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Abstract: Cost reduction and staff retention are important optimization objectives in home healthcare
(HHC) systems. Home healthcare operators need to balance their objectives by optimizing resource
use, service delivery and profits. Minimizing total travel distances to control costs is a common routing
problem objective while minimizing total finishing time differences is a scheduling objective whose
purpose is to enhance staff satisfaction. To optimize routing and scheduling, we propose mixed integer
linear programming with a bi-objective function, which is a subset of the vehicle routing problem
with time windows (VRPTWs). VRPTWs is a known NP-hard problem, and optimal solutions are
very hard to obtain in practice. Metaheuristics offer an alternative solution to this type of problem.
Our metaheuristic uses the simulated annealing algorithm and weighted sum approach to convert the
problems to single-objective problems and is equipped with operators including swapping, moving,
path exchange and ruin and recreate. The results show, firstly, that the algorithm can effectively find the
Pareto front, and secondly, that minimizing total finishing time differences to balance the number of jobs
per caretaker is an efficient way to tackle HHC scheduling. A statistical test shows that the algorithm
can obtain the Pareto front with a lower number of weighted sum problems.

Keywords: vehicle routing problem with time windows; minimizing total distance; minimizing total
finishing time differences; home healthcare; bi-objective function

1. Introduction

This research tackles two objectives in home healthcare (HHC) routing and scheduling,
namely minimizing total travel distance and minimizing total finishing time differences.
Minimizing total travel distance, a typical objective in a routing problem, attempts to
minimize the total cost of the routing, while minimizing total finishing time differences is
more meaningful for a general service problem where workload balance is important. The
optimal utilization of resources, ensuring efficient service delivery and enhancing profits
are all vital objectives for a home healthcare operator and managing all three is tantamount
to balancing various objectives. HHC attracts interest due to a variety of factors including
aging populations, the rising number of the chronically ill people and a preference for
receiving care at home. Currently, those over 65 years of age make up 10% of the global
population and this figure is expected to increase to 16% in 2050 [1]. In order for HHC
providers to efficiently deliver essential services, they need to optimize the problem, and
this requires optimizing both routing and scheduling simultaneously. The difficulties of
HHC optimization come from its multi-objective nature, which sets it apart from traditional
routing and scheduling problems. Optimizing multiple goals, e.g., minimizing travel time
or distance while balancing workload allocation among caretakers, requires customized
optimization techniques.

An HHC system is defined as an extensive network of medical experts, caregivers and
support services that provides healthcare services to patients in their homes or designated
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locations. Home healthcare administrators need to make optimum decisions regarding the
route plans for all caretakers. In typical HHC operations, the operator receives information
about a group of patients distributed across different locations who need to be visited
by one caretaker. Home healthcare managers determine the routes for caregivers, who
subsequently travel to provide services to customers following the predetermined routes.
Typically, home healthcare managers try to make decisions that minimize total operational
costs when creating route plans. To ensure competitiveness in the HHC business, both
patient satisfaction and caregiver satisfaction need to be considered as factors that can
significantly impact operators’ profits. This notion motivated us to study a two-objective
home healthcare routing and scheduling problem.

HHC systems can be optimized if healthcare providers treat them as routing and
scheduling problems, allowing for the optimization of factors like travel time, distance,
vehicle capacity and patient priorities. Optimization can result in reduced travel costs,
minimized travel time, enhanced patient satisfaction and improved overall efficiency in
healthcare service delivery. However, it is not possible to achieve all these objectives simul-
taneously, as optimizing one objective requires sacrificing others. In this scenario, using the
typical routing objective of total distance minimization alone may not be appropriate due
to the time-sensitive nature of both patients’ and caretakers’ needs. Focusing on distance
as the primary goal could lead to unequal distribution of tasks among caregivers. This
study aims to introduce a new objective of minimizing the total difference between each
pair of caretakers’ finishing times, an approach that has never been studied in the literature.
The problem will be formulated based on the vehicle routing problem with time windows.
Additionally, a metaheuristic approach relying on simulated annealing (SA) is proposed as
a solution for handling a large-scale problem. The SA algorithm has been demonstrated
to be effective for solving NP-hard problems. The algorithm has the ability to avoid local
optima by employing a probabilistic approach.

Since vehicle routing problems are known to be NP-hard, we propose an efficient
approach for multiple objectives. In this study, however, we focus only on bi-objective
function. In this case, minimizing total distance will result in reducing the overall cost and
minimizing total finishing time differences will lead to reduced differences in the number
of tasks assigned to each caretaker. The approach starts by converting the problems from
multiple objective to single objective and then the problem is solved using a metaheuristic
algorithm. This study’s main contributions are as follows:

1. The creation of a bi-objective model for home healthcare routing and scheduling,
featuring total distance minimization and minimization of the total finishing time
difference between each pair of caretakers; and

2. The development of an efficient algorithm for multiple-objective optimization prob-
lems based on a metaheuristic (simulated annealing algorithm) together with local
search operators (swapping, moving, path exchanging, ruining and recreating) with
the pruning conditions (with proof) to prevent unnecessary searching.

The remainder of this paper is organized as follows: The next section presents a review
of literature related to various aspects of vehicle routing problems. Section 3 proposes
model formulation based on vehicle routing problem with time windows. The solution
is presented in Section 4. The results, along with a discussion and analysis, are presented
in Section 5. And finally, the conclusion and future research suggestions are presented in
Section 6.

2. Literature Review

In this section, we will focus on works related to the development of models and
objective functions for use in HHC systems and the development of solutions. Since the
problem can basically be formulated as a vehicle routing problem, model formulations and
solution approach themselves are also reviewed.

Modeling for HHC starts with an allocation of resources (nurses), after which routing
is considered. This was first studied by [2], who proposed a model for grouping nurses
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into a region by considering the average travel distance. Later, Hindle et al. [3] provided
a model for resource allocation that utilized spatial and geographical information to take
into account distance and time, with a case study in Northern Ireland. When routing is
added to the system, the problem becomes a routing and scheduling problem in home
healthcare and can be formulated as a vehicle routing problem. Modeling for HHC resource
allocation and routing was first proposed by Eveborn et al. [4]. In contrast to prior works,
Bredström and Rönnqvist [5] added temporal, precedence and synchronization constraints
(called synchronization and precedence constraints) to the routing and scheduling problem
to allow more than one nurse to visit a patient to provide multiple services at the same
time. The authors modified the original model by duplicating the node which required
more than one visit. Rasmussen et al. [6] expanded on the previous work to feature five
different temporal conditions in home healthcare and solved the problem by converting it
into a set partitioning problem. Later, Ait Haddadene et al. [7] improved the model with
synchronization and precedence constraints to contain a lower number of nodes instead of
duplicating the nodes and proposed the greedy randomized adaptive search procedure for
large-scale problems. Mankowska et al. [8] proposed modeling to support double services
at each patient location, called interdependent services, with each service having temporal-
dependent conditions. The authors proposed an adaptive variable neighborhood search
with neighborhood search techniques for the temporal constraints. The reader should refer
to [9] for a review of the home healthcare routing and scheduling literature and to Mascolo
et al. [10] for a bibliometric analysis.

Most home healthcare optimization objectives usually follow the classical objective:
the minimization of either total travel distance or time [11]. In previous work, the objective
functions for home healthcare routing and scheduling focused on costs related to distance
or time, waiting time, over time, etc. Akjiratikarl et al. [12] proposed a metaheuristic based
on particle swarm optimization with embedded local improvement procedures to solve
home healthcare routing and scheduling problems by minimizing total distance when
capacity and time windows need to be satisfied. Dohn et al. [13] maximized the total
number of assigned tasks for a manpower allocation problem, an approach called node
covering. The study focused on the cooperation of teams to perform the same task under the
conditions of time and working hours, and the problem was solved using the Danzig–Wolfe
decomposition [14]. Allaoua et al. [15] used the Danzig–Wolfe decomposition technique
and branch and price algorithm to solve a home healthcare problem formulated using a
combination of routing and rostering problems. Their objective was to minimize the total
number of caretakers. Saksuriya and Likasiri [16] minimized the total completion time for
each patient node in a home healthcare problem formulated as a vehicle routing problem
with time windows. To make the model more suitable for HHC systems, the chosen
objective functions were the sum of total distance or cost and other aspects related to HHC.
Trautsamwieser et al. [17] proposed a model with time windows for working time and break
time to minimize the sum of traveling times, waiting times and the dissatisfaction levels of
clients and nurses. Yuan et al. [18] proposed home healthcare routing and scheduling with
time windows, stochastic service time and hierarchical skill levels. The objective function,
to minimize total travel cost and penalty cost for violating the time windows, was solved
using the Danzig–Wolfe decomposition and the branch and price algorithm. de Aguiar
et al. [19] proposed a model to minimize the sum of total travel time and service time,
working time, and penalty cost. The model was based on a vehicle routing problem with
time windows. The authors considered more than one aspect as the main objective function;
most of the objectives were related to minimizing costs, which may include distance and
time. Braekers et al. [20] considered the bi-objectives of minimizing total costs including
routing and overtime costs and minimizing inconvenience costs including qualifications
and working time constraints. Later research addressed climate change by considering
carbon emissions as one of the objectives. Niakan and Rahimi [21] proposed multiple
objectives for the inventory and distribution problem in HHC. The objective functions
used were total cost minimization, carbon emission minimization and customer satisfaction
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maximization. Fathollahi-Fard et al. [22] proposed a bi-objective model to minimize total
cost and carbon emissions. Their metaheuristic was based on the simulated annealing
algorithm and the salp swarm algorithm that can efficiently find the Pareto optimum.

Since home healthcare routing and scheduling can be formulated as a vehicle rout-
ing problem, which is NP-hard, the studied problem also falls within NP-hard territory.
Heuristics and metaheuristics are appropriate approaches to find the best solution for these
problems in a reasonable amount of time [11]. Bertels and Fahle [23] proposed metaheuris-
tics including simulated annealing and tabu search to find an initial solution and improved
solution with improvement heuristics including swapping, moving and removing opera-
tors to solve HHC problems. They minimized the total weighted sum of cost and penalties.
Maya Duque et al. [24] proposed a two-phase approach for vehicle routing problem to solve
bi-objective functions including minimizing total distance and maximizing the coverage of
service level to patients. The algorithm first optimized the service level and then improved
total distance. Çakırgil et al. [25] also proposed a two-phase approach, which first clusters
and then improves using a variable neighborhood search to solve the model with the
objective of minimizing the total cost and total weighted completion time of multi-skill
routing problems. Kordi et al. [26] proposed a variable neighborhood search to deal with
multi-objective problems (minimizing total cost, greenhouse gas releases, maximum time
spent by each caretaker and maximizing the matching level between nurses and patients)
based on the epsilon approach. Cui et al. [27] proposed an adaptive genetic algorithm and
a mathematical model for the routing problem with the customer satisfaction function. The
satisfaction function is derived from the soft time window violation, the data for which is
collected via a questionnaire. The reader should refer to [28] for a literature review related
to various objective functions and algorithms for solving problems in HHC.

To summarize, Table 1 presents the objective functions and solution methods taken
into account in the HHC context.

Table 1. Summary of previous review studies.

Reference Objective Function Solution Method

Bertels and Fahle [23] Minimized the total weighted sum of cost and
penalties Simulated annealing and tabu search

Eveborn et al. [4] Minimizing cost for assigning nurse to
schedule Set partitioning and matching algorithm

Akjiratikarl et al. [12] Minimizing total distance Particle swarm optimization

Bredström and Rönnqvist [5]
Minimizing weighted

sum of preferences, traveling time and one
balancing variable

Exact

Dohn et al. [13] Maximized total assigned tasks Node covering

Trautsamwieser et al. [17]
Minimize the weighted sum of traveling

times, waiting times, and the dissatisfaction
levels of clients and nurses.

Variable neighborhood search

Rasmussen et al. [6]
Minimizing weighted

sum of cost, visit preference, and uncovered
visits

Branch and price

Allaoua et al. [15] Minimize the total number of caretakers Danzig-Wolfe decomposition technique
and branch and price algorithm

Mankowska et al. [8] Minimizing weighted sum of traveling time,
late time, and maximum lateness Adaptive neighborhood search

Maya Duque et al. [24]
Bi-objectives for minimizing total distance

and maximizing the coverage of service level
to patients

Two-phase approach, first optimized the
service level and then improved total

distance
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Table 1. Cont.

Reference Objective Function Solution Method

Niakan and Rahimi [21]
Multi-objective of minimizing total cost,

carbon-emission minimization, and
maximizing customer-satisfaction

Two-phase approach, the equivalent
auxiliary crisp model and the efficient

fuzzy multi-objective method

Yuan et al. [18] Minimize total travel cost and penalty cost for
violating the time windows

Danzig-Wolfe decomposition and the
branch and price algorithm

Ait Haddadene et al. [7] Minimizing weighted sum of non-preference
and total traveling time Greedy randomized heuristic

Braekers et al. [20]
Bi-objectives of minimizing total cost

including routing and overtime cost and
minimizing inconvenience cost

Multi-directional local search

Fathollahi-Fard et al. [22] Bi-objectives for minimizing total cost and
carbon emissions.

Simulated annealing algorithm and the
salp swarm algorithm

Çakırgil et al. [25]
Minimize total cost and total weighted
completion time for multi-skill routing

problems

Two-phase approach, first clusters and
then improves using variable

neighborhood search

Saksuriya and Likasiri [16] Minimized the total completion time for each
patient node Particle swarm optimization

de Aguiar et al. [19]
Minimize the weighted sum of total travel
time and service time, working time, and

penalty cost
Exact

Kordi et al. [26]

Multi-objective for minimizing total cost,
greenhouse gas releases, maximum time spent

by each caretaker, and maximizing the
matching level between nurses and patients

Variable neighborhood search

Cui et al. [27] Minimizing cost function derived from the
customer satisfaction Adaptive genetic algorithm

3. Mathematical Modeling

As previously mentioned, the home healthcare routing and scheduling problem can be
described as a vehicle routing problem with time windows and mixed integer programming.
Caretakers have to start their route at the medical center and proceed to visit patient nodes.
Only one caretaker can visit a patient node to provide healthcare services. Note that services
can only begin after their earliest time window. If caretakers arrive early, they must wait
until the specified time is reached. In addition, caregivers must begin before the end of
the time window or the latest starting time, a restriction known as hard time windows.
After completing their service at the final patient node, the caregiver must return to the
medical center. There are two main objective functions in this case: minimizing the total
finishing time difference and minimizing the total travel distance. Minimizing the total
finishing time difference can help achieve a balanced workload among caretakers, as they
will complete their work very close to each other. As a result, the number of tasks per
caretaker is generally similar. Note that the total finishing time difference means the sum
of the absolute value which is not in a linear form.

The required parameters for our problem are listed below.

Parameters:

N = {0, 1, 2, . . . ,N} a set of patient nodes where node 0 represents origin node (health
center or depot);
K = {1, 2, . . . ,K} a set of caretakers;
ej = the earliest starting time for patient node j;
lj = the latest starting time for patient node j;
qj = demand for patient node j;



Appl. Sci. 2024, 14, 7381 6 of 21

Q = maximum capacity for each caretaker;
D =

[
dij

]
= traveled time matrix where dij is the traveled time from node i to j;

sj = service time for service j;
rjk = 1 if the vehicle k can visit patient j;
M = A large number.

For variables, there is a binary variable xk
ij representing the decision of vehicle (care-

taker) k to travel on the route. The starting time variable tj represents time that the caretaker
starts the healthcare services. uj represents the cumulative demand when the caretaker
visits the patient node. The variable CMAXk represents the calculated finishing time for
caretaker k which is the time that caretaker visits and finishes their service at the last patient
node on the route. We need this variable to calculate the total finishing time difference
which is the sum of the absolute value of every pair of finishing times. The details of the
variables are listed below.

Variables:

xk
ij 1 if vehicle k travels from patient node i to patient node j;

tj Starting time at patient node j;
uj Variable for the subtour elimination;
CMAXk Finishing time (Maximum completion time) for caretaker k.

Given a collection of patient nodes N = {1, . . . ,N} and a collection of caretakers
K = {1, 2, . . . ,K}, the objective of the problem is to determine the optimal routes for each
caregiver beginning and ending at the health center. Each caretaker must arrive at the
patient node within the specified time frame. The problem can be formulated as mixed
integer programming (MIP) problem with the incorporation of routing constraints and
scheduling constraints (constraints related to starting time and time window).

Model formulation

Minimize

{
∑

k1,k2∈K×K,k1 ̸=k2

∣∣CMAXk1 − CMAXk2

∣∣, ∑
i,j∈N,i ̸=j,k∈K

xk
ijdij

}
n

∑
j=1

xk
0j = 1, ∀k ∈ K (1)

n

∑
j=1

xk
j0 = 1, ∀k ∈ K (2)

m

∑
k=1

n

∑
i=0

xk
ij = 1, ∀j ∈ N\{0} (3)

m

∑
k=1

n

∑
j=0

xk
ij = 1, ∀i ∈ N\{0} (4)

n

∑
i=0

xk
ij −

n

∑
l=0

xk
jl = 0, ∀j ∈ N\{0}, ∀k ∈ K (5)

n

∑
i=0

xk
ij ≤ rjk, ∀j ∈ N, ∀k ∈ K (6)

ui − uj + qj ≤ Q
(

1 − xk
ij

)
, ∀i, j ∈ N\{0}, i ̸= j, ∀k ∈ K (7)

qj ≤ uj ≤ Q, ∀j ∈ N\{0} (8)

ti + sj + dij − M
(

1 − xk
ij

)
≤ tj, ∀i ∈ N, i ̸= j, ∀j ∈ N, ∀k ∈ K (9)
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ej ≤ tj ≤ lj, ∀j ∈ N (10)

ti + si − M
(

1 − xk
i0

)
≤ CMAXk, ∀i ∈ N, ∀k ∈ K (11)

ti + si + M
(

1 − xk
i0

)
≥ CMAXk, ∀i ∈ N, ∀k ∈ K (12)

xk
ij ∈ {0, 1}, ∀i, j ∈ N, i ̸= j, ∀k ∈ K (13)

The objective function is to simultaneously minimize the total finishing time difference
and total distance. Constraints (1) and (2) ensure that each caretaker’s route begins and
ends at the origin, given that the objective function is to minimize the difference in finishing
times of each pair of caretakers and minimize the total distance. Constraints (3) and (4) limit
the number of caretaker visits and departures per patient to one. Additionally, constraint (5)
ensure that a caregiver moves on to the next patient in the sequence after providing care
to the present one. The compatibility constraint (6) ensures that only a caregiver who is
compatible with the patient will travel to provide care for them. Constraints (7) and (8)
are subtour elimination constraints and capacity constraints, respectively. Constraint (9)
becomes active when caregiver k transitions from patient i to patient j (xk

ij = 1). The comple-
tion time for patient i (starting time plus service duration plus travel time) must be less than
that for patient j. Constraint (10) involves time windows. M in constraints (11) and (12)
is a sufficiently large number used to calculate the maximum completion time for each
caretaker. Constraint (13) guarantees variable integrality.

Since the objective function is not in the form of a linear equation, new variables
that represent the difference between a pair of finishing times are introduced, CDk1,k2 for
k1k2 ∈ K × K and k1 ̸= k2. The new constraints are described as:

CMAXk1 − CMAXk2 ≤ CDk1,k2 , ∀k1, k2 ∈ K × K, k1 ̸= k2 (14)

CMAXk2 − CMAXk1 ≤ CDk1,k2 , ∀k1, k2 ∈ K × K, k1 ̸= k2 (15)

The model can therefore be converted to mixed linear integer programming by adding
constraints (14) and (15), and replacing the objective function with

Minimize

{
∑

k1,k2∈K×K,k1 ̸=k2

CDk1,k2 , ∑
i,j∈N,i ̸=j,k∈K

xk
ijdij

}
(16)

4. Solution Method

Vehicle Routing with Time Windows is a well-known NP-hard problem whose com-
plexity increases exponentially with the number of variables. Only in rare instances can the
problem be precisely solved. Moreover, when the number of nodes is increased, the algorithm
is unable to discover an exact solution in some instances. Consequently, metaheuristics are
alternative techniques for locating solutions that are sufficient although not optimal.

The simulated annealing algorithm (SA) is a local search-based heuristic algorithm that
can prevent becoming caught in a local optimum and help explore a larger portion of the
search space. Inspired by the work of [29] on the annealing process, SA has been effectively
used to solve several combinatorial problems, including location, vehicle and other related
problems. The SA algorithm typically begins with an initial solution, which is subsequently
improved with each iteration by neighborhood operators (or local search algorithms) based
on the problem’s characteristics. Neighborhood operators such as swap, move, insert,
reverse, ruin-and-recreate, path exchange, etc., are typically employed to address routing
problems. Each algorithm containing SA that is used to solve a combinatorial optimization
problem always reaches a local optimum. One method for escaping the local optimum is to
allow the solution to relocate to a neighborhood solution that is worse than the current one,
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and then apply the same neighborhood operators to bring the solution back to a new local
optimum. In SA, probability is used to determine when the worst potential solution should
be accepted. The probability is determined by the variable temperature, which decreases
with every iteration. The higher the temperature, the greater the opportunity to switch to a
worse solution. In this case, we use the Bolzman function to calculate the probability of
accepting the worst solution.

As mentioned earlier, our model was formulated using bi-objective mixed integer
programming. Our proposed algorithm is based on simulated annealing to solve the
problem by converting it to a single-objective problem using the weighted sum of two objec-
tives. In this case, there are two weight coefficients associated with the objective functions
where the sum of weights is equal to 1. There are multiple choices to choose from; for the
best performance of the algorithm, we limited the set of weights to have only 11 choices:{(

wi, wj
)∣∣i, j = 0, 1, . . . , 10, wi + wj = 10

}
. The approach aims to find the Pareto optimal

set, which is a set of non-dominated solutions to each other but each is superior to the rest
of the solutions in the searching space. Non-dominated solutions are those that have no
solution that has a less objective value for all objectives. To optimize multiple objective
functions, one objective needs to be sacrificed to improve another. The Pareto set for two
objectives, if plotted two-dimensionally, will lie on the surface known as the Pareto front.
To obtain the best Pareto set of solutions, we solved the problem using each weighted sum
as the single objective function and selected only the pareto solutions to remain in the set.

As mentioned above, the problem is an NP-hard problem. To find an optimal solution
within a reasonable execution time, we needed to improve the algorithm’s efficiency.
Here, we provide feasible conditions for preventing the algorithm from searching in an
unnecessary solution space. For convenience, the solution is represented in the single
vector form. The vector will start with the node “0” which is the depot node, followed by
the sequence of nodes and finally end at the depot. For example, [0, 1, 2, 3, 0, 4, 5, 0, 6,
7, 8, 0] represents a solution with three routes: the first route starts from depot and visits
nodes 1, 2 and 3 before returning to the depot; the second route starts from depot, visits
nodes 4 and 5 and then returns to depot; and the third route contains nodes 6, 7 and 8.
For the feasibility test, we chose the conditions to ensure the feasibility of the algorithm.
For convenience, the route i can be written as Rk =

[
0, δ1

k , δ2
k , . . . , δ

|Rk |
k , 0

]
where each δ

j
k

represents the node that vehicle k visits in the jth order.

Definition 1. The starting time for node δ
j
k is equal to the maximum between the lower time window

of the node, i.e., e
δ

j
k
, and the starting time of the immediately preceding node together with the travel

time between them and service time, i.e., t
(

δ
j−1
k

)
+ p

δ
j−1
k

+ d
δ

j−1
k ,δj

k

.

Thus, t
(

δ
j
k

)
= max

{
e

δ
j
k
, t
(

δ
j−1
k

)
+ p

δ
j−1
k

+ d
δ

j−1
k ,δj

k

}

Definition 2. The completion time for node δ
j
k, namely c

(
δ

j
k

)
, is equal to the combination of the

starting time and the service time of the node, i.e., c
(

δ
j
k

)
= s

(
δ

j
k

)
+ p

δ
j
k
.

Definition 3. The finishing time for node δ
j
k, namely f

(
δ

j
k

)
, is equal to the maximum of completion

time between all nodes visited by caretaker k, i.e., f
(

δ
j
k

)
= max

j∈{1,2,...,|Rk |}

{
c
(

δ
j
k

)}
.

Lemma 1. Let Rk =
[
0, δ1

k , δ2
k , . . . , δ

|Rk |
k , 0

]
be a routing sequence for vehicle k. The node δ can be

feasibly inserted into the routing sequence Rk next to the i position, i.e., between δi
k and δi+1

k if the
following conditions hold:

t
(

δi+1
k

)
− d

δ,δi+1
k

− pδ ≥ eδ
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c
(

δi
k

)
+ dδi

k ,δ + pδ ≤ lδ

t
(

δi+1
k

)
− c

(
δi

k

)
≥ dδi

k ,δ + pδ + d
δ,δi+1

k

Proof. Suppose the node δ is inserted between δi
k and δi+1

k . The completion time for
node δ can be calculated as

t(δ) = max
{

eδ, c
(

δi
k

)
+ dδi

k ,δ

}
.

Consequently, the starting time for the node δi+1
k can be recalculated as:

t
(

δi+1
k

)
= max

{
eδ

i+1
k , c(δ) + d

δ,δi+1
k

}
.

To check for feasibility, we must ensure that the starting times of δ and δi+1
k lie within

their time windows. Specifically, the starting time for δi+1
k needs to be recalculated; we set

it as t⋆
(

δi+1
k

)
.

If eδ ≥ c
(
δi

k
)
+ dδi

k ,δ, the starting time for δ is set to be equal to its lower time window,
i.e., t(δ) = eδ ≤ lδ. Consequently, from condition (1), we obtain

t⋆
(

δi+1
k

)
≥ t

(
δi+1

k

)
≥ eδ + d

δ,δi+1
k

+ pδ.

The starting time for δi+1
k can thus be set to remain the same. Therefore, the starting

times for δ and δi+1
k lie within their time windows.

Similarly, in the case of eδ ≤ c
(
δi

k
)
+ dδi

k ,δ, by using condition (3), the new starting

time for δi+1
k also satisfies its time windows.

For δ, from the assumption, t(δ) = max
{

eδ, c
(
δi

k
)
+ dδi

k ,δ

}
and condition (2), the

starting time is calculated to be t(δ) = c
(
δi

k
)
+ dδi

k ,δ ≤ lδ − pδ ≤ lδ. The starting times for δ

and δi+1
k therefore lie within their time windows, and hence the Lemma is proved. □

Lemma 1 can serve as a basis for pruning inefficient explorations within the algorithm.
These conditions may be integrated into the insertion process and beyond. Furthermore, the
acts of swapping and moving, which entail additional steps, are analogous to the processes
of removal and insertion.

Simulated Annealing (SA)

Our proposed algorithm is based on SA, as we include both our balancing and insertion
algorithms. The algorithm also employs general neighborhood operators. At each iteration,
one of the neighborhood operators will be chosen based on their performance records
(probability). At the start, the probability for each operator is identical. The variables
pc1, pc2 and pc3 represent the number of improvements that arise from applying the
moving, swapping and path exchanging operators, respectively. Using the roulette wheel
selection method frequently used in Genetic algorithm [30], the probability of choosing
the operator i can be calculated by pci/(pc1 + pc2 + pc3). At each iteration, if applying the
operator i can improve the solution, the number pci will be increased by 1; otherwise, the
number will be decreased by 1. The pseudocode is presented in Algorithm 1 below.



Appl. Sci. 2024, 14, 7381 10 of 21

Algorithm 1. The framework of SA

1. Input: Initial temperature as T, terminating temperature as Tm, decreasing rate as α, and maximum iteration as Im.
2. Initial step: Generate an initial solution using Algorithm 2, set as Sol. Set the counter iteration variable as i = 1.

The number of improved pc1 = pc2 = pc3 = 1.
3. While the termination criteria do not meet (T > Tm and i < Im) do

4. Choose the Local search procedure based on the probability.

5. Apply Local search procedures to the solution, set as Solnew.
6. If the objective value of Solnew < objective value of Sol do
7. Update new solution, Sol = Solnew.
8. If the objective value of Sol < objective value of Solbest do
9. Solbest = Sol and increase the number of improvements of the operator by 1.
10. End If
11. Else
12. Randomize a value uniformly, set to s.
13. If s < exp(t) do
14. Accept new solution, Sol = Solnew.
15. End If
16. End If
17. Apply ruin-and-recreate procedure.
18. Increase the number of iterations, i = i + 1.
29. End While
20. Output : Solbest

4.1. Initial Solution

To obtain qualified solutions, it is preferable to start with a good one. In this section,
the insertion algorithm is proposed. An initial solution inspired by the insertion operator
is generated. The fundamental concept is to assign a patient to the routing sequence
(caretaker) with the fewest patients, so that the number of patients each caregiver must
visit will be balanced. In addition, the new patient will be added to the position in the
sequence with the earliest completion time. When a patient is inserted into a sequence of
other patients, it is common for subsequent patients to have to delay their procedures. To
fix this, tardy patients will be removed from the route and reassigned to other positions.
This procedure will continue until no patients remain. Moreover, the procedure will try to
minimize both objectives simultaneously by choosing the minimum finishing time as the
primary and the minimum total distance as the secondary objective. The pseudocode is
given in Algorithm 2.

Algorithm 2. Inserting procedure

1.
Input: A set of patients (waiting to be assigned), set to Jc and a partial solution, J =
{J1, J2, . . . , JK} where Ji is the routing sequence of route i, and K is the number of caretakers.

2. Set Jw = ∅ and arrange the patients in Jc according to their upper time windows in ascending order.
3. While Jc ̸= ∅ do
4. Choose the first patient in Jc, say j. Remove j from Jc
5. Choose a caretaker k that has the minimum number of patients. Consider all inserting assignments of j into Jk.
6. If there is more than one inserting assignment such that all patients are not late do

7.
Choose the case that has the minimum finishing time and if there are the same value of finishing time, choose
the minimum distance, replace the route into J.

8. Else If there are tardy patients in every inserting assignment of j do

9.
Choose the assignment that has the lowest number of tardy patients and whose inserting assignment’s completion
time after removing tardy patients is the smallest, replace the route in J. Add the tardy patients to Jw.

10. End If
11. End While
12. While Jw ̸= ∅ do
13. Add a new caretaker. Repeat all steps in the While loop with Jw, instead of Jc, until there is no change in J.
14. End While
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4.2. Neighborhood Operators

In this study, the solution space is explored using three neighborhood operators,
namely swap, move and path exchange. After obtaining an initial solution, neighborhood
operators will iteratively enhance the solution. Each iteration will select one of these
operators at random. The procedures are detailed below.

Moving operator: The objective of the operator is to move patients from their current
location in the routing sequence to a new location where they will not be tardy. This
operator will begin moving patients from the route with the highest number of patients
to the route with the lowest number of patients in order to balance out completion times.
Even if the completion time increases, it is still possible for the solution to be accepted due
to its probability. Figure 1 below shows the example of such moving operation.
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Figure 1. Example of moving operation.

Swapping operator: Shown in Figure 2 is the example of swapping operation. The
objective of this operator is to swap the locations of two patients. Similarly to the moving
operator, the switch operator will be applied to the pair of patients that will not cause other
patients to be late and will accept the worst possible solution.
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Figure 2. Example of swapping operation.

Path exchange operator: The purpose of the path exchange operator is to choose an
edge and exchange the path either at the start or end of that edge in a pair of routes. It is
analogous to the swap operator, except that it swaps a pair of edges. The operator will be
applied if the result is feasible. For example, as shown in Figure 3, path 4-5-0 is selected
from the first route and path 0-6-7 is selected from the second route. The operator will then
concatenate the two selected paths and two unselected paths together.
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4.3. Ruin and Recreate Procedure

The procedure aims to help escape from the local optimum by deleting one of the
caretakers (routes) and trying to feasibly insert the deleted patients into the remaining
routes using the Algorithm 2. If there is no place to insert them, a new caretaker will be
spawned. The main idea is to jump out of being stuck in a local optimum and reduce the
total number of caretakers at the same time [31]. The pseudocode is presented in Algorithm
3.
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Algorithm 3. Ruin and Recreate procedure

1. Input: The routing sequence

2.
Randomly select one of the caretakers (route) in the solution and delete it, set the removed
patients to Removed_patients

3.
Apply Algorithm 2 by inputting the set of patients with Removed patients to the solution, if
Algorithm 2 cannot find a feasible solution or cannot insert all remaining patients, a new
caretaker will be spawned.

5. Results and Discussions

To evaluate the efficacy of the proposed algorithm, we applied it to the well-known
benchmark instances, Solomon’s instances. The initial objective behind the creation of
Solomon’s instances was to minimize the total number of customers and total travel
distance [32,33]. In this work, we modify the benchmark instances to better suit our
problem. The vehicles can represent caretakers, while the customer nodes can represent
patients. The objective function is modified into a bi-objective optimization problem to
minimize the total finishing time differences between each pair of caretakers and minimize
total distance. The benchmark includes six varieties based on the node distribution pattern
and the range of time windows: random with narrow and wide time windows (R1, R2),
clustered with narrow and wide time windows (C1, C2), and a mixture of random and
clustered with narrow and wide time windows (RC1, RC2). All of the algorithms in this
study were coded using the Julia programming language [34,35] and executed on AMD
Ryzen 9 12-core processors with 3.8 GHz CPU and 64 GB of RAM.

To study the sensitivity of the two objectives, each of them will first be used as a single
objective to the problem and then the bi-objectives will be considered and compared using
the proposed method in Section 3.

Table 2 presents the computational results of a comparison between our algorithm
and the exact algorithm for the problem with an objective function to minimize the total
finishing time differences between each pair of caretakers. To clarify the column headings
in Table 2, Name represents the name of the instance starting with the distribution of
the problem followed by the width of time windows and the numbering of problem in
the last two digits. Time represents execution time in seconds. The rest of the columns
show a comparison between our results and the optimal solutions obtained by the exact
algorithm [36]. The second and third columns show the number of vehicles obtained by
our algorithm and by the exact algorithm, respectively. The fourth and fifth columns show
the calculated total distance from our solution and the optimal solution, respectively. The
objective values (minimizing the total finishing time differences in each pair of caretakers)
from our algorithm and from the exact algorithm are reported in the sixth and seventh
columns. Columns eight and nine show, in brackets, the minimum and maximum number
of patients per caretaker, respectively. Note that cases where the optimal solution cannot be
found within the defined execution time (1 h) are indicated by “-”. Additionally, Table 2
reports only the lowest number of caretakers. We can see that the algorithm can find the
optimal solution in most cases for 25 customers. In some instances, the algorithm can
find another optimal solution (same value of total difference) that is more balanced (the
minimum number of patients per caretaker is greater while the maximum number is lower)
than the optimal solution obtained from the Gurobi solver.

Table 2. Computational results for VRPTWs ability to minimize the total difference between each
pair of caretakers (w10_w0).

Name
Number of Vehicles Total Distance Total Difference (Minimum, Maximum)

Patients per Caretaker

Our Opt Our Opt Our Opt Our Opt

C101 3 3 267.8 277.2 68.2 68.2 (6, 10) (7, 10)
C102 4 3 421.5 405.5 2.8 0.2 (3, 9) (7, 10)
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Table 2. Cont.

Name
Number of Vehicles Total Distance Total Difference (Minimum, Maximum)

Patients per Caretaker

Our Opt Our Opt Our Opt Our Opt

C103 4 3 520.6 481.5 0.0 0.2 (2, 8) (7, 9)
C104 4 3 614.3 523.8 0.3 0.0 (4, 8) (7, 9)
C105 3 3 520.7 532.5 0.8 0.2 (7, 9) (7, 9)
C106 3 3 354.4 446.4 59.2 59.2 (8, 9) (7, 9)
C107 3 3 426.3 497.9 0.0 0.0 (8, 9) (8, 9)
C108 3 3 425.1 518.7 0.0 0.2 (7, 9) (7, 9)
C109 4 3 492.2 588.7 0.3 0.2 (2, 8) (7, 9)
C201 2 2 476.4 385.2 95.5 95.5 (8, 17) (9, 16)
C202 2 2 578.9 589.0 0.0 0.0 (8, 17) (10, 15)
C203 3 2 619.7 549.6 0.2 0.0 (3, 18) (11, 14)
C204 3 2 725.5 674.2 0.0 0.0 (7, 10) (12, 13)
C205 2 2 426.6 403.7 0.0 0.0 (9, 16) (12, 13)
C206 2 2 460.8 401.4 0.0 0.0 (8, 17) (7, 18)
C207 3 2 464.0 442.9 0.2 0.0 (3, 15) (9, 16)
C208 2 2 537.0 567.4 0.0 0.0 (11, 14) (9, 16)
R101 8 8 830.5 859.5 431.8 431.8 (2, 4) (2, 4)
R102 7 7 858.3 878.3 50.4 36.8 (3, 5) (3, 4)
R103 7 5 802.1 759.5 17.6 154.8 (2, 5) (4, 6)
R104 6 - 820.8 - 8.4 - (3, 5) -
R105 7 6 797.6 780.8 72.2 6.3 (3, 4) (4, 5)
R106 6 - 735.5 - 9.4 - (3, 5) -
R107 6 - 847.4 - 6.3 - (3, 5) -
R108 6 4 791.0 653.8 5.4 96.4 (2, 6) (5, 7)
R109 7 5 898.1 792 16.2 2.4 (3, 4) (5, 5)
R110 8 - 1009.3 - 18.5 - (2, 4) -
R111 6 5 830.1 764.1 5.9 1.8 (3, 5) (4, 6)
R112 8 - 852.7 - 17.8 - (2, 4) -
R201 2 2 797.3 817.0 1.3 1.1 (4, 21) (6, 19)
R202 2 4 732.4 971.1 0.0 23.5 (7, 18) (6, 7)
R203 3 3 804.0 912.7 0.0 0.2 (5, 13) (5, 13)
R204 2 2 754.1 908.7 0.0 0.0 (12, 13) (12, 13)
R205 2 3 831.9 890.2 0.0 1.2 (8, 17) (4, 11)
R206 3 3 800.3 942.8 0.0 0.4 (3, 17) (7, 10)
R207 3 3 1017.3 811.5 0.2 0.6 (3, 15) (7, 11)
R208 3 2 897.0 922.4 0.0 0.0 (4, 12) (9, 16)
R209 2 2 696.2 811.1 0.0 0.0 (7, 18) (11, 14)
R210 2 3 789.3 920.2 0.0 0.2 (9, 16) (3, 16)
R211 4 2 862.2 811.1 0.9 0.0 (4, 12) (12, 13)

RC101 6 4 743.9 535.2 13.9 43.5 (2, 7) (4, 8)
RC102 6 3 833.6 411.3 9.4 54.4 (3, 6) (8, 9)
RC103 6 - 846.2 - 2.3 - (3, 6) -
RC104 6 - 978 - 1.9 - (3, 5) -
RC105 5 4 673.2 519.1 39.4 3.9 (3, 8) (5, 8)
RC106 7 3 752.2 395.4 22.6 0.6 (2, 6) (8, 9)
RC107 6 - 822.4 - 2.6 - (2, 6) -
RC108 3 - 382.9 - 2.4 - (8, 9) -
RC201 2 3 778.5 1108.4 0.0 2.6 (5, 20) (7, 11)
RC202 3 3 825.9 1336.4 0.0 0.4 (2, 16) (7, 11)
RC203 2 3 896.7 953.2 0.0 0.4 (9, 16) (5, 12)
RC204 3 3 1033.9 930 0.0 0.4 (2, 17) (5, 14)
RC205 2 3 1031.8 1103.9 0.0 13.2 (9, 16) (5, 13)
RC206 3 3 778.3 1318.4 0.2 0.0 (2, 18) (4, 11)
RC207 2 3 807.3 1095.9 0.0 0.2 (7, 18) (4, 14)
RC208 1 2 596.3 1074.8 0.0 0.0 (25, 25) (10, 15)

To demonstrate the performance of our algorithm, the algorithm has been used to solve
the Solomon benchmark instances with an objective function to minimize total distance. In
this case, the algorithm uses only total distance as its objective. Table 3 shows the differences
in the results for 25 customers between the best-known solutions and the solutions obtained
by our algorithm. Columns 2, 4, 6, 8 show the solution obtained using our algorithm with
number of vehicles, total distance, total difference and minimum and maximum number
of patients per caretaker, respectively; columns 3, 5, 7, 9 show the optimal solution. It is
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evident that our algorithm obtains the optimal solutions in almost all cases. Moreover, we
observe that, in instance R104, our solution has a distance that is slightly higher than the
optimal solution, but the maximum number of jobs is lower. Note that the solution that
cannot be found within the defined time frame (1 h) is indicated as “-”. In this case, the
solution obtained via our algorithm is a more balanced solution compared to the optimal
solution using the same objective function, making it more reasonable to use in the real
world. In contrast, we notice that, when the total distance is minimized, the minimum and
maximum numbers of patients per caretaker become more imbalanced than when only
total difference between finishing times is minimized, e.g., C101, R105, R101.

Table 3. Computational results for VRPTW to minimize total distance only (w0_w10).

Instance
Number of Vehicles Total Distance Total Difference (Minimum, Maximum)

Patients per Caretaker

Our Opt Our Opt Our Opt Our Opt

C101 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C102 3 3 190.3 190.3 819.8 819.8 (6, 11) (6, 11)
C103 3 3 190.3 190.3 819.8 819.8 (6, 11) (6, 11)
C104 3 3 186.9 186.9 596.0 596.0 (6, 10) (6, 10)
C105 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C106 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C107 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C108 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C109 3 3 191.3 191.3 505.6 505.6 (6, 11) (6, 11)
C201 2 2 214.7 214.7 1722.1 1722.1 (6, 19) (6, 19)
C202 2 2 214.7 214.7 1242.2 1242.2 (6, 19) (6, 19)
C203 2 2 214.7 214.7 1722.1 1722.1 (6, 19) (6, 19)
C204 2 2 214.5 214.5 1721.9 1242.0 (6, 19) (6, 19)
C205 2 2 214.7 214.7 1722.1 1722.1 (6, 19) (6, 19)
C206 2 2 214.7 214.7 1733.8 1733.8 (6, 19) (6, 19)
C207 2 2 214.5 214.5 1888.1 1888.1 (6, 19) (6, 19)
C208 2 2 214.5 214.5 2197.9 2197.9 (6, 19) (6, 19)
R101 8 8 617.1 617.1 1040.0 1040.0 (1, 5) (1, 5)
R102 7 7 547.1 547.1 797.2 797.2 (1, 5) (1, 5)
R103 5 5 454.6 454.6 286.8 286.8 (2, 7) (2, 7)
R104 4 4 430.1 416.8 94.2 39.8 (5, 8) (5, 8)
R105 6 6 530.5 530.5 365.5 365.5 (3, 5) (3, 5)
R106 5 - 465.4 - 413.6 - (4, 7) (-, -)
R107 4 4 424.3 424.3 145.2 145.2 (5, 8) (5, 8)
R108 4 4 397.3 397.3 199.0 199.0 (5, 8) (5, 8)
R109 5 5 441.3 441.3 311.6 311.6 (4, 6) (4, 6)
R110 5 4 444.7 444.7 366.6 90.5 (3, 6) (5, 7)
R111 5 5 430.1 430.1 523.4 523.4 (1, 7) (1, 7)
R112 4 4 394.0 393.0 146.5 75.0 (5, 8) (5, 8)
R201 4 4 463.3 463.3 1250.9 1250.9 (6, 7) (6, 7)
R202 4 4 410.5 410.5 1411.0 1411.0 (5, 7) (5, 7)
R203 3 3 393.9 391.4 529 569.4 (5, 11) (7, 10)
R204 2 2 357.5 355.0 158.2 459.4 (12, 13) (8, 17)
R205 3 3 399.0 393.0 156.0 166.0 (3, 13) (3, 15)
R206 3 3 374.4 374.4 453.0 453.0 (6, 12) (6, 12)
R207 3 3 361.6 361.6 453.0 453.0 (6, 10) (6, 10)
R208 2 2 334.6 334.6 244.3 244.3 (12, 13) (12, 13)
R209 2 2 370.7 370.7 3.0 3.0 (10, 15) (10, 15)
R210 3 3 404.6 404.6 617.0 617.0 (6, 11) (6, 11)
R211 2 2 350.9 350.9 96.1 96.1 (12, 13) (12, 13)
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Table 3. Cont.

Instance
Number of Vehicles Total Distance Total Difference (Minimum, Maximum)

Patients per Caretaker

Our Opt Our Opt Our Opt Our Opt

RC101 4 4 461.1 461.1 157.8 157.8 (3, 8) (3, 8)
RC102 4 3 401.6 351.8 196.0 43.6 (2, 9) (8, 9)
RC103 3 3 333 332.8 65.4 29.2 (8, 9) (8, 9)
RC104 3 3 307.2 299.7 51.6 54.8 (8, 9) (8, 9)
RC105 4 4 412.5 411.3 212.3 227.3 (3, 8) (3, 8)
RC106 3 3 345.5 345.5 28.2 28.2 (8, 9) (8, 9)
RC107 3 3 298.3 298.3 38.2 38.2 (8, 9) (8, 9)
RC108 3 3 294.5 294.5 81.4 81.4 (8, 9) (8, 9)
RC201 3 3 360.2 360.2 188.0 188.0 (8, 9) (8, 9)
RC202 3 3 338.0 338.0 200.0 200.0 (8, 9) (8, 9)
RC203 3 3 326.9 326.9 240.8 240.8 (8, 9) (8, 9)
RC204 3 3 299.7 299.7 292.8 292.8 (8, 9) (8, 9)
RC205 3 3 338.0 338.0 334.8 334.8 (8, 9) (8, 9)
RC206 3 3 324 324 170.8 170.8 (8, 9) (8, 9)
RC207 3 3 298.3 298.3 276.0 276.0 (8, 9) (8, 9)
RC208 2 2 270.9 269.1 140.8 132.4 (8, 17) (8, 17)

To illustrate and analyze the solution obtained from the problem converted from
bi-objective to single objective using weighted parameters, boxplot graphs for the calcu-
lated total difference and total distance are presented in Figures 4 and 5. The objective
function wi_wj where i, j ∈ {0, 1, . . . , 10} represent the weighted sum of total finishing time
differences and total distance, i.e., w1 × ∑i,j∈N,i ̸=j CDij + w2 × ∑i,j∈N, i ̸=j,k∈K xk

ijdij where
w1 + w2 = 1. As shown by the boxplot of the objective function and total distance, the total
distance does not have any cases of outliers, and the minimum distances in each case are
comparable to each other. In contrast, we can see that there are outliers in each case of
the objective function for the total finishing time difference because the total difference is
hard to optimize. Moreover, for the objective function w0_w10, which minimizes only the
distance, the balance between finishing times and number of jobs per caretaker is extremely
wide, making it unsuitable for balancing the workload.
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Shown in Figures 6–8 are the selected plots to illustrate the differences in the 10 solu-
tions between the total finishing time difference and total distance for the selected objective
functions, for instance, R101, C102, and RC201. The circles represent solutions obtained
by our algorithm, and they are are darker when there is an overlap between the same
solutions. The star represents the optimal solution obtained from the Gurobi solver; in
this case, the calculated values for the total finishing time differences and total distance
for the solution are suffixed and separated by “_” from the name of objective function,
respectively. For example, “opt_w1_w_9_666.3_632.7” represents the optimal solution for
an objective function with a weight of 0.1 for the total distance, a weight of 0.9 for the
finishing time difference, a calculated total finishing time difference for the solution of 666.3
and a calculated total distance of 632.7. We can see in the figure that the algorithm can find
the Pareto front. Moreover, some objective functions are always above the Pareto front,
and in some cases, the algorithm obtains the optimal solution for the objective function.
Note that the total difference and total distance for objective functions between w1_w9 and
w8_w2 are almost identical in most cases of objective function.

We analyzed a total of 56 instances. As shown in Figure 7, the values for each objective
function are close to each other. For this reason, we have selected instance C102 to show
the relationship between total finishing time difference and total distance for each objective
function in Tables 4 and 5, respectively. Tables 4 and 5 show the calculated total finishing time
difference and total distance for each objective function solved by our algorithm, with each row
in the tables showing the trend when increasing the weight for total finishing time difference.
Table 4 shows that, in almost every instance, the highest value is obtained for the total finishing
time difference when the weight for the total distance is zero (w0_w10). Moreover, increasing
the weight of total finishing time difference does not result in a decreased value. Conversely,
when aiming to minimize the total distance, the distance decreases inversely in proportion to
an increase in weight. In general, the solution for a multi-objective problem is not unique; in
the end, it needs to be left to the administrator to decide the weights required to convert to
a single objective or choose between the Pareto solutions. We can specifically consider the
solutions on the Pareto front line to be the best solutions.
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Table 4. Total finishing time differences for each objective for instance C102.

w0_w10 w1_w9 w2_w8 w3_w7 w4_w6 w5_w5 w6_w4 w7_w3 w8_w2 w9_w1 w10_w0

819.8 108.4 108.4 72.6 65.0 29.6 121.8 36.5 78.7 63.6 30.9
819.8 74.0 75.0 72.6 64.5 30.7 64.0 26.8 79.8 89.2 89.0
505.6 11.4 42.6 53.6 64.5 130.8 87.7 130.8 29.4 89.2 129.2
819.8 108.4 205.2 65.0 100.8 33.3 29.4 86.5 89.2 87.7 130.4
505.6 108.4 108.4 39.4 202.2 21.8 24.3 64.8 59.2 130.8 81.9
819.8 108.4 108.4 64.5 46.6 42.3 37.2 23.4 23.4 130.8 26.7
517.6 42.3 74.0 64.5 46.6 22.7 90.7 28.9 131.6 129.2 56.8
819.8 74.0 46.6 65.0 64.5 130.8 29.4 258.4 69.2 64.8 20.3
272.2 49.6 75.0 67.7 128.8 87.7 46.6 129.2 130.8 35.9 91.3
819.8 89.2 47.4 46.6 68.2 13.2 87.7 87.7 130.8 88.2 129.2

Table 5. Total distance for each objective function for instance C102.

w0_w10 w1_w9 w2_w8 w3_w7 w4_w6 w5_w5 w6_w4 w7_w3 w8_w2 w9_w1 w10_w0

190.3 249.8 249.8 235.8 237.0 317.0 337.6 284.5 315.6 307.5 303.6
190.3 231.7 232.7 235.8 235.6 293.6 334.0 291.7 393.8 326.4 430.7
191.3 247.6 260.4 251.2 235.6 323.0 304.6 323.0 298.5 326.4 453.5
190.3 249.8 299.3 237.0 253.9 271.1 282.7 316.0 326.4 306.7 395.7
191.3 250.1 259.4 268.1 283.9 271.7 273.8 312.2 310.3 333.4 469
190.3 249.8 249.8 235.6 271.2 271.6 288.0 283.2 283.2 323.0 423.5
194.7 265.0 231.7 235.6 261.6 275.2 300.4 313.1 345.3 338.2 478.6
190.3 231.7 261.6 237.0 235.6 334.0 282.7 263.4 334.9 338.1 417.5
222.2 264.0 232.7 235.1 334.8 308.8 263.6 343.3 323 286.1 395.5
190.3 202.5 262.7 261.6 246.6 264.3 308.8 308.8 323 414.9 445.2

From Figure 5, it is evident that the total difference and total distance may not follow
a normal distribution. Moreover, it is hard to guarantee a normal distribution for other
benchmark instances when solving with the algorithm. To assess the similarity between
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objective functions, the most appropriate test to use is the Kruskal–Wallis test [37]. Under
this test, data cannot be assumed to come from any specific distribution. The primary
purpose of the test is to determine whether there exists a statistical difference between the
medians of distinct groups. In this case, we aim to determine whether the median values of
the total difference for each objective function and the total distance between each objective
function are statistically significant. Each Solomon’s instance is independently tested with
Kruskal test.

The null and alternative hypotheses are determined as follows:
H0: There is no significant difference in the total distance or total difference in the

objective functions with a 95% confidence interval.
Ha: There is a significant difference in the total distance or total difference in the

objective functions with a 95% confidence interval.
In this case, the p-value for the Kruskal test will accept the hypothesis when the p-value

is < 0.05. We separated the test according to the values of the calculated total distance and
total finishing time difference and tested the hypothesis grouping by the objective functions.
We tested two settings: testing between all objective values, i.e., w_0_w10, w_1_w9, . . .,
w9_w1 and w10_w0, named Setting1, and testing for partial group of objectives functions,
named Setting2. After trying several groups, we chose as the best setting {w0_w10, w1_w9,
w2_w8, w8_w2, w9_w1, w10_w0}. The first setting aims to test the similarity between all
objective functions while the second setting aims to cut off the objective functions that are
similar. The results shown in Table 6 are the p-values for each instance and each setting,
ignoring the row that has all zero values. We can see that there is no significant difference
in total distance and total finishing time difference in Setting1 for each instance (p-value
< 0.05). Moreover, most of the cases in Setting2 are significant except for two, RC103 and
RC106 (p-value > 0.05). The results suggest that solving only the objective functions in
Setting2 is enough for use as the Pareto set.

Table 6. The p-value for each instance of testing for total distance and total finishing time difference.

Instance
Total Distance Total Finishing Time Difference

Setting1 Setting2 Setting1 Setting2

R110 0.00 0.00 0.03 0.01
R112 0.00 0.00 0.01 0.00
R209 0.00 0.00 0.00 0.01

RC103 0.00 0.00 0.02 0.12
RC106 0.00 0.00 0.00 0.06

6. Conclusions

This paper investigates multi-objective vehicle routing and scheduling in home health-
care systems. Modeling for this problem is based on the vehicle routing problem with
time windows. The objectives are to minimize total finishing time difference and minimize
the total travel distance, combining typical objective functions for routing and services
scheduling problems. Home healthcare has been a crucial support system for the overall
health system as it reduces the burden on individual patients who would otherwise have
to travel to the hospital regularly to receive care. In real-life situations, minimizing costs
alone may not adequately answer the needs of a business, especially those in the healthcare
sector. The best way to allocate resources (costs and caretakers) is to consider both aspects
simultaneously. For this reason, we have tried to fill the gap in the literature by proposing
new objective functions.

We chose the weighted-sum approach to solve multiple-objective optimization prob-
lems; and given the NP-hard nature of these problems, an algorithm based on simulated
annealing (SA) has been constructed. The problem was converted into a single-objective
problem with different choices of weights (a total of 11 choices), then the SA was deployed
to solve the problem according to those weights and the results are combined together to ob-
tain the Pareto set. The initial solution was generated using the inserting procedure. Then,
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the improvement operators, swapping, moving, path-exchange, and ruin and recreate, are
applied to find the improved solution.

To assess the performance of our algorithm, we used it to solve the well-known
benchmark instances called Solomon’s instances. The results, when compared to the
optimal solutions, show that in most cases our algorithm is able to find the optimal solution
with the objective function to minimize total finishing time difference. Moreover, the
results of testing the median between the objective functions converted from the weighted
sum approach suggest that the Pareto set can be obtained by solving only a partial set of
objective functions.

In terms of future work, methods should be investigated to solve multiple objective
functions based on the idea of transforming the objectives into a single objective by adding
weights. Choosing the weight is an important decision to make as the objective values
may not be on the same scale. Moreover, to make the problem more realistic, additional
constraints may have to be considered, for instance, multiple depots (multiple-health
centers), simultaneous visits, and preferences for patients or caretakers. The model can be
extended by considering the combination of new objective functions such as finishing time,
total traveling time and total number of workloads, etc.
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