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Abstract: The fault diagnosis of rotating machinery is vital in industry but traditionally depends
on manual expertise, requiring substantial resources. To improve diagnostic accuracy, enable effec-
tive condition monitoring, and minimize the impact of faults on operations, advanced diagnostic
techniques are essential. Hence, we propose an advanced fault diagnosis framework that leverages
improved particle swarm optimization (IPSO), variational mode decomposition (VMD), and proba-
bilistic neural networks (PNN) to accurately diagnose faults in rotating machinery using gear and
rolling bearing vibration signals. Initially, the vibration signals are decomposed into intrinsic mode
functions via VMD, enabling the capture of subtle but critical fault features. To address parameter
selection challenges in VMD, we employed IPSO to optimize the VMD parameters, ensuring the
optimal decomposition effect. Further, we refined the feature set by applying Laplace fraction opti-
mization and feature dimensionality reduction, isolating sensitive features that serve as input to a
PNN-based fault classification model. Experimental results demonstrated that this IPSO-VMD-PNN
framework achieves high diagnostic accuracy for various fault types, establishing it as an effective
tool for fault identification in rotating machinery.

Keywords: fault diagnosis; rotating machinery; variational mode decomposition (VMD); swarm
optimization algorithm (IPSO); probabilistic neural network (PNN)

1. Introduction

New methods and techniques in technical diagnostics enable improved planning,
reduced downtime, and a significant increase in the time between failures. Additionally,
understanding the status of rotating machinery helps to boost profits [1]. Rotating ma-
chinery, as an important component of mechanical systems, plays a crucial role in power
transmission and motion transformation. Due to their harsh working environments and the
influence of factors such as vibration, noise, temperature, and humidity, rotating machinery
frequently experiences failures during operation. These failures exhibit characteristics
such as low magnitude, nonlinearity, complexity, and non-stationarity. Therefore, con-
dition monitoring and fault diagnosis are essential for the normal operation of rotating
machinery [2].

Early fault diagnosis techniques relied primarily on manual experience, making it
difficult to identify accurately the causes of complex equipment and systems, and requiring
significant human and material resources. Later, rule-based expert systems emerged, but
they were limited by the formulation of rules and knowledge acquisition. In recent years,
data mining-based machine learning has emerged, which can learn complex nonlinear
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relationships from extracted features and establish diagnostic models for fault diagnosis,
demonstrating good performance. However, the application of deep learning, which has
gained popularity recently, is still subject to scrutiny in the field of fault diagnosis due to
the greediness of data and the lack of model interpretability.

Scholars have developed various methods for analyzing and processing rotating
machinery vibration signals, such as empirical mode decomposition (EMD), ensemble
empirical mode decomposition (EEMD), and local mean decomposition (LMD) [3–7]. The
EMD method can adaptively decompose signals without the need for any predefined basis
functions. However, it lacks a rigorous mathematical foundation, leading to potential
instability and inconsistency in the decomposition results. The EEMD method improves
the stability of the decomposition results by averaging multiple decompositions. By adding
white noise and performing multiple decompositions, it effectively reduces mode mixing.
Nevertheless, this approach requires numerous decompositions, resulting in high computa-
tional costs and potentially introducing additional noise components that may affect the
results. The LMD method yields clearer spectra for each component, offering excellent
frequency resolution. However, it faces issues with endpoint effects, the decomposition
process is relatively complex, and the computational load is significant.

VMD proposed in 2014 [8], effectively avoids mode mixing and is supported by a rig-
orous mathematical framework. The decomposition process is scientifically grounded and
applicable to linear, nonlinear, and non-stationary signals, addressing the aforementioned
limitations. Consequently, scholars have extensively employed the VMD method for fault
diagnosis in rotating machinery [9,10]. Lin [11] optimized the decomposition layers and
penalty parameters of VMD using improved envelope entropy, selecting components with
high correlation to the original signal. By integrating sample entropy, Lin achieved fault
diagnosis of bearings. Liu [12] determined the number of VMD decomposition layers by
observing the center frequency of VMD components and utilizing fuzzy c-means cluster-
ing, achieving effective fault diagnosis. Li [13] applied the VMD algorithm for adaptive
decomposition of vibration signals and used an improved extreme learning machine to
diagnose faults in rolling bearings.

However, the two key parameters in VMD—the number of modes K and the penalty
factor ω—directly affect the VMD decomposition effect and need to be optimized [14].
Wang et al. proposed the center frequency ratio method, which uses the center frequency
ratio of adjacent modal components to select K, but ω cannot be determined [15]. Xiao [16]
proposed using the average instantaneous frequency as the basis for selecting the number
of decomposition modes K in the VMD algorithm. He utilized the unsupervised learning
algorithm, self-organizing map (SOM), to classify gear faults, achieving effective gear fault
diagnosis. Zhang [17] optimized the decomposition layers K of VMD by combining the
artificial fish swarm algorithm with envelope entropy. Zhu [18] employed a swarm algo-
rithm using kurtosis as a criterion for parameter optimization. Zhang [19] used the particle
swarm optimization algorithm to optimize the decomposition layers of VMD. These studies
indicate that most scholars focus on the impact of the number of VMD decomposition
layers on the decomposition performance, while often neglecting the coupled effect of
decomposition layers K and penalty parameters ω [20,21].

To address this issue, this paper proposes an improved VMD method based on PSO,
which comprehensively analyzes the coupled effects of the decomposition layers and
penalty factors on the decomposition performance. PSO is an intelligent search method
that simulates the collaborative behavior of a group of organisms. It iteratively adjusts
computing parameters by searching for local and global optimal solutions to approach the
global optimal solution. However, the selection of various hyperparameters in particle
swarm will greatly affect the optimization rate of the algorithm, and inappropriate hyper-
parameters will also cause the algorithm to fall into the local optimal solution prematurely.
By incorporating the adaptive inertia weight strategy to accelerate the convergence speed
and using the compression factor method to solve the problem of getting stuck in local
optima, the optimized particle swarm algorithm is employed to search adaptively for the
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optimal K and penalty parameters α. The optimized results are combined with feature
extraction on the original signal, and finally, a probabilistic neural network is used for fault
mode recognition, achieving high-precision fault diagnosis.

The remainder of this paper is structured as follows. To fully leverage the performance
advantages of VMD and its suitability for local damage fault feature extraction, as well as
to address the difficulty in selecting key parameters in VMD, Section 2 combines VMD with
an improved particle swarm optimization algorithm to achieve the optimal combination
of VMD key parameters. With this optimal parameter combination, VMD is utilized to
decompose vibration signals. In Section 3, effective modal components are extracted
based on the correlation coefficient threshold. To mitigate the loss of signal features due
to the VMD strong penalty on signal discontinuities, multi-domain feature parameters
are selected using the Laplacian score method, collectively constructing a fault-sensitive
feature vector. Based on this, a probabilistic neural network model is built to achieve fault
diagnosis of rotating machinery. In Section 4, the signal processing and fault diagnosis
algorithm proposed in the previous sections are validated using public data of gears and
rolling bearings, demonstrating that IPSO-VMD-PNN possesses strong feature extraction
capabilities and high fault diagnosis accuracy.

In summary, the main contributions of this paper are as follows:
(1) A vibration analysis model for key components of rotating machinery is established

by analyzing failure mechanisms and signal characteristics. VMD is proposed for fault
feature extraction and its effectiveness is verified through simulated fault signals.

(2) The PSO is improved using adaptive inertia weights and compression factor
methods. Optimal parameters K and penalty parameters α for VMD are determined. VMD
decomposes the vibration signal, and effective components are identified using correlation
coefficient thresholding. Multi-domain features are selected using the Laplace score method,
constructing a fault-sensitive feature vector.

(3) The PNN is used for fault classification based on the extracted feature vector. The
model’s accuracy is verified using public data.

2. Vibration Signal Processing Method Based on VMD
2.1. IPSO-VMD Algorithm Design

VMD algorithm analyzes the original signal according to the number of modal de-
compositions, obtains K modal functions uk(t) with center frequency ω(t), and performs
Hilbert transform on uk(t) to obtain the bandwidth and spectrum information of each IMF
component. By adding an exponential term to uk(t), and determining the bandwidth of
the IMF component according to the L2 norm, the solution formula is as follows [22,23]:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f (t), uk = u1, u2, · · · , uK

(1)

where, uk is the IMF component obtained after VMD decomposition, {ωk} = {ω1, ω2, · · ·, ωK}
is the center frequency of each IMF component, and δ(t) is the pulse function.

PSO [24] is widely used in parameter selection as a global search algorithm. Suppose
that the domain of definition to be searched is a D dimensional space, where there is
a population of m particles, and each particle itself contains information such as posi-
tion and velocity. The position of the i-th particle in this space is represented by vector
Xi = (xi1, xi2, · · · , xiD)

T , and its velocity is represented by vector Vi = (vi1, vi2, · · · , viD)
T .

The best position of particle i is Pbest = (pi1, pi2, · · · , piD)
T , and the best position of all

particles in the whole population can be expressed as Pgbest =
(

pg1, pg2, · · · , pgD
)T . In

the PSO algorithm, each particle can update its speed and position information iteratively
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according to the information such as the best position of the individual and the best position
of the population: {

vk+1
id = ωvk

id + c1r1

(
pid − xk

id

)
+ c2r2

(
pgd − xk

id

)
xk+1

id = xk
id + vk+1

id t = xk
id + vk+1

id

(2)

where, i = 1, 2, · · · , m; d = 1, 2, · · · , D; k is the current number of evolutions; c1 and c2 are
learning factors; ω is the inertia weight; r1 and r2 are random numbers in [0, 1], t is the time
of each step of movement, and t = 1 is taken here.

In the particle swarm optimization algorithm, the parameters to be designed mainly
include the following: population size m, learning factors c1 and c2, maximum speed Vmax,
inertia weight ω [25–28], among which the learning factor and inertia weight are the key
objects of optimization.

1. Adaptive inertia weight strategy

First, the most important inertia weight ω in the PSO algorithm is optimized by using
the adaptive inertia weight strategy, which can realize the automatic optimization of the
inertia weight, and then make the algorithm converge to the optimal solution quickly. In
the adaptive inertia weight strategy, if the minimum value of the objective function is
solved, the more is the fitness and the closer is the distance to the optimal solution. At this
time, a smaller weight is needed to facilitate local search. On the contrary, a larger weight
should be adopted to improve the global search ability of particles [29,30]. The adjustment
method is as follows:

ωk
i =

ωmin + (ωmax − ωmin)
f (xk

i )− f k
min

f k
average − f k

min
, f
(

xk
i

)
≤ f k

average

ωmax , f
(

xk
i

)
> f k

average

(3)

where,

• ωmin and ωmax are the preset minimum and maximum values of inertial weight ω,
taking ωmin = 0.4, ωmax = 0.9;

• f k
average =

n
∑

i=1
f
(

xk
i

)
/n is the average value calculated by the fitness of the whole

population at k-th iteration;
• f k

min = min
{

f
(

xk
1

)
, f
(

xk
2

)
, · · · , f

(
xk

n

)}
is the minimum fitness of the whole popula-

tion at iteration.

2. Compressibility factor method

Different from inertia weight ω, the individual learning factor c1 and social learning
factor c2 represent the influence of the historical information of particles themselves and
other particles on the later behavior of particles, while the learning factor describes the
information interaction between populations. Therefore, individual learning factor c1 and
social learning factor c2 have great influence on the PSO method. In order to balance the
global search ability and local search ability of the algorithm, the PSO method is optimized
with compression factor, which can ensure that the PSO algorithm has strong convergence
in solving, and can reduce its speed limit [31].

If c1 = c2 = 2.05, then C = c1 + c2 = 4.1, compression factor Ψ = 2/
∣∣∣(2−C −

√
C2 − 4C

)∣∣∣.
For the speed in Equation (3), it can be updated as follows:

vk+1
id = Ψ

[
ωvk

id + c1r1

(
pid − xk

id

)
+ c2r2

(
pgd − xk

id

)]
(4)

3. Elite Learning Strategies

Elite learnt strategy is an improved algorithm that enhances search efficiency and ac-
curacy by introducing an elite guidance mechanism. In each iteration, the best-performing
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particles or a small number of good particles are selected as ‘elites’, and the other particles
in the population are allowed to take into account the position information of these elites
in addition to the pBest and gBest when updating themselves. Non-elite particles can update
their velocity and position by introducing the influence of the positions of the elite particles:

vi(t + 1) = ω · vi(t) + c1 · r1 ·
(

pBesti − xi(t)
)
+ c2 · r2 · (gBest − xi(t)) + c3 · r3 · (Elitei − xi(t)) (5)

where Elitei is the position of the i-th elite particle, c3 is the elite learning factor, and r3 is a
random number between [0,1].

4. Fitness Distance Ratio Optimization Strategy

The Fitness Distance Ratio (FDR) is a measure of the relative strengths and weaknesses
of particles in relation to other particles. It combines the fitness value of a particle with
information about the distance between particles and is used to guide the search behaviors
of the particles. The fitness distance ratio is defined as follows:

FDRi =
f (xi)∥∥xi − PBesti

∥∥ (6)

where f
(

PBesti

)
is the fitness value of particle i and

∥∥xi − PBesti

∥∥ is the Euclidean distance
between the current position of the particle and its individual optimal position. FDRi is a
factor that adjusts the speed of the particle as it moves towards b to enhance the algorithm
to pay more attention to particles with high adaptation whose distance is far away, and the
updated formula for the speed is as follows:

vi(t + 1) = ω · vi(t) + c1 · r1 ·
(

pBesti − xi(t)
)
+ c2 · r2 · (gBest − xi(t)) · FDRi (7)

This approach improves the ability of the particle swarm to concentrate towards more
optimal solution regions, as the elite particles represent the currently searched optimal
solution regions, and guiding the other particles towards these regions helps to avoid
premature convergence and accelerates the finding of the global optimal solution. With this
elite guidance mechanism, the ELPSO algorithm is able to balance the need for global and
local searches more efficiently, in line with the need for efficient and reliable optimization
methods in complex optimization problems.

For the selection of fitness function, a new fitness function f itness can be constructed
based on envelope entropy Ep [32] and envelope spectrum sparsity S [33]:

f itness = Ep/S (8)

It can be observed that the sparser the signal, the smaller the Ep, and the larger the S,
the smaller is the value calculated by the fitness function f itness. To determine parameter
combination [K, α] in VMD, after VMD decomposition of different parameter combinations
for the original signal, the f itness value of each component under different parameter
combinations is calculated, respectively, and the global minimum f itness value is the
optimization object. The minimum f itness value corresponds to the optimal parameter
combination [K, α], which is expressed as follows:[

K̂, α̂
]
= arg min

(K,α)
{ f itness(i)} (9)

Based on the adaptive inertia weight and compression factor method, the original
particle swarm optimization algorithm is improved in the early stage, and IPSO is obtained,
while f itness = Ep/S is determined as the fitness function.

Comparison experiments are designed to verify the improvement strategies for the
several particle swarm algorithms above, and the best improvement strategy is selected
as the improvement strategy for the particle swarm algorithm in the final diagnostic
architecture, and the final iterative graph results are as follows:
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Where IPSO stands for PSO based on adaptive inertia weight and compression factor
method, PSO stands for unimproved PSO, EL-PSO stands for improved PSO based on elite
learning strategy, and FDR-PSO stands for PSO based on fitness distance ratio optimization.
According to Figure 1 it can be observed that the IPSO gives the best results and has the
fastest convergence rate.
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Figure 1. Comparison of PSO algorithms.

When VMD decomposition is carried out on the original vibration signal, the IPSO
algorithm is used to carry out adaptive optimization on the two parameters K and α
in VMD to obtain the best combination of parameters, while the corresponding VMD
decomposition is carried out based on the best combination of parameters. The design idea
of the IPSO-VMD algorithm shown in Figure 2 can be constructed.
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2.2. Fault Simulation Experiment

The real vibration signal of gear bearing usually contains three signal components—
impact signal, noise signal, and harmonic interference signal—in order to verify the ef-
fectiveness of VMD decomposition for fault signals. The simulation signal f (t) of rolling
bearing outer ring local damage fault is constructed as follows:

f (t) = x1(t) + x2(t) + x3(t)
x1(t) = 2exp(−at0)cos(2π f1t)
x2(t) = sin(2π f2t) + sin(2π f3t)

(10)

It can be observed from the formula that the simulation signal f (t) is composed of
x1(t), x2(t), and x3(t), where x1(t) is the simulation signal of impact attenuation caused by
fault, which is represented by a pulse sequence with periodicity that obeys the exponential
attenuation law. The amplitude of x1(t) is 2, t0 = mod(k/ fs, 1/ fm), k = 0, 1, · · · , 2047, the
sampling frequency fs= 2048 Hz, the number of sampling points N = 2048, the attenuation
coefficient a = 100, the carrier frequency f1 = 200 Hz, and the fault feature frequency
fm = 16 Hz. x2(t) is the sine superposition signal of frequency f2 = 20 Hz and f3 = 30 Hz,
which is used to simulate harmonic interference. x3(t) is the Gaussian white noise of mean
value x = 0 and standard deviation σ = 0.1, which is used to simulate the background
noise. As shown in Figure 3, the time-domain waveforms of f (t), x1(t), x2(t), and x3(t) are
given, respectively.
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Figure 4 shows the time-domain waveform and spectrum of simulation signal f (t),
and the obvious fault feature frequencies cannot be obtained from both the time-domain
and frequency-domain perspectives. In the spectrum diagram, obvious harmonic interfer-
ence components of 20 Hz and 30 Hz can be observed while the fault feature frequency
fm = 16 Hz is submerged in the interference signal and noise. The envelope waveform
and envelope spectrum of simulation signal f (t) obtained based on Hilbert transform are
shown in Figure 5. It is impossible to identify accurately whether there is a fault from the
envelope waveform. In the envelope spectrum, there are both 16 Hz feature frequency
with small amplitude and 10 Hz interference component with large amplitude in the en-
velope spectrum. The low amplitude spike around 200 Hz in the figure is a resonance
frequency band.
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VMD decomposition result of simulation signal f (t) (the best parameter combination
obtained after optimization by IPSO-VMD is

[
K̂, α̂

]
= [3, 5500]), as shown in Figure 6, IMF1

perfectly corresponds to the harmonic interference x2(t) in the original signal, and the
periodic shock attenuation can be observed in IMF2. The corresponding fault characteristic
frequency 16 Hz and its frequency multiplication components (32 Hz, 48 Hz, etc.) can be
clearly identified from the IMF2 and IMF3 components. Therefore, VMD can effectively
decompose the x1(t) and x2(t) components of the rolling bearing fault simulation signal.
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3. Feature Extraction and Recognition Based on IPSO-VMD
3.1. Feature Extraction Based on VMD

The failure of different components in the system will change the frequency distri-
bution of the signal, further leading to the adjustment of the energy distribution of the
signal. In order to avoid the dependence of traditional fault diagnosis methods on abnor-
mal samples, VMD decomposition results under the optimal parameter combination are
used to determine the effective components in combination with the correlation coefficient
method. Finally, the energy ratio of the first five effective components is used as the feature
parameter.

1. Correlation Coefficient

Correlation coefficient is a statistical indicator to measure the closeness of correlation
between different variables. The correlation coefficient of sample X and sample Y is defined
as follows:

ρ(X,Y) =
Cov(X, Y)√
D(X)

√
D(Y)

(11)

where, Cov(X, Y) is the covariance of sample X and sample Y, D(X) and D(Y) are the
variances of sample X and Y, respectively. The correlation coefficient ρ ∈ [−1, 1]; the larger
the absolute value of the correlation coefficient, the closer is the correlation between the
two samples.

For discrete digital signals, the correlation coefficients of signals x(i) and y(i) can be
described as follows:

ρ(x(i),y(i)) =
∞

∑
i=0

x(i)y(i)/

[
∞

∑
i=0

x2(i)
∞

∑
i=0

y2(i)

]1/2

(12)

For signals, the correlation coefficient ρ describes the similarity of two signals if ρ = 1
represents that the two signals are completely correlated. On setting the threshold value
σ = 0.1, if the correlation coefficient between the i-th IMF component and the original
signal is ρ > σ, the IMF component is considered as an effective component.

2. IMF Energy Ratio

First, the original signal is processed by IPSO-VMD to obtain K IMF components. The
energy im f Ei of each IMF component is calculated according to Equation (10):

im f Ei =
∫ T

0
im f 2

i (t)dt, i = 1, 2, · · · , K (13)

The obtained im f Ei is normalized, and the normalized im f Ei of the effective compo-
nents is constructed as the eigenvector T:

T =

[
im f E1

E
,

im f E2

E
, · · · ,

im f En

E

]
(14)

where, E is the energy of the original signal, and n is the number of effective components.

3.2. Multi-Dimension Sensitive Feature Optimization

For the time-domain parameters, they are closely related to the mechanical system
parameters, operating conditions, and signal distribution. For the frequency-domain pa-
rameters, they can well reflect the spectral changes of the vibration signals of the mechanical
components and determine the operating status of the mechanical components. Because
the VMD algorithm will have a greater degree of punishment for abrupt signals, some
abrupt information in the original signal will be lost in the VMD decomposition process.
Considering the time domain or the frequency domain alone has its own limitations, be-
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cause they can capture different information and characteristics of the signals, and only by
considering them together can the sensitive feature vectors be better constructed.

1. Time-Domain Parameters

Time-domain parameters are closely related to mechanical system parameters, work-
ing conditions, and signal distribution. For time series signal xi, the time-domain parame-
ters used in this paper include 12 indicators: maximum xmax, absolute mean x, effective
value xrms, peak to peak value xp−p, average amplitude MA, variance σ2

x , deviation Sc,
waveform index S f , peak index C f , pulse index I f , margin index CL f , kurtosis β.

2. Frequency-Domain Parameters

Based on the frequency-domain parameters, the frequency spectrum changes of the
vibration signals of mechanical components can be well reflected, and the running state
of the mechanical components can be judged. The frequency-domain parameter indexes
adopted in this paper include: mean frequency M f , center frequency Fc, root mean square
frequency Rms f , standard deviation frequency Sd f , frequency-domain amplitude skewness
index Sc f , and frequency kurtosis β f .

3. Other Parameters

Energy operator [34] is as follows:

Teo =

N
N
∑

n=1
(r(n)− r(n))4

(
N
∑

n=1
(r(n)− r(n))2

)2 (15)

where, r(n) represents the mean value of r(n), and r(n) represents the Teager energy
differential signal, r(n) = x2(n)− x(n − 1)x(n + 1).

A total of 19 fault feature parameters are extracted based on time domain and fre-
quency domain. Although they can reflect different information of vibration signals and sys-
tem faults, the sensitivity of different fault feature parameters is different, and there is partial
irrelevance or redundancy. The Laplacian score (LS) method is used to extract the inherent
information architecture of the feature set, map the complex and high-dimensional feature
space to the low dimensional space, and achieve the optimization of multi-dimensional
feature [35]. The specific steps of the LS method are as follows:

Step 1: Input the training sample feature matrix F ∈ ℜm×n, where m is the number of
samples, n is the feature dimension, and fri is the r-th dimension feature of the i-th sample.

Step 2: Build a neighbor graph G, where G has m sample points; xi corresponds to
the i-th node. If xi and xj are “neighbors”, they are connected at two points. xi and xj are
defined as neighbors. On the contrary, the two points are not connected.

Step 3: Define the weight matrix Sij as below:

Sij =

e
∥xi−xj∥

2

t i f xi close to xj

0 otherwise
(16)

where t is a suitable constant.
Step 4: Lr is defined as the Laplace score of the r-th feature fr. The calculation method

of Lr is as follows:

Lr =
∑ij

(
fri − frj

)2Sij

var( fr)
(17)

where, fr = [ fr1, fr2, · · · frm]
T , D = diag(SI), I = [1, 1, · · · 1]T , L = D − S, matrix L is the

Laplace matrix of neighborhood graph G:
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Where

∑
ij

(
fri − frj

)2Sij = ∑
ij

(
f 2
riSij − 2 fri frjSij + f 2

rjSij

)
= ∑

ij

(
2 f 2

riSij − 2 fri frjSij
)

= 2∑
ij

(
f 2
riSij − fri frjSij

)
= 2 f T

r D fr − 2 f T
r S fr = 2 f T

r L fr
(18)

var( fr) = ∑
i
( fri − µr)

2Dii (19)

where, var( fr) is the variance of the r-th feature fr, and standardization fr can obtain the
following:

∼
f = fr −

(
f T
r DI

IT DI

)
I (20)

Further, we can find the Laplacian score of the r-th feature:

Lr =

∼
f

T

r L
∼
f r

∼
f

T

r D
∼
f r

(21)

Step 5: Sort Lr in ascending order and output Lr in turn.
According to Equation (14), the smaller the molecular

(
fri − frj

)
, the smaller is the

feature difference within the representative sample. The greater the variance of the r-th
feature fr, the greater is the feature difference between samples and the higher is the
separability. Therefore, the smaller the Laplace score Lr corresponding to the feature,
the more important it is. The final multi-dimensional sensitive feature vector Tmulti can
be obtained by combining the first five order IMF component ratios of feature vector T
constructed earlier and the five feature parameters extracted in this section:

Tmulti =

[
im f E1

E
,

im f E2

E
,

im f E3

E
,

im f E4

E
,

im f E5

E
, Sc, Teo, Sd f , x, Scf

]
(22)

3.3. Probabilistic Neural Networks

PNN is an artificial neural network model utilizing Bayes law and Palzen window.
The PNN model has the advantages of simple structure, fast calculation speed, and high
classification accuracy. Furthermore, the PNN learning algorithm is based on sample
distribution, it does not require extensive parameter tuning like other machine learning
algorithms, and it can automatically learn and classify based on the provided data without
complex parameter tuning. At the model architecture level, the PNN model consists of
four parts: input, mode, sum, and output, and its network model structure is shown in
Figure 7. For pattern recognition, the input layer is used to receive input samples, and the
number of nodes depends on the dimension of the input feature matrix. The function of the
mode layer is to calculate the matching relationship between input samples and each node
of the mode layer, and the number of nodes depends on the number of training samples.
The function of the summation layer is to calculate the probability belonging to the same
category in the model layer, whose number of nodes equals the number of categories of
input samples, while the output layer outputs the probability density estimates of different
categories through a competitive method and determines that the corresponding type of
the maximum value is the judgement result [36].

The spread parameter is one of the most important parameters in PNN, which controls
the smoothness of the radial basis function. The smaller the spread parameter, the more
complex is the decision boundary, which may lead to overfitting. The larger the spread
parameter, the smoother is the model, which may lead to underfitting.
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At the same time the size of the data volume and the data dimension have a significant
impact on the PNN network, which is directly related to the training effect and general-
ization ability of the model. Larger data volume can provide richer information to help
the PNN model better learn and understand the distribution of data, thus improving the
training effect and prediction accuracy of the model. A larger data volume also helps to
improve the generalization ability of the model and reduce the risk of overfitting. When
the data volume is small, the model may overlearn the noise in the training data, leading
to performance degradation on new data. However, with too large data dimensions, it is
difficult for the network to maintain sparse invariance, and it is difficult to train the PNN
network under high-dimensional data, and some irrelevant or redundant features may
interfere with the learning process of the PNN model, leading to performance degradation.

4. Experimental Verification

To verify the effectiveness of the fault diagnosis algorithm proposed in this paper, two
different cases of open data from rotating machinery parts were used for fault diagnosis.

4.1. Case 1

Gears are the core components of rotating machinery. The quality of gears can affect
the performance of rotating machinery. In this case, the gear failure is analyzed by spur
gear failures from the University of Connecticut gear public data set as an example [37].
This data set contains a full set of gearbox vibration data. The experimental bench used is
composed of drive motor, reducer, brake, and speed controller.

As shown in Figure 8, the transmission diagram of the gearbox in the University of
Connecticut data test bench is a two-stage reduction structure. The gear box contains input
shaft, intermediate shaft, and output shaft. ER-10K rolling bearings are used on both sides
of each stage shaft to connect with the reducer box. The number of teeth of gear 1 is 32,
gear 2 is 80, gear 3 is 48, and gear 4 is 64. Therefore, the first stage reduction ratio i1 = 2.5,
the second stage reduction ratio i2 = 4/3, and the detailed parameters of data acquisition
are shown in Table 1.
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Table 1. Detailed parameters of experiment.

Acquisition
System Processing Board Sampling

Frequency
Sampling

Time Speed

dSPACE DS1006 20 kHz 10 s 2820 rpm

In this experiment, the information of the experiment is that only gear fault data
collected from this data set are used, bearing #1~bearing #6 are normal, input and output
shaft are normal, gear fault includes flaking and pitting, and fault occurs on gear 1 and 3,
respectively. Fault label and status information are shown in Table 2.

Table 2. PHM gear fault label and status information.

Label Gears 1 Gears 2 Gears 3 Gears 4

1 Normal Normal Normal Normal
2 Flake Normal Normal Normal
3 Pit Normal Normal Normal

In the experiment, 100 samples are collected for each status, with each sample consist-
ing of 3600 data points covering three periods of experimental data. As shown in Figure 9,
the time-domain diagram of three different state data after down-sampling is shown.

IPSO adaptive search is performed on three types of fault data and the best parameter
combination

[
K̂, α̂

]
is shown in Table 3. The best combination of parameters obtained by

optimizing label 1 data is [10, 2000], label 2 is [10, 3150], and label 3 is [8, 4950].

Table 3. Optimum parameter combination
[
K̂, α̂

]
for different fault data.

Label 1 Label 2 Label 3

[10, 2000] [10, 3150] [8, 4950]

The data of the three labels are processed by IPSO-VMD and each IMF component is
calculated. The correlation coefficient between each IMF component and the original signal
is shown in Figure 10. It can be observed from the diagram that the correlation coefficient
between all IMF components and the original signal under the three labels is greater than
the set threshold σ = 0.1. It is concluded that all IMF components from the three different
fault data of the gear wheel are effective components.



Appl. Sci. 2024, 14, 7380 14 of 21
Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 9. Time-domain diagram of gear data in three different conditions. 

IPSO adaptive search is performed on three types of fault data and the best parameter 
combination ˆ ˆ,K α    is shown in Table 3. The best combination of parameters obtained 

by optimizing label 1 data is [ ]10, 2000 , label 2 is [ ]10,3150 , and label 3 is [ ]8, 4950 . 

Table 3. Optimum parameter combination ˆ ˆ,K α    for different fault data. 

Label 1 Label 2 Label 3 

[ ]10, 2000  [ ]10,3150  [ ]8,4950  

The data of the three labels are processed by IPSO-VMD and each IMF component is 
calculated. The correlation coefficient between each IMF component and the original sig-
nal is shown in Figure 10. It can be observed from the diagram that the correlation coeffi-
cient between all IMF components and the original signal under the three labels is greater 
than the set threshold 0 .1=σ . It is concluded that all IMF components from the three 
different fault data of the gear wheel are effective components. 

Further, the energy ratio feature of the effective components is shown in Figure 11. It 
can be observed that the energy ratio of the IMF3 component of label 1 data is the largest, 
accounting for 0.325, while the IMF5 component is the smallest, accounting for 0.06. IMF1 
and IMF3 are the first two components in the proportion of label 2 data, 0.376 and 0.4039, 
respectively, and the other three components are close to each other. The proportion of 
label 3 data in IMF1 and IMF2 is the first two, 0.3259 and 0.2035, respectively. The propor-
tion of other components decreases as they move forward.  

Figure 9. Time-domain diagram of gear data in three different conditions.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 10. IMF component correlation coefficient of gear data. 

 
Figure 11. Energy ratio of IMF components for gear data in different conditions. 

The extracted IMF component energy ratio feature and the time–frequency domain 
feature are collected as feature vectors and input into PNN model. Then, 70% of the 300 
sets of gear fault data are randomly selected as training set data and the remaining 30% 
as test set data. Using the rule of thumb to determine the size of the spread parameter the 
following is carried out: first select the initial value of spread = 0.1, and then gradually 
increase the size of the parameter, and finally in spread = 1.5 when the final diagnostic 
effect is the best, then select spread = 1.5. 

After the fault diagnosis, the confusion matrices for the training and test sets of the 
gear fault data are shown in Figure 12. At the model training level, label 1 in the training 
set has a total of 70 data and there are two misclassifications (both sample 7 and sample 
16 classify label 1 as label 2) with an accuracy of 97.14%. Label 2 has a total of 70 data with 
one misclassification (sample 19 classifies label 2 as label 1) with an accuracy of 98.57%. 
Label 3 has 70 data and has an accuracy rate of 100%. Label 1 with 30 data in the test set 
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Further, the energy ratio feature of the effective components is shown in Figure 11. It
can be observed that the energy ratio of the IMF3 component of label 1 data is the largest,
accounting for 0.325, while the IMF5 component is the smallest, accounting for 0.06. IMF1
and IMF3 are the first two components in the proportion of label 2 data, 0.376 and 0.4039,
respectively, and the other three components are close to each other. The proportion of label
3 data in IMF1 and IMF2 is the first two, 0.3259 and 0.2035, respectively. The proportion of
other components decreases as they move forward.
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The extracted IMF component energy ratio feature and the time–frequency domain
feature are collected as feature vectors and input into PNN model. Then, 70% of the 300 sets
of gear fault data are randomly selected as training set data and the remaining 30% as
test set data. Using the rule of thumb to determine the size of the spread parameter the
following is carried out: first select the initial value of spread = 0.1, and then gradually
increase the size of the parameter, and finally in spread = 1.5 when the final diagnostic
effect is the best, then select spread = 1.5.

After the fault diagnosis, the confusion matrices for the training and test sets of the
gear fault data are shown in Figure 12. At the model training level, label 1 in the training
set has a total of 70 data and there are two misclassifications (both sample 7 and sample 16
classify label 1 as label 2) with an accuracy of 97.14%. Label 2 has a total of 70 data with
one misclassification (sample 19 classifies label 2 as label 1) with an accuracy of 98.57%.
Label 3 has 70 data and has an accuracy rate of 100%. Label 1 with 30 data in the test set is
misclassified by one with an accuracy of 96.67%. Label 2 has 30 data, one misclassification
and 96.67% accuracy. Label 3 has 30 data with 100% accuracy. The misclassification that
occurred is that Sample 27 predicted label 1 as label 2 and sample 7 predicted label 2 as
label 1, with some confusion between label 1 and label 2.
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The PSO-VMD feature extraction algorithm is compared with the optimized IPSO-
VMD, EMD and compared with PNN, support vector machines using extreme learning
machine (ELM) [38]. The diagnostic results for the gear fault samples are shown in Table 4.
It can be seen that for the gear data, the IPSO-VMD-PNN algorithm is the most effective
with an overall accuracy of 97.78%.

Table 4. Diagnostic results of gear failure samples.

Gears
Status

Feature Extraction
Algorithm

Classification
Algorithm

Number of
Training Sets

Number of
Test Sets Right Misjudgment Accuracy

Rates

Label 1

IPSO-VMD PNN 70 30 29 1 96.67%
PSO-VMD PNN 70 30 28 2 93.33%
PSO-VMD ELM 70 30 26 4 86.67%
PSO-VMD SVM 70 30 27 3 90.00%

EMD PNN 70 30 24 6 80.00%

Label 2

IPSO-VMD PNN 70 30 29 1 96.67%
PSO-VMD PNN 70 30 27 3 90.00%
PSO-VMD ELM 70 30 24 6 80.00%
PSO-VMD SVM 70 30 26 4 86.67%

EMD PNN 70 30 24 6 80.00%

Label 3

IPSO-VMD PNN 70 30 30 0 100%
PSO-VMD PNN 70 30 28 2 93.33%
PSO-VMD ELM 70 30 26 4 86.67%
PSO-VMD SVM 70 30 28 2 93.33%

EMD PNN 70 30 25 5 83.33%

4.2. Case 2

As a critical component of rotating machinery, rolling bearings can significantly impact
its performance. This case conducts signal processing research on the open bearing fault
data set [39] of Case Western Reserve University (CWRU) bearing data center and the
rolling bearing data measured in the laboratory. The test bench used by the mechanism is
shown in Figure 13, including drive motor, load motor, coupling, torque sensor, and other
components, providing measured fault data of different fault positions and sizes. Among
them, the drive end bearing is an SKF 6205, and the fan end bearing is an SKF 6203. The
acceleration sensor is used for data acquisition and installed above the bearing pedestal at the
drive end and fan end. The sampling frequency of the data acquisition system is 12 kHz.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 23 
 

 

SKF 6203. The acceleration sensor is used for data acquisition and installed above the bear-
ing pedestal at the drive end and fan end. The sampling frequency of the data acquisition 
system is 12 kHz. 

 
Figure 13. CWRU bearing data center test bench. 

Based on the PNN model, this section carries out diagnostic experiments on four 
states of the rolling bearing in the CWRU open data set. The technical information is 
shown in Table 5. 

Table 5. Technical information of failure samples of rolling bearing. 

Bearing  
Status 

Fault  
Diameter (mm) 

Rotational 
Speed (rpm) 

Data  
Labels 

Number of 
Samples 

Failure  
Label 

Normal 0 1750 Normal_2 200 1 
Rolling ele-

ment Failure 
0.3556 1750 B014_2 200 2 

Inner ring Fail-
ure 0.3556 1750 IR014_2 200 3 

Outer ring 
Failure 0.3556 1750 OR014@6_2 200 4 

The data of four states are searched by IPSO adaptive search, and the best parameter 

combination ˆ ˆ,K α    is shown in Table 6. 

Table 6. Optimum parameter combination for different status data. 

Normal Ball Failure Inner Failure Outer Failure 
[ ]10, 2950  [ ]8,3000  [ ]9,1850  [ ]6,3400  

Each IMF component of four status data processed by IPSO-VMD is obtained, and 
the correlation coefficient between each IMF component and the original signal is calcu-
lated as shown in Figure 14. The figure shows that all other IMF components are valid 
components. 

Figure 13. CWRU bearing data center test bench.

Based on the PNN model, this section carries out diagnostic experiments on four states
of the rolling bearing in the CWRU open data set. The technical information is shown in
Table 5.
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Table 5. Technical information of failure samples of rolling bearing.

Bearing
Status

Fault
Diameter (mm)

Rotational Speed
(rpm)

Data
Labels

Number of
Samples

Failure
Label

Normal 0 1750 Normal_2 200 1
Rolling element Failure 0.3556 1750 B014_2 200 2

Inner ring Failure 0.3556 1750 IR014_2 200 3
Outer ring Failure 0.3556 1750 OR014@6_2 200 4

The data of four states are searched by IPSO adaptive search, and the best parameter
combination

[
K̂, α̂

]
is shown in Table 6.

Table 6. Optimum parameter combination for different status data.

Normal Ball Failure Inner Failure Outer Failure

[10, 2950] [8, 3000] [9, 1850] [6, 3400]

Each IMF component of four status data processed by IPSO-VMD is obtained, and the
correlation coefficient between each IMF component and the original signal is calculated as
shown in Figure 14. The figure shows that all other IMF components are valid components.
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Figure 14. IMF component correlation coefficient of rolling bearing data.

Further, the energy ratio feature of effective components is shown in Figure 15. It can
be observed that the distribution trend of the five IMF components of the rolling element
fault and inner ring fault is similar. The proportion of IMF2 and IMF3 is small while IMF5
is the largest, but the proportional energy ratio of the inner ring fault is larger than that of
the rolling element fault. For outer ring faults, IMF1 and IMF5 are 0 in the first five order
components, and the ratios of IMF1 and IMF2 are close, while there is little difference in
energy; IMF3 accounts for the largest proportion, about 4.5 times of IMF3. For normal
conditions, IMF1 accounts for the largest proportion, exceeding 0.5, while IMF5 accounts for
the smallest. In summary, the energy ratios of IMF components of each order for different
faults can effectively distinguish different types of faults.
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Consistent with the previous method of constructing the training set and test set, the
confusion matrix of the rolling bearing fault data training set and test set is obtained as
shown in Figure 16. Using the rule of thumb to determine the size of the spread parameter,
the following is carried out: first select the initial value of spread = 0.1, and then gradually
increase the size of the parameter, and finally in spread = 2.3 when the final diagnostic
effect is the best, then select spread = 2.3.
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At the model training level, sample number 57 in the normal class is mis-predicted as
an outer ring failure and sample number 35 in the inner ring failure class is mis-predicted
as a rolling element failure. In the test set, the model is able to diagnose the inner ring of
the rolling bearing with 100% accuracy, while there is one misclassification in the normal
condition, which predicted sample No. 90 as a rolling element fault. There are two
misclassifications for rolling element faults; samples #4 and #25 are predicted as normal,
and in the case of the outer ring fault, sample #56 is predicted as a rolling element fault.

PSO-VMD, optimized IPSO-VMD and EMD, PNN and SVM, and ELM methods are
compared and analyzed. The diagnostic results for the rolling bearing fault samples are
shown in Table 7. In general, for the rolling bearing fault data, IPSO-VMD-PNN has the
best diagnostic performance in the test set, with an overall accuracy of 98.3%. In summary,
the above proposed IPSO-VMD fault feature extraction method can be combined with the
PNN model to achieve higher fault diagnosis accuracy.
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Table 7. Diagnostic results of rolling bearing fault samples.

Gears Status Feature Extraction
Algorithm

Classification
Algorithm

Number of
Training Sets

Number of
Test Sets Right Misjudgment Accuracy

Rate

Normal

IPSO-VMD PNN 140 60 59 1 98.33%
PSO-VMD PNN 140 60 57 3 95.00%
PSO-VMD ELM 140 60 55 5 91.67%
PSO-VMD SVM 140 60 58 2 96.67%

EMD PNN 140 60 54 6 90.00%

Rolling
element
failure

IPSO-VMD PNN 140 60 58 2 96.67%
PSO-VMD PNN 140 60 56 4 93.33%
PSO-VMD ELM 140 60 54 6 90.00%
PSO-VMD SVM 140 60 57 3 95.00%

EMD PNN 140 60 53 7 88.33%

Inner ring
Failure

IPSO-VMD PNN 140 60 60 0 100%
PSO-VMD PNN 140 60 59 1 98.33%
PSO-VMD ELM 140 60 58 2 96.67%
PSO-VMD SVM 140 60 58 2 96.67%

EMD PNN 140 60 56 4 93.33%

Outer ring
Failure

IPSO-VMD PNN 140 60 59 1 98.33%
PSO-VMD PNN 140 60 58 2 96.67%
PSO-VMD ELM 140 60 57 3 95.00%
PSO-VMD SVM 140 60 58 2 96.67%

EMD PNN 140 60 55 5 91.67%

5. Conclusions and Future Work

In this study, a fault diagnosis framework for rotating machinery based on IPSO-
VMD-PNN was established by the combination of numerical simulation and experimental
verification, and the effectiveness of the framework was verified with the open data of
gears and rolling bearings.

• In view of the difficulty in selecting the two key parameters K and α in VMD, the
adaptive inertia weight strategy and compression factor method were used to improve
the PSO algorithm, and the adaptive optimization of parameters was carried out by
combining the fitness function, so as to avoid the instability of manual value taking
and cumbersome operation.

• In the extracted multi-dimensional feature vectors, the sensitivity of different fault
feature parameters varies, and some parameters may be irrelevant or redundant.
Laplace score was used to select sensitive feature parameters from multi-domain
feature parameters, and the fault sensitive feature vector was constructed and input
into the PNN model to realize fault diagnosis.

• Through the validation of simulated and real signals, the proposed IPSO-VMD-PNN
framework shows excellent robustness and adaptability, demonstrating its potential
for application in practical engineering.

Future research will focus on further optimizing the proposed method to enhance
its fault diagnosis accuracy under more complex conditions. Additionally, the potential
application of this method in intelligent diagnosis under varying rotational speeds will
be explored.

Author Contributions: Conceptualization, Z.L.; methodology, C.Z.; software, C.Z.; validation, Z.L.
and C.Z.; investigation, J.H.; data curation, S.X.; writing—original draft preparation, Z.L. and C.Z.;
writing—review and editing, Z.L. and Z.C.; visualization, W.Z.; supervision, H.L.; funding acquisition,
H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (grant
number 52275505), and the Key Research and Development project of Hubei Science and Technology
Plan (grant number 2023BEB013).



Appl. Sci. 2024, 14, 7380 20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.

Conflicts of Interest: The authors declare no conflict of interest.

References
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