5.55%,
respectively. The amplitudes were basically the same and the average force efficiency
basically remained unchanged. This indicates that the crashworthiness of the optimized
structure has been improved.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 16 
 

 
Figure 9. Pareto front: (a) Pareto front of specific energy absorption versus the peak force; (b) Pareto 
front of mean force target value and peak force. 

5.4. Comparison of Crashworthiness 
The comparison between the optimized crashworthiness index and the original 

structure is shown in Table 5. In order to more intuitively show the improvement of crash-
worthiness, a radar chart of various crashworthiness indexes was drawn, as shown in Fig-
ure 10. The radar chart shows that, except for the average force efficiency, which remained 
almost unchanged, the other four indicators improved to varying degrees. The most im-
portant improvement was the specific energy absorption index, reaching 31.03%. The en-
ergy absorption, peak force and average force increased by 5.5%, 5.41% and 5.55%, respec-
tively. The amplitudes were basically the same and the average force efficiency basically 
remained unchanged. This indicates that the crashworthiness of the optimized structure 
has been improved.  

Table 5. Comparison of original design and optimization results. 

Indicator ESA/(kJ/kg) EA/kJ FPC/kN EIF/% FMC/kN 
original value 22.69 220.78 624.41 93.05 581.01 
optimal value 29.73 233.03 658.16 93.17 613.23 

elevation 31.03% 5.5% 5.41% 0.13% 5.55% 

 
Figure 10. Radar map of crashworthiness indicators before and after optimization. 

  

Figure 10. Radar map of crashworthiness indicators before and after optimization.



Appl. Sci. 2024, 14, 7347 13 of 15

Table 5. Comparison of original design and optimization results.

Indicator ESA/(kJ/kg) EA/kJ FPC/kN EIF/% FMC/kN

original value 22.69 220.78 624.41 93.05 581.01
optimal value 29.73 233.03 658.16 93.17 613.23

elevation 31.03% 5.5% 5.41% 0.13% 5.55%

6. Conclusions

In this paper, a structural innovation for an anti-climbing energy absorption device
with a shrink tube was presented, and its practical engineering application was demon-
strated on the train. The effects of some structural parameters on the crashworthiness of
the shrink tube were studied. A proxy model was constructed using a radial basis function,
and the global response surface methodology was adopted to optimize the design of the
shrink tube structure, so as to determine the optimal configuration scheme of its structural
parameters. This article only selected some factors for optimizing the design variables.
Further, different optimization methods can be used to conduct comparative research on
all factors. The main conclusions of this study are summarized as follows:

(1) The effects of the cone angle, shrink tube thickness, friction coefficient and friction
cone axial length on the crashworthiness of the shrink tube were studied, and the
main causes were analyzed. It was found that the cone angle and thickness had the
greatest impact on crashworthiness. Within the variable design interval, the mean
force increased by 476.42% and 515.72% with the thickness and angle, respectively,
and the specific energy absorption increased by 58.59% and 531.19% with the thickness
and angle, respectively.

(2) The global response surface method was used to perform multi-objective optimiza-
tion on the structural parameters of the shrink tube. Among the optimal structural
parameters obtained, the cone angle was 20.2◦, the tube wall thickness was 7.1 mm,
the friction coefficient was 0.1 and the friction cone axial direction length was 25 mm.
After optimization, the specific absorption energy was 29.73 kJ (kg)−1, which was
31.03% higher than before optimization.

(3) The mean force obtained through surrogate model optimization was 613.23 kN. The
mean force obtained by simulating the optimal structural parameters was 605.32 kN. The
mean force error was 1.31%, which shows that the surrogate model has high accuracy.
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