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Abstract: The rock–lining interaction significantly affects the stability and safety of a tunnel in service.
In this study, a mechanical model is proposed to explore the rock–lining interaction under hydrostatic
pressure. The model takes into account the alterable mechanical property (such as the elastic modulus)
of the lining in the rheological rock mass, which may be subjected to inner surface pressure along
the radial direction of the highway tunnel. The alterable elastic modulus is assumed as a power
function of the radius. The analytical solutions of this model are first verified by comparison with
existing solutions and corresponding results are obtained by numerical simulation. Then, systematic
parametric investigations are carried out to analyze the influence of the main model parameters on
the radial deformation of the rock–lining interface and the normalized supporting pressure provided
by the lining. The research conclusions obtained by this study can offer some valuable references for
the safety evaluation of a tunnel in service.

Keywords: tunnel engineering; lining structure; Burgers model; rheological behavior

1. Introduction

Tunnel engineering is one of the primary infrastructure projects in the road, railway,
rail traffic, mining engineering, and military sectors [1–5]. Tunnel construction inevitably
affects the stress state of the surrounding rock. Tunnel lining, one of the major support
structures of a tunnel project, plays a crucial role in the tunnel’s whole life [6–8]. The stability
and safety of a tunnel in service are jointly controlled by the conditions of surrounding
rock and lining. Therefore, research on rock–lining interaction is of great significance for
evaluating the tunnel’s safety throughout its lifespan.

The changes in a tunnel wall’s deformation over time are closely linked to the time-
dependent characteristics of the surrounding rock caused by tunnel excavation [9–11]. The
time-dependent characteristics of the rock, also named its rheological behavior, have been
thoroughly investigated by a series of rheological experiments on soft rock. The results
showed that 30–70% of the total deformation is caused by the rheological behavior of the
rock [12–14]. Additionally, due to the rheological behavior of the rock mass, the deformation
of the surrounding rock and the pressure acting on the lining increase with service time, as
observed in many actual projects such as the Ureshino tunnel [15] in Japan, the Lyon–Torino
Base tunnel [16] in Italy and France, the Shibli tunnel [17] in Iran, Baijiao coal mine [3], the
Minxian tunnel [18], and the Muzhailing tunnel [19] in China. Researchers have studied the
rock–lining interaction and considered the surrounding rock’s rheological behavior using
various methods, such as field monitoring [20,21], model experiments [22,23], numerical
simulations [24,25], and theoretical analyses [26,27].

Tunnel excavation is a three-dimensional problem, especially around the tunnel cut-
ting face. To simplify this problem in the theoretical analysis, the concept of fictitious
support pressure has been proposed by many researchers [28–30]. After the fictitious
support pressure is imposed on the tunnel wall, the three-dimensional problem of the
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tunnel face can be transformed into a two-dimensional one [31,32], allowing for easier
analytical solutions. These solutions take into account the mechanical responses of the
rock–lining interface during excavation and consider different rheological models. For
example, Chu et al. [10] presented analytical models to investigate the mechanical behavior
of the rock–lining interface during tunnel excavation, taking into account both the tunnel
face effect and the rheological behavior of the rock mass. Kargar [33] deduced a viscous
elastic–plastic solution to explore the stress-displacement distribution around unlined and
lined tunnels, considering the tunnel face effect. However, there are limited studies on how
the lining affects the rock–lining interaction after installation when subjected to radially
inner surface pressure.

In tunnel projects, such as water and high-speed railway tunnels, the lining is subjected
to inner surface pressures in the radial direction after tunnel construction. Based on the
complex variable method, closed-form solutions have been proposed to explore the stress-
displacement field around a circular tunnel whose lining is under hydrostatic pressure and
thus under a radially inner surface pressure. However, the rheological behavior of the rock
mass is not considered in these solutions [34–36].

When analyzing the rock–lining interaction, the lining is typically assumed to consist
of a homogeneous and isotropic material. This assumption, which is incompatible with the
actual conditions, certainly affects the analytical results of the rock–lining interaction.

To address this gap and analyze the mechanical responses of the rock–lining interface
under hydrostatic pressure, a mechanical model is proposed in this paper that takes into
account both the change of the mechanical property (such as the elastic modulus) of the
lining subjected to inner surface pressure along the radial direction, and the rheological
behavior of the rock mass. The highlight of this paper is that the mechanical property
of the lining is a function of the radial coordinate instead of being constant. Firstly, the
proposed mechanical model is verified by comparing it with an existing analytical one,
as well as comparing its analytical solutions with the results of a numerical simulation.
Then, systematic parametric analyses are conducted to study the influence of the model
parameters on the radial deformation of the rock–lining interface and the normalized
supporting pressure provided by the lining.

2. Problem Statement

This study aims to study the interaction between the surrounding rock and the lining
subjected to inner surface pressure in the radial direction under hydrostatic pressure. The
plan sketch of the calculation model is shown in Figure 1. The assumptions of this study
are the following:

(1) The horizontal and vertical pressure are equal.
(2) The rock mass is a homogeneous, isotropic, and viscoelastic material [10].
(3) The excavation radius of the circular tunnel is R2.
(4) The lining is an inhomogeneous, isotropic, and elastic material.
(5) The inner and outer radii of the lining are R1 and R2, respectively.
(6) The thickness of the lining is d.
(7) The mechanical property (such as elastic modulus) of the lining varies only along the

radial direction as a power function.
(8) The inner surface of the lining is subjected to the pressure q(t) in the radial direction.
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Figure 2. The Burgers model and its transformations. 

Figure 1. Plan sketch of the calculation model.

The Burgers model [37] is selected to describe the rheological behavior of the rock mass
in this paper. The Burgers model is a comprehensive model that includes both the Maxwell
and Kelvin models in series, as shown in Figure 2. Gm and ηm are the shear modulus
and viscosity of the Maxwell model, respectively; Gk and ηk are the shear modulus and
viscosity of the Kelvin model, respectively; and tm and tk are the relaxation and retardation
times of the Maxwell and Kelvin models, respectively. When the dashpot element of the
Maxwell model is ignored (ηm → +∞), the Burgers model is transformed to the Kelvin–
Voigt model. When both spring and dashpot elements of the Maxwell model are ignored
(Gm/ηm → +∞), the Burgers model is transformed to the Kelvin model. When both spring
and dashpot elements of the Kelvin model are ignored (Gk/ηk → +∞), the Burgers model
is transformed to the Maxwell model. The behaviors of the initial instantaneous strain,
subsequent transient creep, and final steady creep of the Burgers model are controlled
by the spring and dashpot elements of the Maxwell model, and the spring and dashpot
elements of the Kelvin model [38].
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The volumetric deformation of the rock is only elastic dilation under hydrostatic stress,
and its rheological behavior is mainly affected by the deviatoric stress. Therefore, the stress
and strain of the rock can be decomposed as follows: σR

ij = δij
σR

kk
3 + sR

ij

εR
ij = δij

εR
kk
3 + eR

ij

(1)

where σR
ij and εR

ij are the stress and strain tensors of the rock, respectively; sR
ij and eR

ij

are the deviatoric stress and strain tensors of the rock, respectively; σR
kk and εR

kk are the
volumetric stress and strain of the rock, respectively; and δij is the Kronecker delta.

The constitutive equation of the integral form of the Burgers model can be expressed
as follows: 

eR
ij = J(t) ∗ dδR

ij

J(t) =
[

1
2Gm

+ t
2ηm

+ 1
2Gk

(1 − e−t/tk)
]

εR
ii = σR

ii /3KR

(2)

where J(t) is the creep compliance of the Burgers model; the asterisk ‘*’ denotes the convo-
lution algorithm; and KR is the bulk modulus of the rock. An example of the convolution
algorithm [39] is given as follows:

g1(t) ∗ dg2(t) = g1(t)g2(0) +
∫ t

0
g1(t − ξ)

∂g2(ξ)

∂ξ
dξ (3)

The elastic modulus and Poisson’s ratio are commonly used in the mechanical analysis
of the lining. As the influence of the spatial variation of Poisson’s ratio on the practical
significance of the actual engineering is much smaller than that of the elastic modulus,
we assume that the Poisson’s ratio remains constant and the elastic modulus varies along
the radial coordinate. This assumption has been widely used by many researchers for a
mathematical simplification in theoretical analysis.

3. Analytical Model
3.1. Mechanical Analysis of Surrounding Rock

(1) Unlined tunnel

The expression of the fictitious support pressure [36] can be expressed as follows:{
pf(t) = [1 − λ(t)]P0
λ(t) = 1 − αe−βt (4)

where λ(t) is the stress release coefficient; α is the stress release rate; and β is a parameter
positively related to the tunnelling rate. When α or β are equal to zero or positive infin-
ity, then λ(t) is equal to 1, indicating that all stresses induced by the tunnel excavation
are released.

This study assumes that the tunnel is excavated at time t = 0, and the lining is installed
at time t = t0. Therefore, the boundary conditions of the unlined and lined tunnels (Figure 3)
can be given as follows:

σR
r (t)

∣∣∣
r=+∞

= P0 (5)

σR
r (t)

∣∣∣
r=R2

=

{
Pf(t)t ≤ t0
Pf(t) + Q(t)t > t0

(6)

where σr
R(t) is the radial stress of the surrounding rock; and Q(t) is the supporting pressure

provided by the lining.
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The stress distribution of the surrounding rock caused by a circular tunnel excavation
under hydrostatic pressure has been studied by many researchers. Based on the boundary
conditions of the unlined tunnel, the stress components of the surrounding rock can be
directly given as follows: 

σR
r (t) =

[
1 − λ(t) R2

2
r2

]
P0

σR
θ (t) =

[
1 + λ(t) R2

2
r2

]
P0

(7)

where σθ
R(t) is the tangential stress of the surrounding rock.

Taking into account the generalized Hooke’s law, the computational formula of the
longitudinal strain of the surrounding rock can be written as follows:

εR
z =

σR
z − vR(σR

r + σR
θ )

ER (8)

where σz
R(t) and εz

R(t) are the longitudinal stress and strain of the surrounding rock, re-
spectively; and ER and vR are the elastic modulus and the Poisson’s ratio of the surrounding
rock, respectively.

The longitudinal strain of the surrounding rock is equal to zero (εz
R(t) = 0) under the

state of plane strain [10]. Therefore, the longitudinal stress of the surrounding rock can be
given as follows:

σR
z = vR(σR

r + σR
θ ) = 2vRP0 (9)

Moreover, the mean stress of the surrounding rock can be calculated as follows:

σR
m =

σR
r (t) + σR

θ (t) + σR
z (t)

3
=

2(1 + vR)

3
P0 (10)
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Therefore, the increments of the deviatoric stress components of the surrounding rock
caused by the tunnel excavation can be calculated as follows:

∆sR
r (t) =

[
1 − λ(t) R2

2
r2

]
P0 − σR

m − (P0 − σR
m) = −λ(t) R2

2
r2 P0

∆sR
θ (t) =

[
1 + λ(t) R2

2
r2

]
P0 − σR

m − (P0 − σR
m) = λ(t) R2

2
r2 P0

∆σR
m = σR

m − σR
m = 2(1+vR)P

3 − 2(1+vR)P
3 = 0

(11)

where ∆sr
R(t) and ∆sθ

R(t) are the increments of the deviatoric stresses of the surrounding
rock in the radial and tangential directions, respectively; and ∆σm

R is the increment of the
mean stress.

The strain of the surrounding rock induced by the increments of the deviatoric stress
in the tangential direction can be given as follows:

εRP
θ (t) = J(t)∆sR

θ (0) +
∫ t

0
J(t − ξ)

[
∆sR

θ (ξ)
]′

dξ (12)

Based on the geometric equation, the radial deformation of the surrounding rock
induced by the tunnel excavation can be expressed as follows:

εRP
θ (t) =

uRP
r (t)

r
⇒ uRP

r (t) = J(t)λ(0)rP0 + r
∫ t

0
J(t − ξ)λ′(ξ)P0dξ (13)

Substituting r = R2 and Equation (2) (see expression J(t)) into Equation (13), the radial
deformation of the surrounding rock on the tunnel wall can be calculated as follows:

uRP
r (t)

∣∣∣
r=R2

=
R2P0

2

[
1

Gm
+

t
ηm

+
1 − e−t/tk

Gk

]
− αR2P0

2

[
1

βηm
− (

1
βηm

− 1
Gm

)e−βt +
e−βt − e−t/tk

Gk(1 − βtk)

]
(14)

(2) Lined tunnel

The lining is assumed to be installed at time τ = t − t0. The mechanical analysis of
the surrounding rock under the fictitious support pressure is similar to that under the
supporting pressure provided by the lining. Therefore, combining Equations (1)–(3) and
Equation (12), the radial deformation of the surrounding rock can be given as follows:

uRQ
r (τ) = r

[
Q(0)J(τ) +

∫ τ

0
J(τ − ξ)

dQ(ξ)

dξ
dξ

]
(15)

The radial deformation of the surrounding rock, induced by the supporting pressure
provided by the lining on the external surface of the tunnel wall, can be obtained as follows:

uRQ
r (τ)

∣∣∣
r=R2

= R2

[
Q(0)J(τ) +

∫ τ

0
J(τ − ξ)

dQ(ξ)

dξ
dξ

]
(16)

According to the Riemann–Stieltjes integral [40], Equation (16) can be transformed
as follows:

uRQ
r (τ)

∣∣∣
r=R2

= R2

[
Q(τ)J(0) +

∫ τ

0
Q(ξ)

dJ(τ − ξ)

d(τ − ξ)
dξ

]
(17)

After the lining is installed, the increment of the radial deformation of the surrounding
rock on the tunnel wall, caused only by the tunnel excavation, can be obtained as follows:

R2h(τ) = uRP
r (τ + t0)

∣∣∣
r=R2

− uRP
r (t0)

∣∣∣
r=R2

(18)
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3.2. Mechanical Analysis of Lining

Based on the mechanical model of the lining (Figure 4), the equilibrium equation of
the lining is given as follows:

dσL
r (τ)

dr
+

σL
r (τ)− σL

θ (τ)

r
= 0 (19)

where σr
L(t) and σθ

L(t) are the radial and tangential stresses of the lining, respectively.
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The constitutive equations of the lining are expressed as follows: σL
r (τ) =

EL(r)(1−vL)
(1+vL)(1−2vL)

εL
r (τ) +

EL(r)vL

(1+vL)(1−2vL)
εL

θ (τ)

σL
θ (τ) =

EL(r)(1−vL)
(1+vL)(1−2vL)

εL
θ (τ) +

EL(r)vL

(1+vL)(1−2vL)
εL

r (τ)
(20)

where EL(r) and vL are the elastic modulus and the Poisson’s ratio of the lining, respectively;
and εr

L(t) and εθ
L(t) are the radial and tangential strains of the lining, respectively.

The geometric equations of the lining are given as follows:{
εL

r (τ) =
duL

r (τ)
dr

εL
θ (τ) =

uL
r (τ)
r

(21)

where ur
L(τ) is the radial deformation of the lining.

As mentioned above, the elastic modulus of the lining is a function of the radial
coordinate. In this study, this function is assumed to be a power function defined as follows:

EL(r) = EL
0 rδ (22)

where EL
0 is the initial value of the elastic modulus of the lining; and δ is the radially

inhomogeneous coefficient of the lining. When δ is equal to zero, the inhomogeneous
degree of the lining is equal to zero, indicating that the lining is a homogeneous material.

Substituting Equations (20)–(22) into Equation (19), the governing equation in terms
of radial deformation of the lining can be obtained as follows:

d2uL
r (τ)

dr2 +
δ + 1

r
duL

r (τ)

dr
+

(δ + 1)vL − 1
(1 − vL)r2 uL

r (τ) = 0 (23)
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The boundary conditions of the lining are set as follows:{ [
σL

r (τ)
]∣∣

r=R1
= q(τ)[

σL
r (τ)

]∣∣
r=R2

= Q(τ)
(24)

Based on the boundary conditions, the solution of the governing equation Equation (23)
can be obtained as follows:

uL
r (τ) = R2[A0E(r)q(τ) + A0F(r)Q(τ)] (25)

in which 

A0 = 1
R2

1
W(R1)M(R2)−W(R2)M(R1)

E(r) = M(R2)ra1 − W(R2)ra2

F(r) = W(R1)ra2 − M(R1)ra1

W(r) = rδ+a1−1
[

a1EL
0 (1−vL)

(1+vL)(1−2vL)
+

EL
0 vL

(1+vL)(1−2vL)

]
M(r) = rδ+a2−1

[
a2EL

0 (1−vL)

(1+vL)(1−2vL)
+

EL
0 vL

(1+vL)(1−2vL)

]
a1 = − δ−

√
(δ)2−4δϑ+4

2

a2 = − δ+
√

(δ)2−4δϑ+4
2

ϑ = vL

1−vL

(26)

3.3. Deformation Compatibility on Rock–Lining Interface

As there is no slip at the rock–lining interface (t ≥ t0), the equation of the deformation
compatibility on the rock–lining interface can be written as follows:

uRP
r (τ + t0)

∣∣∣
r=R2

− uRP
r (t0)

∣∣∣
r=R2

− uRQ
r (τ)

∣∣∣
r=R2

= uL
r (τ)

∣∣∣
r=R2

(27)

Substituting Equations (17)–(18) and Equation (25) into Equation (27), Equation (27) can be
rewritten as follows:

h(τ)−
[

Q(τ)J(0) +
∫ τ

0
Q(ξ)

dJ(τ − ξ)

d(τ − ξ)
dξ

]
= A0E(R2)Q(τ) + A0F(R2)q(τ) (28)

Based on the Laplace transform method [41], the expression of the supporting pressure,
provided by the lining about parameter of time τ, can be obtained as follows:

Q(s) =
h(s)− A0E(R2)q(s)

sJ(s) + A0F(R2)
(29)

where Q(s), h(s), q(s), and J(s) are the expressions of the Laplace transform of Q(τ), h(τ),
q(τ), and J(τ), respectively.

The expressions of the h(s) and the J(s) can be given as follows: h(s) =
[

1
2ηms2 +

b1
2 (

1
s −

1
s+β ) +

b2
2 (

1
s −

1
s+1/tk

)
]

P0

J(s) = 1
2s

[
1

Gm
+ 1

ηms +
1

ηk(s+1/tk)

] (30)

in which {
b1 = α( 1

Gk(1−βtk)
+ 1

Gm
− 1

βηm
)e−βt0

b2 = ( 1
Gk

− 1
Gk(1−βtk)

)e−t0/tk
(31)

Substituting Equation (30) into Equation (29), Equation (29) can be rewritten as follows:
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Q(s) =
1

ηm
(s + β)(s + 1

tk
)P0 + b1βs(s + 1

tk
)P0 + b2s(s + m) 1

tk
P − 2A0E(R2)q(s)s2(s + β)(s + 1/tk)

s2(s + β)(s + 1/tk)
{[

1
Gm

+ 1
ηms +

1
ηk(s+1/tk)

]
+ 2A0F(R2)

} (32)

Equation (32) can be further simplified as follows:

Q(s) =
1

ηm
(s + β)(s + 1

tk
)P0 + b1βs(s + 1

tk
)P0 + b2s(s + m) 1

tk
P0

s(s + β)a11(s − x1)(s − x2)
− f (s) (33)

in which 

a11 = 1
Gm

+ 2A0F(R2)

b11 = ( 1
Gm

+ 1
Gk

+ 2A0F(R2))
1
tk
+ 1

ηm

c11 = 1
ηmtk

∆ = ( b11
a11

)
2
− 4 c11

a11

x1,2 = −b11/a11±
√

∆
2

f (s) = 2A0E(R2)q(s)s(s+1/tk)
a11(s−x1)(s−x2)

(34)

Using the Laplace transform inversion [42–44] about parameter s in Equation (33), the
expression of the Q(τ) can be given as follows:

Q(τ) = P0
a11ηm

[
ex1τ−ex2τ

x1−x2
+ 1

tkx1x2
(1 + x2ex1τ−x1ex2τ

x1−x2
)
]

+ P0b1β
a11

[
(x1+1/tk)ex1τ

(x1+β)(x1−x2)
− (x2+1/tk)ex2τ

(x2+β)(x1−x2)
+ e−βτ(1/tk−β)

(x1+β)(x2+β)

]
+ P0b2(ex1τ−ex2τ)

a11tk(x1−x2)

−Q4(τ)

(35)

where Q4(τ) is the expression of Laplace transform inversion of f (s) (see Equation(34)).
When the inner surface pressure of the lining q(τ) in the radial direction is defined, q(s)

can be deduced by the Laplace transform about parameter τ. Then, Q4(τ) can be deduced
by the Laplace transform inversion about parameter s of the f (s).

Subsequently, the corresponding solutions of Q4(τ) are derived as follows:
(a) When the inner surface pressure acting on the lining along the radial direction is

constant, the expression of q(τ) can be given by:

q(τ) = W (36)

where W is the water pressure.
Using Laplace transform, the expression of the q(s) can be given by:

q(s) =
W
s

(37)

Substituting Equation (37) into Equation (34) (see expression f (s)), f (s) can be obtained as
follows:

f (s) =
2WA0E(R2)(s + 1/tk)

a11(s − x1)(s − x2)
(38)

Using the Laplace transform inversion, the expression of Q4(τ) can be derived as follows:

Q(τ)4 =
2A0E(R2)W[eτx1(1 + tkx1)− eτx2(1 + tkx2)]

a11tk(x1 − x2)
(39)

(b) When the inner surface pressure acting on the lining along the radial direction
changes, the expression of q(τ) can be given as follows:

q(τ) = F0e−ζτ sin(χτ + ψ) (40)
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where F0 is the initial amplitude of the aerodynamic pressure; ζ is the damping coefficient
of the aerodynamic pressure; χ is the angular frequency of the aerodynamic pressure; and
ψ is the initial phase angle of the aerodynamic pressure.

Using Laplace transform, the expression of q(s) can be given as follows:

q(s) = F0
sin(ψ)(ς + s) + χ cos(ψ)

(ς + s)2 + χ2
(41)

Substituting Equation (41) into Equation (34) (see expression f (s)), f (s) can be obtained as
follows:

f (s) =
2F0 A0E(R2)s(s + 1/tk)

a11(s − x1)(s − x2)

sin(ψ)(ς + s)2 + χ cos(ψ)

(ς + s)2 + χ2
(42)

Using the Laplace transform inversion, Q4(τ) can be expressed as follows:

Q(τ)4 = 2A0E(R2)F0
a11td(x1−x2)

{
x1eτx1 [(χ+χtdx1) cos(ψ)+H10 sin(ψ)]

H8
− x2eτx2 [(χ+χtdx2) cos(ψ)+H11 sin(ψ)]

H9

}
−

e−ζt L1

[
cosh(χt1i)+ sinh(χt1i)(ζ−L2)1i

χ

]
a11td H8 H9

(43)

in which

H1 = ζ4 + ζ3x1 + ζ3x2 + ζχ2x1 + ζχ2x2 + ζ2x1x2 + χ2x1x2
H2 = 2ζ3χ2td + χ4 + ζ5td + ζχ4td + ζ4tdx1 + ζ4tdx2 + χ4tdx1 + χ4tdx2
+ζ3tdx1x2 + 2ζ2χ2tdx1+2ζ2χ2tdx2 + ζχ2tdx1x2
H3 = 2ζχ3 + 2ζ3χ + χ3x1 + χ3x2 + ζ2χx1 + ζ2χx2 + χ3tdx1x2 + ζ2χtdx1x2
H4 = χ5td + ζ4χtd + 2ζ2χ3td
H5 = χ3 + ζ2χtdx1 + ζ2χtdx2 + χ3tdx1 + χ3tdx2 + ζ2χ + 2ζχtdx1x2 − χx1x2
H6 = ζ3 + ζχ2 + ζ2x1 + ζ2x2 + χ2x1 + χ2x2 + ζx1x2 + χ2tdx1x2
H7 = ζ4td − χ4td − 2ζ2χ2td − ζ3tdx1 − ζ3tdx2 − ζχ2tdx1 − ζχ2tdx2 − ζ2tdx1x2
H8 = ζ2 + 2ζx1 + χ2 + x2

1
H9 = ζ2 + 2ζx2 + χ2 + x2

2
H10 = ζ + x1 + tdx2

1 + ζtdx1
H11 = ς + x2 + tdx2

2 + ςtdx2
L1 = 2A0E(R2)F0[H5 cos(ψ) + (H6 − H7) sin(ψ)]
L2 = (H1−H2) sin(ψ)+(H3−H4) cos(ψ)

H5 cos(ψ)+(H6−H7) sin(ψ)

(44)

4. Validation
4.1. Comparison with Existing Analytical Solution

The analytical solution of a circular lined tunnel was deduced considering both the
tunnel face effect and the rheological behavior of the rock mass with different rheological
models under hydrostatic pressure [10]. For the Burgers model, the expressions of the
radial deformation on the rock–lining interface ui(τ) (corresponding to Equation (24) in
the reference) and supporting pressure provided by the lining Q(τ) (corresponding to
Equations (35)–(38) in the reference) are given as follows (note that the notations of the
reference are modified to the ones of the present paper):

ui(τ) = uL
r (τ)

∣∣∣
r=R2

=
Q(τ)

Ks
R2 (45)

Q(τ) = P0
a11ηm

[
ex1τ−ex2τ

x1−x2
+ 1

tkx1x2
(1 + x2ex1τ−x1ex2τ

x1−x2
)
]

+ P0b1β
a11

[
(x1+1/tk)ex1τ

(x1+β)(x1−x2)
− (x2+1/tk)ex2τ

(x2+β)(x1−x2)
+ e−βτ(1/tk−β)

(x1+β)(x2+β)

]
+ P0b2(ex1τ−ex2τ)

a11tk(x1−x2)

(46)
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in which 

b1 = α( 1
Gk(1−βtk)

+ 1
Gm

− 1
βηm

)e−βt0

b2 = ( 1
Gk

− 1
Gk(1−βtk)

)e−
t0
tk

a11 = 1
Gm

+ 2
Ks

b11 = ( 1
Gm

+ 1
Gk

+ 2
Ks
) 1

tk
+ 1

ηm

c11 = 1
ηmtk

∆ = ( b11
a11

)
2
− 4 c11

a11

x1,2 = −b11/a11±
√

∆
2

Ks =
(1−R2

1/R2
2)EL

0
(1−2vL+R2

1/R2
2)(1+vL)

(47)

When the inhomogeneous coefficient of the lining (δ) is equal to zero, the subitem
A0F(R2) can be expressed as follows:

A0F(R2)Q(τ) =
(1 − 2vL + R2

1/R2
2)(1 + vL)

(1 − R2
1/R2

2)EL
0

Q(τ) =
Q(τ)

Ks
(48)

When the radial inner surface radial pressure of the lining (q(τ)) is also equal to zero,
the subitems A0E(R2)q(τ) and Q4(τ) can be given as follows:{

A0E(R2)q(τ) = 0
Q(τ)4 = 0

(49)

In this case, Equations (25) and (35) are the same as Equations (45) and (46), respectively.

4.2. Comparison with Numerical Simulation

To further validate our proposed analytical model, the results of this analytical model
are compared with those of a numerical simulation using the FLAC3D5.01 finite differences
code. The parameters used for this verification are taken from the literature [10,36] and are
shown in Table 1. A three-dimensional numerical simulation with plane strain condition is
carried out. A quarter of the numerical model used for this verification is shown in Figure 5.
The left and lower sides of the model are set as axisymmetric boundary conditions, the
upper side is set as a free boundary, and other positions are set as displacement-constrained
boundary conditions. The thickness, width, and height of the numerical model are set as
1.0 m, 80 m, and 80 m, respectively. The lining is simulated with the solid elements, and its
elastic modulus is divided into 20 layers, equally spaced along the radial direction.
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Table 1. Parameters used for verification.

Parameter Unit Value

P0 MPa 5.89
R1 m 3.96 (constant)
R2 m 4.57
d m 0.61

EL
0 GPa 16.55

vL - 0.2
δ - −0.50 (0.50)
α - 0.68
β - 0.60
t0 a 0.00

ηm GPa·a 1590
Gm MPa 3447 (constant)
tm a 461.27
ηk GPa·a 7.98
Gk MPa 345 (constant)
tk a 23.13

q(τ) MPa 0.00 (0.10)

Four combinations of two different values for the radially inhomogeneous coefficients
(δ) and the inner surface pressures of the lining in the radial direction (q(τ)) are assumed. For
these values, the radial deformation on the rock–lining interface ui(τ), and the normalized
supporting pressure provided by the lining denoted as Q(τ)/P0, are obtained by the
proposed theoretical model and the three-dimensional simulation. The time-history curves
of ui(τ) and Q(τ)/P0 obtained by the two methods are shown in Figure 6, showing good
consistency. The maximum difference for all cases is smaller than 10%.
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5. Parametric Analysis

Based on the proposed mechanical model, the main factors influencing the radial
deformation on the rock–lining interface (ui(τ)) and the normalized supporting pressure
provided by the lining (Q(τ)/P0) are further explored in the following section. Such factors
are the radially inhomogeneous coefficient, inner surface pressure, and thickness of the
lining, the relaxation time of the Maxwell model, and the retardation time of the Kelvin
model. The control parameters of the proposed mechanical model used in the subsequent
analysis are also shown in Table 1.

5.1. Radially Inhomogeneous Coefficient of Lining

The time-history curves of the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) with respect
to the radially inhomogeneous coefficient of the lining (δ) are shown in Figure 7. When δ
increases from −2.0 to 2.0, ui(τ) decreases, and Q(τ)/P0 increases. When δ increases from
−2.0 to 0.0, us(τ) decreases from 31.84 mm to 8.27 mm, and Q(τ)/P0 increases from 0.17 to
0.78 at τ =50 a. When δ increases from 0.0 to 2.0, ui(τ) decreases from 8.27 mm to 0.56 mm,
and Q(τ)/P0 increases from 0.78 to 0.96 at τ =50 a. It can be noted that the influence of the
change of the negative number δ on ui(τ) and Q(τ)/P0 is significantly larger than that of
the positive number δ. In addition, when the absolute value of the positive number δ is
equal to that of the negative number δ, the times required for an apparent stabilization of
ui(τ) and Q(τ)/P0 for the negative number δ are longer than that for the positive number δ.
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Figure 7. Radial deformation on the rock–lining interface (ui(τ)) and the normalized supporting
pressure provided by the lining (Q(τ)/P0) for different radially inhomogeneous coefficients of the
lining (δ).

5.2. Radially Inner Surface Pressure of Lining

The time-history curves of the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) for a range
of radially inner surface pressures of the lining (q(τ)) are shown in Figure 8. When q(τ)
increases from 0.00 MPa to 0.20 MPa, both ui(τ) and Q(τ)/P0 decrease, but the times
required for an apparent stabilization of ui(τ) and Q(τ)/P0 are the same for every value of
q(τ). The influences of the change in q(τ) on ui(τ) and Q(τ)/P0 is negligible.
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5.3. Lining Thickness

The time-history curves of the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) with respect to
the lining thickness (d) are shown in Figure 9. When d increases from 0.75 d to 2.00 d, ui(τ)
decreases, and Q(τ)/P0 increases. The time required for an apparent stabilization of ui(τ)
and Q(τ)/P0 decreases.

The relationships between ∆ui(τ), ∆Q(τ)/P0, and ∆d are shown in Figure 10. When
d increases by a specific increment, ∆ui(τ) and ∆Q(τ)/P0 decrease, indicating that the
influence of d on ui(τ) and Q(τ)/P0 weakens.
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5.4. Relaxation Time of Maxwell Model

The time-history curves of the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) with respect to
the relaxation time of the Maxwell model (tm) are shown in Figure 11. When tm increases
from 0.025 tm to 0.100 tm, both ui(τ) and Q(τ)/P0 decrease.

5.5. Retardation Time of Kelvin Model

The time-history curves of the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) for different
retardation times of the Kelvin model (tk) are shown in Figure 12. When tk increases
from 0.50 tk to 1.50 tk, the time required for an apparent stabilization of ui(τ) and Q(τ)/P0
increases, but the ultimate stable values of ui(τ) and Q(τ)/P0 are constant.
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engineering in further work. 

Author Contributions: Methodology, J.D.; Software, J.D.; Validation, J.D.; Resources, X.Z.; Data cu-

ration, X.Z.; Writing—original draft, J.D.; Supervision, X.Z. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by the Key Project of CCCC Highway Engineering Co., Ltd., 

China under Grant KJYF-2021-B-20. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used to support the findings of this study are available from 

the corresponding author upon request. 

Acknowledgments: We thank the anonymous reviewers and editors for their constructive com-

ments and suggestions to improve the quality of this article. 

Conflicts of Interest: The authors declare that they have no conflict of interest. 

References 

Figure 12. Radial deformation on the rock–lining interface (ui(τ)) and the normalized supporting
pressure provided by the lining (Q(τ)/P0) for different retardation times of the Kelvin model (tk).

6. Conclusions

This study explores the influence of the mechanical property of the lining subjected to
inner surface pressure along the radial direction, and the rheological behavior of the rock
mass on the mechanical response of the rock–lining interface under hydrostatic pressure.
The main conclusions are summarized as follows:

(1) When both the inhomogeneous coefficient (δ) and the inner surface pressure (q(τ))
of the lining in the radial direction are equal to zero, the proposed analytical solution is the
same as the existing analytical solution.

(2) The influences of the change of the negative value of the radially inhomogeneous
coefficient of the lining (δ) on the radial deformation on the rock–lining interface (ui(τ))
and the normalized supporting pressure provided by the lining (Q(τ)/P0) are significantly
larger than that of the positive value. These parameters decrease with the increase of the
radially inner surface pressures of the lining (q(τ)).

(3) The radial deformation on the rock–lining interface (ui(τ)) and the normalized
supporting pressure provided by the lining (Q(τ)/P0) decrease with the increase of the
relaxation time of the Maxwell model. The time required for an apparent stabilization of
their values increases with the increase of the retardation time of the Kelvin model, but
their ultimate stable values are constant.
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(4) The functional gradient lining can be applied to the structural design of tunnel
engineering in further work.
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