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Abstract: Effective pest management in urban areas is critically challenged by the rapid proliferation
of mosquito breeding sites. Traditional fumigation methods expose human operators to harmful
chemicals, posing significant health risks ranging from respiratory problems to long-term chronic
conditions. To address these issues, a novel fumigation robot equipped with sensor fusion technology
for optimal pest control in urban landscapes is proposed. The proposed robot utilizes light detection
and ranging data, depth camera inputs processed through the You Only Look Once version 8
(YOLOv8) algorithm for precise object recognition, and inertial measurement unit data. These
technologies allow the robot to accurately identify and localize mosquito breeding hotspots using
YOLOv8, achieving a precision of 0.81 and a mean average precision of 0.74. The integration of
these advanced sensor technologies allows for detailed and reliable mapping, enhancing the robot’s
navigation through complex urban terrains and ensuring precise targeting of fumigation efforts. In a
test case, the robot demonstrated a 62.5% increase in efficiency by significantly reducing chemical
usage through targeted hotspot fumigation. By automating the detection and treatment of breeding
sites, the proposed method boosts the efficiency and effectiveness of pest management operations and
significantly diminishes the health risks associated with chemical exposure for human workers. This
approach, featuring real-time object recognition and dynamic adaptation to environmental changes,
represents a substantial advancement in urban pest management, offering a safer and more effective
solution to a persistent public health issue.
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1. Introduction

Mosquito-borne illnesses are still a significant cause of death worldwide, threatening
public health [1]. These insects are carriers of viruses, transmitting illnesses such as
dengue, chikungunya, dirofilariasis, malaria, and Zika [2–4]. Due to global warming,
temperatures are rising, and heat spikes are occurring more often. Researchers have found
that mosquitoes adapting to heat spikes have become more pesticide-resistant [5]. The
National Environmental Agency (NEA) of Singapore has declared various types of open
and closed drains, discarded containers, clogged gutters, and roadside drainage grates as a
few of the mosquitoes’ most common breeding sites, as illustrated in Figure 1 [6–8]. As a
method of population control, fumigation is typically used alongside other methods, such
as mosquito traps and lab-grown mosquitoes, which mate with female mosquitoes and
make them infertile [9]. Active and passive traps [10] combat increasing populations of
mosquitoes. Active traps use gaseous chemicals such as carbon dioxide (CO2) and visual
attractants such as light, while passive traps use sticky surfaces to trap mosquitoes. Some
examples of traps that have been used and studied are the Biogents sentinel trap, which
uses CO2 [11], light traps [12], ovitraps, which serve as a place for mosquitos to deposit
eggs into larvicide, effectively killing the hatched eggs [13], and gravitraps, which function
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like ovitraps [14]. However, each of these traps has its limitations. The Biogents Sentinal
trap is much more effective when paired with another attractant, such as the BG Lure [15].
Light traps are inefficient when there are high mosquito densities [16]. Ovitraps are not as
efficient as other traps, such as the host-seeking female traps [17]. Lastly, gravitraps are not
as efficient as suction fan traps and have the limitation of trapping male mosquitoes [18].
Thus, fumigation has proven to be very effective in mosquito population control. Manual
fumigation by humans is a laborious task, and there is a chance that humans may overlook
specific breeding grounds. According to the NEA, hydrogen cyanide, methyl bromide,
and hydrogen phosphide are common fumigants [19]. Overexposure to fumigants can
impact the central nervous system [20,21]. Thus, robots can assist in automating mosquito
breeding ground detection and fumigation.
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Figure 1. Common mosquito breeding sites in urban landscapes. 

In previous works, researchers have demonstrated an Unmanned Aerial Vehicle 
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industry. Due to the height from which the fumigants are sprayed, there is a chance that 
the fumigants may not reach the intended mosquito breeding ground. Environmental 
factors, such as wind, may also blow the fumigants away before they reach the hotspot, 
deeming it ineffective [23,24]. Ground robots are safer as there is no risk of collisions with 
birds in the sky or the robot failing mid-air and falling to the ground. Furthermore, a land 
robot’s energy expenditure is better spent on locomotion. Researchers [25] employed deep 
learning models, specifically various YOLO-based architectures, to identify and target 
specific areas within tobacco fields for treatment. This approach optimizes the application 
of agrochemicals, reducing waste and environmental impact, and addresses challenges 
such as pressure fluctuations during spraying [25–28]. The study developed by [29] 
presents an electric sprayer with a crop perception system that calculates leaf density 
using a support vector machine (SVM). This system, tested with a dataset created for the 
community, achieved an accuracy between 80% and 85%, enhancing spraying accuracy 
and precision. This emphasizes the effectiveness of integrating machine learning for 
precise chemical applications. Researchers [30] enhanced a YOLOv5 model for precise 
plant detection, which significantly improved the accuracy and efficiency of a precision 
spraying robot. Integrating an attention mechanism and the C3-Ghost-bottleneck module 
boosted performance, increasing the mean average precision (mAP) by 3.2%. The work 
presented in [31] introduces a robotic weeding system that minimizes herbicide usage 
through precise application. It featured a stereo camera, an inertial measurement unit, and 
spray nozzles controlled by a binary linear programming-based algorithm for optimal 
coverage. A study [32] presented a deep learning-based detection model that 
distinguished weeds from cotton seedlings with high accuracy by using a convolutional 
block attention module (CBAM), a Bidirectional Feature Pyramid Network structure 
(BiFPN), and a bilinear interpolation algorithm. 
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In previous works, researchers have demonstrated an Unmanned Aerial Vehicle (UAV)-
based fumigation robot that identifies possible mosquito breeding grounds [22]. However,
it is not easy for UAVs to fumigate small areas on the ground as UAVs are better designed for
widespread area coverage during spraying, as used in the agriculture industry. Due to the
height from which the fumigants are sprayed, there is a chance that the fumigants may not
reach the intended mosquito breeding ground. Environmental factors, such as wind, may
also blow the fumigants away before they reach the hotspot, deeming it ineffective [23,24].
Ground robots are safer as there is no risk of collisions with birds in the sky or the robot
failing mid-air and falling to the ground. Furthermore, a land robot’s energy expenditure is
better spent on locomotion. Researchers [25] employed deep learning models, specifically
various YOLO-based architectures, to identify and target specific areas within tobacco fields
for treatment. This approach optimizes the application of agrochemicals, reducing waste
and environmental impact, and addresses challenges such as pressure fluctuations during
spraying [25–28]. The study developed by [29] presents an electric sprayer with a crop
perception system that calculates leaf density using a support vector machine (SVM). This
system, tested with a dataset created for the community, achieved an accuracy between 80%
and 85%, enhancing spraying accuracy and precision. This emphasizes the effectiveness of
integrating machine learning for precise chemical applications. Researchers [30] enhanced
a YOLOv5 model for precise plant detection, which significantly improved the accuracy
and efficiency of a precision spraying robot. Integrating an attention mechanism and the
C3-Ghost-bottleneck module boosted performance, increasing the mean average precision
(mAP) by 3.2%. The work presented in [31] introduces a robotic weeding system that
minimizes herbicide usage through precise application. It featured a stereo camera, an
inertial measurement unit, and spray nozzles controlled by a binary linear programming-
based algorithm for optimal coverage. A study [32] presented a deep learning-based
detection model that distinguished weeds from cotton seedlings with high accuracy by
using a convolutional block attention module (CBAM), a Bidirectional Feature Pyramid
Network structure (BiFPN), and a bilinear interpolation algorithm.

Existing systems, while advanced, primarily focus on agricultural settings with struc-
tured environments and often lack the capability to navigate the complex, dynamic, and
GPS-denied environments typical of urban landscapes. A comprehensive review of the ex-
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isting literature (Table 1) shows a notable deficit in real-time autonomous dynamic hotspot
mapping and fumigating robots. This absence underscores the novelty and importance of
the proposed contribution, which introduces an innovative system specifically tailored for
urban settings. The proposed fumigation robot aims to fill this gap by utilizing advanced
sensor fusion and AI-based detection algorithms [33], ensuring precise and effective pest
control in challenging urban terrains. Furthermore, integrating AI-based detection in preci-
sion fumigation enhances the robotic system’s ability to perform targeted actions effectively.
The system ensures that interventions are precise and efficient by leveraging advanced
AI algorithms for detection and identification. This approach is particularly beneficial in
densely populated urban areas where mosquito control must be meticulously managed
to maximize impact while minimizing chemical usage, highlighting the robot’s potential
to transform urban pest management practices. From the literature survey, the following
highlights are identified:

Table 1. Comparison table contrasting the existing methods with the proposed work.

Aspect Existing Methods Proposed Work

Technology Used

• Manual fumigation, breeding infertile
mosquitoes

• Biogents sentinel trap, light traps,
ovitraps, and gravitraps

• Sensor fusion (LiDAR, depth camera with
YOLOv8, IMU)

• 3D-LiDAR for mapping and navigation

Primary
Limitations

• Overexposure to chemicals affecting
health

• Inefficiency in high mosquito densities
• Limited field of view (2D-LiDAR)

• Requires sophisticated technology and
initial setup

Efficiency Varies significantly with manual fumigation
and trap effectiveness

High efficiency due to automated, precise
detection and fumigation of hotspots

Health Impact Potential health risks due to chemical exposure Reduced risk to human operators by
automating chemical fumigation

Environmental
Impact

Potential for chemical dispersal affecting
non-target areas

Focused application of chemicals, reducing
environmental footprint

Navigation and
Mapping

Limited in non-open areas like indoor
environments or dense urban settings

Advanced navigation using 3D-LiDAR and
LIO-SAM algorithm, improving accuracy in
complex environments

Hotspot
Identification

Relies heavily on manual inspection and
stationary traps

Automated real-time identification and
remapping, increasing responsiveness to
changing conditions

Operational
Strategy

Static with periodic manual
adjustments

Dynamic, with ongoing adjustments based on
real-time data collection

Cost Lower initial cost but higher due to labor and
repeated interventions

Higher initial investment but lower ongoing
costs due to automation

Adaptability Limited adaptability to new breeding grounds
without manual intervention

High adaptability with continuous learning
and updating capabilities

The main contributions of this paper are as follows:

1. The development of a precision fumigation robot for urban landscapes: This is an
original contribution, as no existing autonomous robots navigate urban environments
for precision fumigation applications. This novel development addresses the need for
precise, automated solutions in urban pest control.

2. The development of a LiDAR-Vision-IMU fusion algorithm: Inspired by existing
research [34,35], this contribution enhances traditional sensor fusion techniques to fit
an autonomous fumigation robot, improving its ability to identify and map mosquito
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hotspots in real time. This adaptation enables more effective data collection and
targeting of potential breeding hotspots.

2. Development of the Fumigation Robot

The fumigation robot shown in Figure 2 is designed to identify and fumigate mosquito
hotspots. The robot’s motion is based on differential drive, allowing it to maneuver easily
during fumigation. The robot uses 2D and 3D LiDARs and an inertial measurement unit
for autonomous navigation. The robot is also equipped with a spray gun and a chemical
tank. The spray gun’s top and bottom ends are connected to one end of the linear actuator.
The opposite end of the linear actuator is attached to the bottom end of the metal shaft.
The system is on top of a stepper motor to allow for the panning motion of the gun. The
linear actuator facilitates the tilt motion of the spray gun. The adjustable gun can rotate
360◦ and fumigate up to 4.5 m from the ground and 2.5 m to 6 m away from the robot. The
specifications of the major components are listed in Table 2.
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Table 2. Major components of the proposed precision fumigation robot.

Product Specifications

Oriental motors BLHM450KC-30
IMU Vectornav VN-100
Voltage regulator DDR-480C-24, DDR-240C-24
2D LiDAR SICK TiM581-2050101
3D LiDAR Hesai QT128
Depth camera Intel RealSense D435i
Industrial PC (IPC) Nuvo-10108GC-RTX3080
Battery 48 V, 25 Ah, Lithium Iron Phosphate
Fogging unit 10 L tank, 50-micron droplet size, and flow rate 330 mL/min

In this paper, mosquito breeding grounds are referred to as hotspots as these are
considered the “ground zero” for the growth of the mosquito population. The main aim
of the fumigation robot is to identify possible mosquito hotspots and fumigate them. For
the robot to work efficiently, daily remapping is necessary so that the robot can locate new
hotspots and fumigate them while being able to identify when a hotspot is no longer active
and halt fumigation for the area.
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2.1. Setting Up the Navigation Stack

In the proposed system, fumigation is performed autonomously around an area, and
those hotspots are mapped in real time in the robot’s map database. For autonomous
navigation, there are different levels of execution. The first step is the mapping of the
environment. Various sensors for mapping the environment are depth cameras, 3D Light
Detection and Ranging (LiDAR), and 2D-LiDAR. In this research, a 3D-LiDAR is used
instead of other sensors to map the environment. Three-dimensional-LiDAR is better for
mapping than the passive mapping method using depth cameras [36]. Moreover, depth
cameras are affected by illumination, and many details are lost depending on how well-lit
the environment is. Two-dimensional-LiDARs have a very limited field of view, as any
object below or above its scan area is undetected. Hence, considering all these points,
a 3D-LiDAR is used for this application. There are different mapping algorithms used
in most 3D-LiDAR integrated systems, namely Lidar Odometry and Mapping (LOAM),
Cartographer by Google, High-Definition LiDAR (HDL) graph simultaneous localization
and mapping (SLAM), and Lidar Inertial Odometry via Smoothing and Mapping (LIO-
SAM). Compared to the existing mapping algorithms, LOAM was the best until a few
years ago. It was even the top-ranked LiDAR-based method in the Karlsruhe Institute of
Technology and Toyota Technological Institute (KITTI) dataset benchmark site. However,
drifting in large-scale tests came with a significant drawback. Hence, LIO-SAM [37] is used
contrary to the LOAM in the proposed system. In the experimental results, the LIO-SAM
showed a translation error of 0.96 compared to LOAM, which had a translation error of
47.31%. Following the creation of the detailed map, navigation must be carried out. The
navigation history goes back to the Devish robot, designed to carry out navigation inside
office ecosystems [38]. These navigation stacks used finite state machine (FSM) for less
complex environments; hence, a behavior tree was used inside navigation stacks to make
decisions on complex tasks. For example, in [39], shooting tactics in soccer games were
decided using a decision tree, which would never have been possible with FSM. These
decision trees are used in navigation. The navigation stack by the robot operating system
(ROS) is the most widely used, and its successor is Navigation2. It was built for ROS2,
which uses Data Distribution Service (DDS) for communication. DDS is an industrial
communication protocol that offers secure data transmission between robots. Navigation2
stack has been released for different motions of robots, namely differential, holonomic,
legged, and Ackermann, for a wide spectrum of environments. In the proposed system, the
Navigation2 stack is used for navigation.

2.2. Training Hotspots Using YOLOv8

Any autonomous robot that navigates must perceive the environment and obtain
details to act accordingly. To serve this purpose, there are different detection algorithms,
such as Faster Region-based Convolutional Neural Network (Faster R-CNN) [40], Faster
R-CNN VGG-16 [41], faster deformable part model (Fastest DPM) [42], and YOLO [43].
In [43], experimental results on the visual object classes dataset showed that Fast-YOLO,
one of the successors of the well-performing model YOLO, was able to perform better
with an mAP score of 63.4% and 155 frames per second, which was, on average, two times
faster than other detection models. There have been many versions of YOLO, and for the
proposed system, the YOLOv8 algorithm was used, and it proved to be faster and lighter
than its predecessors. The detected objects using YOLOv8 are put inside the map to identify
the fumigation hotspots. The YOLOv8 is a cutting-edge object detection model known for
its exceptional speed and accuracy, making it ideal for real-time applications. Building on
the strengths of its predecessors, YOLOv8 introduces advanced features, such as anchor-
free detection, which simplifies the model and enhances its generalization capabilities. It
leverages the latest advancements in deep learning architectures, including Cross-Stage
Partial (CSP) connections and Path Aggregation Network (PAN), for superior feature
extraction and aggregation.
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The architecture of YOLOv8, as shown in Figure 3, is designed for efficient and pre-
cise object detection, comprising a backbone, neck, and head. The backbone incorporates
EfficientRep blocks inspired by MobileNet and EfficientNet, utilizing depthwise separa-
ble convolutions and squeeze-and-excitation modules to optimize performance. It also
includes Reparameterized VGG block (RepVGG) blocks, simplifying complex structures
for improved inference efficiency. The neck features convolutional blocks enhanced with
activation functions like leaky rectified linear unit, which introduce non-linearity and
assist in primary feature extraction. RepBlocks, configured differently for training and
inference, facilitate better learning while reducing computational load. The upsampling
layers increase the spatial dimensions of the feature maps, which is crucial for detecting
smaller objects.
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Figure 3. YOLOv8 architecture for detecting hotspots.

The head of YOLOv8 features an Efficient Decoupled Head, which separates classifica-
tion and localization tasks into distinct branches, leading to more accurate detections. This
architecture ensures that the model identifies and classifies objects, making it a powerful
tool for real-time detection applications. A database keeps track of the fumigation locations.
The robot uses this information to generate a prioritized sequence order to navigate from
one point to another and fumigate in the shortest time. All the operations on the robot side
that perform navigation and fumigation are controlled using ROS. As the robot is deployed
in semi-outdoor and outdoor scenarios, SLAM algorithms like High-Definition LiDAR
(HDL) graph slam map the environment and later localized using HDL localization for
precise accuracy.

3. Mapping and Hotspot Identification
3.1. Autonomous Exploration of the Robot

The fumigation robot developed aims to find mosquito hotspots. In the proposed
approach, the robot explores the environment, identifies the hotspots, and saves the position
of those hotspots. Before identifying hotspots, a map of the environment is needed for the
robot to navigate through it. The proposed system opted for an occupancy grid-based 2D
map. Different occupancy grid mapping techniques exist, such as hector slams, gmapping,
and cartography. The map produced consists of cells. Each cell has cost values associated
with it, signifying the presence and absence of the object. If the object is present, then a
high-cost value is given to the cell. Usually, black spots are considered obstacles, and grey
areas are considered accessible areas, as shown in Figure 4. The occupancy grid map was
made using a SICK TIM351 LiDAR. The ROS package used for this was gmapping. This
package takes in laser-scan data from the sick_tim package and converts the data into an
occupancy grid map. The map of the environment generated from the 2D and 3D LiDARs
is illustrated in Figure 4.
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Figure 4. Comparative maps of the test environment using 2D and 3D LiDAR scans. The 2D scan
provides a flat, top–down view, while the 3D scan offers a detailed, multi-dimensional representation,
capturing height and depth for enhanced spatial awareness and navigation.

3.2. Hotspot Identification Training

The main objective of the robot is to find the hotspot using an object detection model.
Detection models like Faster R-CNN, ResNet, RetinaNetV2, and YOLO series detection
models exist. YOLO has been used for research, specifically YOLOv8, because the YOLO
series of object detection models perform well for videos, and YOLOv8 being computation-
ally light makes it the first choice for our purpose. A comparative analysis of YOLOv8 was
carried out with YOLOv2, YOLOv3, YOLOv4, and YOLOv5 versions in [44]. According
to [45], YOLOv8 is the same as YOLOv5, with some minor differences between them:

• The C3 module is replaced with the C2f module,
• YOLOv5 does not have convolution layers 10 and 14,
• The bottleneck layer was tampered, where 1 × 1 layer was replaced with 3 × 3

convolution layers and the decoupled head was used instead of the objectness step [44].

YOLOv8 introduces several improvements over YOLOv5, enhancing its effectiveness
in object-detection tasks. Replacing the C3 module with the C2f module enhances feature-
processing capabilities, which increases accuracy. Removing specific convolution layers
leads to a more streamlined architecture, reducing computational demands. Changes in
the bottleneck layer, such as replacing 1 × 1 with 3 × 3 convolution layers, allow for
better feature capture. Additionally, using a decoupled head instead of the objectness
step improves the precision of both localization and classification tasks, making YOLOv8
a robust option for real-time applications. Table 3 illustrates the details of the IPC used
for training. YOLOv8 performed comparatively better with a lesser number of datasets
and computational requirements. Compared to its previous counterparts, this model is
different. YOLOv8 is an anchor-free model, accounting for lower bonding box predictions
that result in faster Non-Maximum Suppression. YOLOv8 was trained on different hotspots,
namely dustbins, coolers, drains, plants, pots, buckets, and toilets [46]. In total, 5000 images
were annotated to create a diverse dataset. Image-level data augmentation, such as sheer,
rotation, cut-out, and noise, was carried out before training, with the training and validation
images split in an 80:20 ratio.
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Table 3. Detailed specifications of the IPC used for training the hotspot dataset.

Component Detailed Specification

CPU Intel i7 12th-Gen Core 65 W LGA1700 CPU
RAM 64 GB DDR5 4800 MHz
Graphics NVIDIA RTX 4080 16 GB
SSD NVMe SSD 2 TB Gen4 M.2 2280
Temperature Rugged, −25 ◦C to 60 ◦C operation

DC Input
3-pin + 4-pin pluggable terminal block for 8 V to 48 V DC
input with ignition control, Humidity: 10~90%,
non-condensing

Vibration and Shock absorption MIL-STD-810H, Method 514.8, Category 4 (with
damping bracket)

3.3. Dynamic Map Update

The generated map has a lot of obstacles, and robots must avoid them during the
exploration. While doing so, the robot looks for hotspots for fumigation. In addition
to saving the hotspot location, it is displayed as a marker inside the map in real time.
Transformation plays a major role in updating the map. It is a concept through which
points in one frame can be converted with respect to another frame. Here, all the objects
detected are published with respect to the camera frame. However, to put those objects
inside the map, it must be published with respect to the map frame.

The system has two nodes running in parallel; one node called Detection.py, with
its pseudocode presented in Algorithm 1, is responsible for detecting the objects and
converting the location obtained into the map frame, then another node called Marker.py
converts the object’s location into a visualization marker. The Detection.py node, apart
from localizing objects, also scores the object; thus, during multiple instances, if the same
object is detected, the object’s location is provided with a score signifying the importance
of the hotspot. The overall workings of the proposed system are shown in Figures 5 and 6.

Algorithm 1: Detection.py

Initialize parameters and variables
Define read_csv function
Define write_csv function
Main program execution:

Start RealSense pipeline
Initialize ROS node and publishers
Initialize variables for pose tracking and detection
Start main loop:

Obtain color and depth frames
Detect objects in color frame using YOLO
Iterate over detected results:

Extract bounding box coordinates
Calculate object center
Estimate object depth
Transform object pose to map frame
Read existing data from CSV
Compare current pose with existing entries:

If match found:
Update score for object

If no match found:
Append new entry with object’s pose and

prev_score
Write updated data back to CSV
Visualize detected objects and scores on color image

Display color image with annotations
Wait for user input to exit program
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Figure 6. Flowchart illustrating the process of hotspot identification and dynamic updating over
time. The system initializes, captures image data, detects and localizes hotspots, and updates the
map by comparing new and previous locations, ensuring accurate and current hotspot mapping for
targeted interventions.

Figures 7 and 8 outline the process where the fumigation robot updates hotspot
markers in real time by detecting potential mosquito breeding hotspots and recording
their positions. Initially, the robot opens the test location map and initializes its sensors,
including a 2D LiDAR, 3D LiDAR, and depth camera. These sensors scan the environment
to identify potential hotspots and help avoid obstacles that are hard to detect [47]. The
identified hotspots are then marked on the map. The robot employs the YOLOv8 algorithm
to detect specific objects within these hotspots, extracting their x and y coordinates. LiDAR
data are used to determine the z coordinate, creating a complete 3D localization of the
detected objects. This information is used to update the map with the precise locations
of the hotspots. The markers for these hotspots are then overlaid on the real-time map,
with a weight assigned to each x, y, and z position to indicate whether it is a temporary
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or permanent hotspot. This system allows for dynamic 3D visualization and recording of
hotspot areas, enhancing the robot’s ability to target fumigation efforts effectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

their positions. Initially, the robot opens the test location map and initializes its sensors, 
including a 2D LiDAR, 3D LiDAR, and depth camera. These sensors scan the environment 
to identify potential hotspots and help avoid obstacles that are hard to detect [47]. The 
identified hotspots are then marked on the map. The robot employs the YOLOv8 
algorithm to detect specific objects within these hotspots, extracting their x and y 
coordinates. LiDAR data are used to determine the z coordinate, creating a complete 3D 
localization of the detected objects. This information is used to update the map with the 
precise locations of the hotspots. The markers for these hotspots are then overlaid on the 
real-time map, with a weight assigned to each x, y, and z position to indicate whether it is 
a temporary or permanent hotspot. This system allows for dynamic 3D visualization and 
recording of hotspot areas, enhancing the robot’s ability to target fumigation efforts 
effectively. 

Open the map of the test 
location, initialize the 3D 
LiDAR, 2D LiDAR and 
Depth camera

Identify potential 
hotspots

Using the YOLOv8 
algorithm, identify the 
trained object and extract 
x, and y coordinate of the 
detected object

Use LiDAR 
data to identify 
z coordinate 
and fuse the 
datapoints

Overlay marker on 
the real-time map 
using the marker 

data points
 

Figure 7. The process flow of updating hotspot markers on the real-time map. 

Depth frameLiDAR frameCamera frame 
(From robot)

Object detection algorithm

Fusion of Camera, LiDAR and Depth frame

 
Figure 8. Fusion of YOLOv8, LiDAR frame, and depth camera frame for precision identification and 
localization of fumigation hotspot. 

4. Results and Discussion 
4.1. Performance Metric Analysis 

The YOLOv8 detection model is trained for five hotspots: dustbin, cooler, drain, toilet, 
and pot. The performance analysis of the detection model was carried out using the most 
trusted parameters, such as F1 score, mAP, recall, and precision. A high F1 score means the 
detection model balances recall and precision well; mAP provides a comprehensive 
performance analysis across various classes and localization accuracies. Recall is the 
measure of detecting objects even at the risk of false positives, and precision focuses on the 
model’s objective to avoid false positives. Each of the parameters is calculated based on 

Figure 7. The process flow of updating hotspot markers on the real-time map.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

their positions. Initially, the robot opens the test location map and initializes its sensors, 
including a 2D LiDAR, 3D LiDAR, and depth camera. These sensors scan the environment 
to identify potential hotspots and help avoid obstacles that are hard to detect [47]. The 
identified hotspots are then marked on the map. The robot employs the YOLOv8 
algorithm to detect specific objects within these hotspots, extracting their x and y 
coordinates. LiDAR data are used to determine the z coordinate, creating a complete 3D 
localization of the detected objects. This information is used to update the map with the 
precise locations of the hotspots. The markers for these hotspots are then overlaid on the 
real-time map, with a weight assigned to each x, y, and z position to indicate whether it is 
a temporary or permanent hotspot. This system allows for dynamic 3D visualization and 
recording of hotspot areas, enhancing the robot’s ability to target fumigation efforts 
effectively. 

Open the map of the test 
location, initialize the 3D 
LiDAR, 2D LiDAR and 
Depth camera

Identify potential 
hotspots

Using the YOLOv8 
algorithm, identify the 
trained object and extract 
x, and y coordinate of the 
detected object

Use LiDAR 
data to identify 
z coordinate 
and fuse the 
datapoints

Overlay marker on 
the real-time map 
using the marker 

data points
 

Figure 7. The process flow of updating hotspot markers on the real-time map. 

Depth frameLiDAR frameCamera frame 
(From robot)

Object detection algorithm

Fusion of Camera, LiDAR and Depth frame

 
Figure 8. Fusion of YOLOv8, LiDAR frame, and depth camera frame for precision identification and 
localization of fumigation hotspot. 

4. Results and Discussion 
4.1. Performance Metric Analysis 

The YOLOv8 detection model is trained for five hotspots: dustbin, cooler, drain, toilet, 
and pot. The performance analysis of the detection model was carried out using the most 
trusted parameters, such as F1 score, mAP, recall, and precision. A high F1 score means the 
detection model balances recall and precision well; mAP provides a comprehensive 
performance analysis across various classes and localization accuracies. Recall is the 
measure of detecting objects even at the risk of false positives, and precision focuses on the 
model’s objective to avoid false positives. Each of the parameters is calculated based on 

Figure 8. Fusion of YOLOv8, LiDAR frame, and depth camera frame for precision identification and
localization of fumigation hotspot.

4. Results and Discussion
4.1. Performance Metric Analysis

The YOLOv8 detection model is trained for five hotspots: dustbin, cooler, drain, toilet,
and pot. The performance analysis of the detection model was carried out using the most
trusted parameters, such as F1 score, mAP, recall, and precision. A high F1 score means
the detection model balances recall and precision well; mAP provides a comprehensive
performance analysis across various classes and localization accuracies. Recall is the mea-
sure of detecting objects even at the risk of false positives, and precision focuses on the
model’s objective to avoid false positives. Each of the parameters is calculated based on
false positives (fp), false negatives (fn), true negatives (tn), and true positives (tp). The
formulae for each parameter are given below.

Precision (P) =
tp

tp + fp
(1)

Recall (R) =
tp

tp + fn
(2)

Fmeasure(F1) =
2 × precision × recall

precision + recall
(3)
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mAP =
1
n ∑n

i=1 APi (4)

It can be seen in Table 4 that the model trained has a high precision value of 0.81,
which means there are fewer chances of false positives. Since the proposed work is not
strict in identifying the nature of the hotspot, a slightly low recall value is good enough,
which is evident from the F1 score. The detection for this current research was conducted
on dustbins and pots. Though the dustbin has a mAP value lower than that of other classes,
it gave us a fair performance during our experiment.

Table 4. Performance metrics of the YOLOv8 detection model used in the proposed precision
fumigation robot.

Type Precision Recall F1 Score mAP@0.5 (%)

All 0.81 0.69 0.74 0.74
Cooler 0.82 0.84 0.83 0.93
Drain 0.95 0.91 0.93 0.94
Toilet 0.87 0.88 0.88 0.94

Dustbin 0.75 0.51 0.61 0.62
Pot 0.99 1 0.99 0.99

A performance comparison test was performed to check the effectiveness of the
proposed model compared to other detection models. The proposed system is more
particular about the model’s input as video; thus, the other models are eliminated, and
a performance evaluation test is performed among the YOLO series of models. Each of
these models was trained with the same number of datasets. Figure 9 shows the overall
result of the trained model. Figure 10 shows the confusion matrix and detection results
from the YOLOv8.
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Figure 9. Training and validation metrics for YOLOv8, showing the progression of losses (box,
classification, and objectness) and performance metrics (precision, recall, mAP@0.5, and mAP@0.5:0.95)
over 100 epochs. The graphs illustrate the model’s improvement in accuracy and reduction in errors
as training progresses, with consistent convergence observed in both training and validation phases.
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Figure 10. (a) Confusion matrix for YOLOv8 on the given dataset, illustrating the model’s perfor-
mance across different classes such as cooler, drain, toilet, dustbin, and pot. (b) Object detection results
using YOLOv8, identifying trees and drains in various urban environments. The model successfully
detects and labels these objects across different lighting conditions and angles, demonstrating its
robustness and accuracy in real-world scenarios.

YOLOv8 achieves a Precision of 0.81, a Recall of 0.71, F1 score of 0.75, and a mAP of 0.74,
outperforming the other models across all metrics. Specifically, compared to Faster RCNN
(P: 0.564, R: 0.61, F1: 0.58, mAP: 0.57), YOLOv8 shows a 43.7% improvement in Precision, a
15% increase in Recall, a 27.3% boost in F1 score, and a 29.8% enhancement in mAP. When
compared to YOLOv5 (P: 0.73, R: 0.60, F1: 0.65, mAP: 0.69), YOLOv8 demonstrates an 11%
improvement in Precision, an 18.3% increase in Recall, a 15.4% boost in F1 score, and a 7.2%
enhancement in mAP. Similarly, compared to YOLOv7 (P: 0.70, R: 0.58, F1: 0.63, mAP: 0.61),
YOLOv8 shows a 15.7% improvement in Precision, a 22.4% increase in Recall, a 19% boost in
F1 score, and a 21.3% enhancement in mAP. These quantitative improvements indicate that
YOLOv8 is more reliable, offering higher precision and recall rates, translating to fewer
fp and fn. The efficiency gains in terms of F1 score and mAP also suggest that YOLOv8
provides a more balanced and accurate detection.

It can be inferred from Table 5 that the selected YOLO model has good precision
compared to other models, which means it is the best at avoiding fp. The mAP score (0.74)
for YOLOv8 is better than that of the other models, which means it is better at localizing
objects. Considering the above points, YOLOv8 was chosen as the object detection model.

Table 5. Performance comparison with different YOLO versions and faster RCNN detection models
for the dataset used in training the mosquito hotspots.

Model Precision
(P)

Recall
(R) F1 Score (F1) mAP@0.5 (%)

Faster RCNN 0.56 0.61 0.58 0.57
YOLOv5 0.73 0.60 0.65 0.69
YOLOv7 0.70 0.58 0.63 0.61

YOLOv8 (current model) 0.81 0.71 0.75 0.74

4.2. Test Site Description

The site chosen for the experiment is a pathway in Level 6 of Building 2 at the Singapore
University of Technology and Design. The pathway is well-lit with natural light. A small
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portion of the building was taken for experimentation, as shown in Figure 11. The objects
identified along the pathway were dustbins and pots.
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Figure 11. (a) Two-dimensional map of the test site and (b) the placement of trained objects for the
robot to detect potential hotspots.

4.3. Hotspots Identification and Plotting on the Map

The potential breeding grounds for mosquitoes were identified during the robot’s
exploration phase. As depicted in Figure 12, the robot navigates through the environment,
utilizing its sensors to detect and mark hotspots on the map. During its traversal, the robot
leverages its integrated LiDAR, depth camera, and YOLOv8 algorithm to precisely identify
locations that are likely to serve as breeding grounds for mosquitoes. In this particular
scenario, the chosen hotspots include plants and dustbins.
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Figure 12. Sequential updates of the hotspot map during the robot’s exploration. In panel (A), no
hotspots are detected. Panel (B) shows the detection and mapping of “Plant-1”, marked on the
map and visually confirmed in the environment. Panel (C) adds “Plant-2” to the map, illustrating
the robot’s ability to identify and log new hotspots continuously. Finally, panel (D) shows the
detection of a “Dustbin”, further updating the map. Each detected hotspot is localized in the mapped
environment and the corresponding real-world image, demonstrating the system’s effectiveness in
real-time hotspot identification and mapping.

A comparative analysis (Table 6) of chemical usage in two fumigation scenarios using a
precision fumigation robot was conducted, as illustrated in Figure 13. The robot, equipped
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with a 10 L capacity spray gun discharging at 330 mL per minute, was tested over a
10 m × 2 m area divided into 1 m2 unit cells. The first scenario involved continuous
fumigation of the entire area, with the robot moving at a speed of 0.5 m/s. The total
time required to fumigate the 20 m2 was 40 s, resulting in a chemical usage of 220 mL. In
the second scenario, the robot discreetly fumigated identified hotspots within the same
area. Three hotspots were identified, with each being sprayed for 5 s. The total time
spent fumigating these hotspots was 15 s, leading to a chemical usage of 82.5 mL. The
comparison demonstrates that precision hotspot fumigation significantly reduces chemical
usage, achieving a savings of approximately 62.5% compared to continuous fumigation.
This efficiency is due to the targeted application of the fumigant, conserving resources, and
minimizing environmental impact.

Table 6. Comparative analysis of continuous fumigation versus precision fumigation using a precision
fumigation robot. The table highlights key differences in area coverage, fumigation time, chemical
usage, environmental impact, and overall efficiency.

Aspect Continuous Fumigation Precision Fumigation

Area Covered Entire area (20 m2) Identified hotspots (3 hotspots)
Robot Speed 0.5 m/s 0.5 m/s
Fumigation Time per m2 2 s 5 s per hotspot
Total Fumigation Time 40 s 15 s
Chemical Usage Rate 330 mL/min 330 mL/min
Total Chemical Used 220 ml 82.5 ml
Chemical Savings N/A 62.5% (137.5 mL less than continuous)
Environmental Impact Higher due to full area coverage Lower due to targeted application
Efficiency Lower, as it treats the entire area Higher, with focused treatment of hotspots
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Figure 13. Comparison between continuous fumigation (left) and precision fumigation (right)
using a precision fumigation robot. The continuous fumigation approach covers the entire area
indiscriminately, whereas the precision fumigation approach targets specific hotspots identified
within the area, such as potted plants and dustbins. The blue path indicates the robot’s movement,
while the red-shaded areas represent the regions being fumigated.

4.4. Comparison of Existing Robots with the Proposed Robot

A comparison between the fumigation operation of existing precision spray robots
and the proposed precision fumigation robot is illustrated in Table 7. Most precision
fumigation robots developed [29–32] so far are tailored for agricultural settings, focusing
on optimizing pesticide application in controlled crop environments. These systems, such
as those utilizing YOLOv5 and other AI techniques, excel in targeted spraying but lack the
adaptability for complex urban landscapes. They are not designed to navigate dynamic
urban environments, where the challenges of real-time mapping, precise hotspot detection,
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and autonomous navigation are significantly different. The proposed fumigation robot
addresses this gap by integrating advanced sensor fusion and YOLOv8 for dynamic hotspot
localization, designed explicitly for urban pest control. It offers precise real-time mapping,
sophisticated spatial analysis, and adaptability to the complexities of urban navigation,
making it a crucial innovation for effective mosquito management in urban settings.

Table 7. Comparison between the fumigation operation of existing precision spray robots and
proposed precision fumigation robot.

Aspect Ref. [29] Ref. [30] Ref. [31] Ref. [32] Proposed Robot

Robot
developed
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4.5. Challenges, Possible Solutions, and Future Research Directions 
Many challenges were faced during the development of the robot and the detection 

algorithm. Some of these challenges can be taken up as future research directions. A few 
of the challenges and their potential solutions are as follows: 
• Navigation in complex environments: The differential drive robot is built for 

navigating in urban environments, where the surface is even and spacious for robot 
movements. Tracked platforms are effective in handling multiple terrains. However, 
these platforms consume more energy because they are heavy and bulky, requiring 
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4.5. Challenges, Possible Solutions, and Future Research Directions

Many challenges were faced during the development of the robot and the detection
algorithm. Some of these challenges can be taken up as future research directions. A few of
the challenges and their potential solutions are as follows:

• Navigation in complex environments: The differential drive robot is built for nav-
igating in urban environments, where the surface is even and spacious for robot
movements. Tracked platforms are effective in handling multiple terrains. However,
these platforms consume more energy because they are heavy and bulky, requiring
frequent recharging. A modular robot is another future research direction that enables
it to change its locomotion system according to the environment.

• Battery life is a major limitation restricting the robot’s operational time, necessitating
frequent recharging. One possible solution is to have frequent, preferably wireless
charging stations that allow full autonomy.

• Renewable energy sources for charging robots: Researching the use of renewable
energy sources, such as solar power, to extend the operational time of robots and
reduce their environmental impact, designing more energy-efficient robots to improve
their operational longevity and reduce the need for frequent recharging.

• Varied environments: Different environments may require different fumigation strate-
gies, such as discrete fumigating motion, continuous fumigation motion, and 360◦
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fumigating motion. Using advanced machine learning techniques and identifying the
environment, a decision can be made to opt for the required strategy.

• Navigating multiple floors in a building: The proposed challenge can be solved by
integrating the robot’s control with the building’s management system, such as access
to calling lifts and doors. However, this requires planning from the initial stage to
make the building’s infrastructure robot-friendly.

4.6. Limitations

The limitations of the proposed work with the integration of YOLOv8 in the precision
fumigation robot are as follows:

• The trained model may underperform in scenarios significantly different from its
training environment, restricting its effectiveness in unfamiliar urban landscapes.

• YOLOv8 needs robust computational resources, which could limit the deployment of
the robot in settings with limited processing capabilities.

• Optimizing for real-time performance compromises the detection accuracy, which is
critical for precise localization of mosquito breeding sites.

• The model’s effectiveness decreases with smaller objects, which could be crucial in
identifying less conspicuous breeding grounds.

• Vibrations during locomotion affect detection accuracy, leading to blurred images
being sent for object recognition.

5. Conclusions

The development of a fumigation robot utilizing LiDAR data, depth camera data with
YOLOv8 for object recognition, and IMU data represents a significant advancement in tar-
geting mosquito breeding hotspots. Fusing these sensor inputs enables precise localization
and comprehensive data collection, ensuring that potential breeding sites are accurately
identified and treated. This technology enhances the efficiency of fumigation efforts and
significantly reduces human exposure to harmful chemicals, thereby improving safety and
operational outcomes. Integrating advanced sensors and algorithms within this robotic
system marks a critical step forward in urban pest management, offering a robust solution
to a pervasive public health challenge. Further research and development can optimize
these systems, making them more adaptable to diverse environments and improving their
efficacy in real-world applications.
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