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Abstract: It is very difficult for manufacturing enterprises to achieve automatic coordination of mul‑
tiproject and multilevel planning when they are unable to make large‑scale resource adjustments.
In addition, planning and coordination work mostly relies on human experience, and inaccurate
planning often occurs. This article innovatively proposes the PERT‑RP‑DDPGAO algorithm, which
effectively combines the program evaluation and review technique (PERT) and deep deterministic
policy gradient (DDPG) technology. Innovatively using matrix computing, the resource plan (RP)
itself is used for the first time as an intelligent agent for reinforcement learning, achieving automatic
coordination of multilevel plans. Through experiments, this algorithm can achieve automatic plan‑
ning and has interpretability in management theory. To solve the problem of continuous control,
the second half of the new algorithm adopts the DDPG algorithm, which has advantages in conver‑
gence and response speed compared to traditional reinforcement learning algorithms and heuristic
algorithms. The response time of this algorithm is 3.0% lower than the traditional deep Q‑network
(DQN) algorithm and more than 8.4% shorter than the heuristic algorithm.

Keywords: multiproject;multilevel plan; PERT‑RP‑DDPGAO; resourceplanning; automatic coordination

1. Introduction
Vigorously developing manufacturing and the real economy is conducive to increas‑

ing social wealth and better meeting people’s material and spiritual needs. It is also benefi‑
cial for providing more job opportunities and maintaining social stability. Furthermore, it
is beneficial for increasing government fiscal revenue, meeting the needs of the public, and
ensuring social welfare and public safety. Manufacturing companies need to constantly ac‑
quire new projects and orders. Enterprises ensure sustainable development by undertak‑
ing multiple projects. A large manufacturing enterprise often undertakes dozens or even
hundreds of different projects, and how to manage the production of all projects is a huge
challenge faced by the enterprise.

Every production project can generate more income, win more markets, or assume
more social responsibility. Therefore, from the perspective of the project management de‑
partment, there are almost no unimportant projects. However, production resources are
always limited. When the same resource is allocated to multiple project plans and the
necessary production resources cannot be obtained as expected, a resource conflict occurs.
When there are disputes and conflicts among multiple project departments over the same
critical resource, coordination can be realized only by higher‑level managers. Under nor‑
mal circumstances, coordinating multiple projects is extremely difficult. On the one hand,
it is difficult for managers to evaluate the impact on the overall project plan after some
project plans have been compromised. On the other hand, only the project management
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department knows the time margin of a project. However, to obtain more resources, the
actual margin is generally not disclosed to personnel outside the project team.

Some new manufacturing enterprises or production workshops will try their best to
avoid the mixed‑line production of production projects when implementing the indus‑
trial layout. By constructing independent production units and lines, the abovementioned
problems can be effectively avoided. However, most manufacturing enterprises have al‑
ready formed enormous fixed assets. To undertake more production projects and respond
to diversified market demands, mixed‑line production must be carried out, and the prod‑
ucts of different projects must be processed on each piece of processing equipment. More‑
over, considering the cost of fixed asset investment, enterprises generally find it difficult
to carry out large‑scale transformation and upgrading of existing production resources. In
such a situation, it is necessary for enterprisemanagers to organize the overall arrangement
of project production plans and pursue the overall interests of the enterprise. Objective
management is necessary for project surplus, project schedule impact, and project priority.
In reality, multiproject management relies on the experience of managers, resulting in a
lack of lean management in enterprises and a loss of overall benefits.

Based on the current situation of multiproject and multilevel planning management
in manufacturing firms, this paper comes up with a planning model that combines PERT
and reinforcement learning algorithms, namely, PERT‑RP‑DDPGAO. PERT is a technique
that utilizes network analysis to develop and quantitatively evaluate plans. This paper
decomposes the project plan through the PERTmodel and incorporates a feedback mecha‑
nism, which enables the PERTmodel to have dynamic optimization capabilities, complete
the decomposition of the project plan, and distribute the decomposed enterprise project‑
level plan to various production units. After these plans arrive at the production unit,
they are preliminarily decomposed into various pieces of processing equipment based on
process documents, equipment resources, and working hours. This paper uses a manufac‑
turing execution system (MES) to extract resource demand plans from processing equip‑
ment plans at 7‑day intervals. The resource demand plans are used as intelligent agents,
cleverly usingmatrix calculationmethods to achieve intelligent agent actions. In PERT‑RP‑
DDPG, RP refers to resource planning. Finally, based on the results of the PERT model,
the DDPG learning model is applied to achieve automatic optimization of resource de‑
mand planning, which is called DDPGAO in this paper. In addition, by using the total
time difference parameter, the calculation results of the PERTmodel are used as inputs for
optimizing the resource demand plan. The optimization results of the resource demand
plan are also fed back to the PERTmodel, which achievesmultilevel planningmanagement
from the enterprise to the workshop and from the workshop to the section. Moreover, the
optimization results and response times of the DDPG model are compared with those of
traditional reinforcement learning models and greedy algorithms, and the advantages of
the DDPG model in dealing with discrete production problems are discussed. The DDPG
algorithm has a response time 3.0% lower than that of the DQN algorithm. The DDPG al‑
gorithmhas a response time that is 8.4% shorter than that of the gray search algorithm. The
DDPG algorithm has a response time reduced by 19.7% compared to that of the random
search algorithm.

2. Related Work
With the ever‑changing market, planning and scheduling management technology

is constantly evolving, from economic order quantity models, material demand planning,
andmanufacturing resource planning to just‑in‑time production, enterprise resource plan‑
ning, and load‑based production control theory. The development of these theories has
greatly promoted planning and scheduling development and improvement. Consider‑
ing that planning is the carrier of resources and costs, people pay great attention to the
management of planning. It is the main line of enterprise operations. If the accuracy of
the plan continues to improve, the operational capabilities of the enterprise will also im‑
prove accordingly.
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The research content of this paper is themultiproject andmultilevel planningmanage‑
ment of manufacturing enterprises. Mixed production is the greatest production feature
and the most prominent problem for such enterprises. Based on production practices, the
main mixed production problems can be divided into two categories: mixed production
problems in a specific workshop and mixed production problems in multiple workshops.

In terms of solving mixed‑line production problems in a specific workshop, Pereira
studied the issue of mixed‑line production in assembly workshops, optimized the fluctu‑
ation in the product output rate, and successfully developed a precise branch definition
algorithm [1]. Abdul Nazar andMadhusudanan Pillai also studied the mixed‑line produc‑
tion problem in assemblyworkshops [2]. Their research subjects were larger in size. There‑
fore, scholars have developed optimization solutions based on mutation algorithms. Siala
conducted classification research on heuristic models and found that heuristic algorithms
for branching and selecting classes have better feedback mechanisms [3]. Sun and Fan
proposed a scheduling model based on the ant colony algorithm to address the problem
of mixed assembly of multiple orders in automotive assembly workshops, considering the
impact of switching between orders [4]. The ant colony algorithmwas used to optimize the
minimization of rule breaking times and target switching situations. An integrated model
based on balanced production scheduling and buffer allocationwas proposed by Lopes [5].
An iterative decompositionmethodwas used to solve the assemblymixed‑line production
model. A multiobjective algorithm based on free time, total duration, and idle time was
proposed by Rauf to overcomemultiobjective production scheduling problems [6]. A new
mixed‑line schedulingmodel based on a simulated annealing algorithm combinedwith to‑
tal duration minimization and idle time weighting was proposed by Mosadegh et al. [7,8].
The authors used the Q‑learning algorithm to optimize heuristic rules. A mixed‑line plan‑
ning model considering preparation time was proposed by Nazar [9]. This model focuses
on the operation of the equipment. Amultiobjective optimization planning algorithmwas
proposed byWang [10], focusing on maximizing net profit and reducing preparation time
and turnover. On account of a better particle swarm optimization algorithm, a multiob‑
jective optimization algorithm focusing on the plan completion rate and plan change rate
was proposed by Zhong [11]. Zhang used a genetic algorithm based on a cellular strategy
to optimize the energy consumption and adjustment rate of production systems [12]. Man‑
avizadeh innovatively focused on the scheduling problem of mixed linear and U‑shaped
assembly lines and proposed a new heuristic algorithm [13]. A new algorithm based on an
integer linear programming algorithm and a hybrid genetic model considering assembly
line length and the number of terminals was proposed by Defersha [14].

In terms of solvingmixed production problems inmultipleworkshops, an accelerated
dynamic programming algorithm was used by Hong to minimize switching costs for solv‑
ing the painting workshop scheduling problem [15]. Leng transformed the color model of
a surface treatment workshop into a Markov decision process and solved it [16]. A taboo
search algorithm that considers work and cache costs was proposed by Kampker by con‑
sidering both the final assembly workshop and the assembly workshop together [17]. A
multiobjective integer linear programming model based on color batching load balancing
and raw material balancing was proposed by Taube [18]. A hybrid weighted model and
integer programming algorithm schedulingmodel was proposed byWu for themultistage
planning problem of a surface treatment workshop, turnover workshop, and final assem‑
bly workshop [19].

Based on the research above, special issues considered in this paper are introduced.
This paper addresses another type of mixed‑production situation. This situation does not
consider a single workshop or a few workshops but, rather, all the production units of the
enterprise. For a large enterprise, theremay bemore than ten or even dozens of production
units. For the topmanagement of the enterprise, the goal is to overcome themixed produc‑
tion issue of all production units in the enterprise. At present, few people are conducting
research in this field.
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The research above reveals that scholars studyingplanning and scheduling algorithms
mainly use heuristic algorithms, artificial intelligence algorithms, and hybrid algorithms.
Heuristic algorithms include genetic algorithms [20], taboo search algorithms [21–24], par‑
ticle swarm optimization algorithms [25,26], and ant colony algorithms [27].

Chen used a genetic algorithm to solve the fuzzy assembly line workshop planning
problem considering resource occupancy in mixed flow shop scheduling [28]. A genetic
composite algorithmwas proposed by Liu tominimize energy consumption and delay [29].
A solution based on a genetic algorithmwasproposed byYu to solve themixed‑line schedul‑
ingproblemof unrelatedparallelmachines in aworkshop [30]. A two‑stage hybrid schedul‑
ing model considering energy conservation was proposed by Wang [31]. Jamrus came up
with the idea of combining two different heuristic models [32]. They improved the particle
swarmoptimization algorithm based onCauchy distribution and incorporated the concept
of a genetic algorithm. This algorithm has made significant improvements in overcoming
mixed‑line problems. Robotic equipment is crucial for flexible and hybrid production, and
the ant colony optimization algorithm was used by Elmi to solve the scheduling issue of
multi‑robot, hybrid production lines [33].

An increasing number of scholars are applying artificial intelligence algorithms to
solve planning and scheduling problems. Sun et al. used machine learning methods to
schedule robot resources [34]. Asghari et al. combined artificial intelligence computing
models with genetic algorithms for scheduling cloud computing resources [35]. Luo con‑
sidered the impact of plan insertion and implemented dynamic scheduling in the work‑
shop through machine learning [36]. Zhang et al. used graph neural networks for work‑
shop planning and control [37]. Swarup et al. achieved results in saving computational
costs by dynamically arranging cloud computing resources throughmachine learning [38].

Among the numerous artificial intelligence algorithms, reinforcement learning mod‑
els are highly favored. Reinforcement learning (RL) can enable intelligent agents to inter‑
act with the environment and achieve automatic scheduling of plans or resources through
reward and punishment mechanisms [39]. In recent years, some scholars have begun to
pay attention to the management of multi‑level planning systems. Zhao et al. regarded
the workshop and logistics as two levels and used priority algorithms for planning opti‑
mization [40]. Wan et al. divided cloud computing resource scheduling into user‑level
scheduling and sub‑level scheduling [41]. Manna and Bhunia treated inventory as an ad‑
ditional level of scheduling [42]. Meanwhile, we have also noticed that no scholars have
conductedmulti‑level planning and scheduling research on project management level and
workshop resource level planning in manufacturing enterprises.

In summary, solving the multilevel planned mixed‑line production problem of enter‑
prise production unit equipment resources is highly important, but little related research
has been conducted. Additionally, we note that the main target audience for scheduling
problems is managers. Managers have another set of research ideas. Tripathi and Jha
have focused on the management role of performance tools [43]. Kadri and Boctor inge‑
niously combined time parameter calculation methods with genetic models [44]. Olivieri
et al. improved workflow and resource utilization through location management meth‑
ods [45]. Tripathi and Jha used success factors to model management models [46]. Habibi
established a mathematical model for supply chain management [47]. These inspire us
to combine management tools and models with artificial intelligence technology. This
composite approach makes the new algorithm more in line with management activities,
allowing artificial intelligence technology to leverage its advantages and assist managers
in making decisions.

This article is based on the above discussion, combining advanced artificial intelli‑
gence technology andmanagement tools (resource planning andprojectmanagementmod‑
els) to transform the behavior of managers using management tools into the behavior of
machines constantlymaking decisions usingmanagement tools. From the research results,
it can be seen that the interdisciplinary integration of computer algorithms and manage‑
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ment tools has significant innovation in the field of scheduling algorithm research. The
following will elaborate on the methods, experiments, discussions, and conclusions.

3. Method
The PERT‑RP‑DDPGAO algorithm includes a module framework and data acquisi‑

tion, a PERT optimization model, a resource plan processing method, and an automatic
optimization model based on DDPG.

3.1. Module Framework and Data Acquisition
The research object of this article is the most common machining processes in manu‑

facturing enterprises. Mechanical processing is generally divided into small product me‑
chanical processing and large product mechanical processing. The ordinary mechanical
processing of small products has a short time cycle and can be performed using multiple
pieces of equipment, generally without causing resource conflicts. Large‑scale product
machining generally involves medium‑to‑large‑scale machining centers, which have high
difficulty in product processing, high equipment value, and long production cycles and
are prone to resource conflicts during mixed‑line production. To solve practical produc‑
tion problems, this paper focuses on themechanical processing ofmedium‑ and large‑sized
products and explains the content of the PERT‑RP‑DDPGAO algorithm model.

Figure 1 shows the PERT‑RP‑DDPGAO algorithm framework, which is divided into
an enterprise planning layer, a production unit planning layer, and an equipment plan‑
ning layer based on the application scenarios. At the enterprise planning level, the model
obtains product structure tree information and standard operating time information from
the manufacturing execution system. The PERT model takes a structural tree model and
standard operating time information as inputs to form a product plan and the total time
difference for each product plan. Through the PERT model, project plan decomposition
is achieved, resulting in a planned dispatch from the enterprise to the production unit.
After receiving the plan, the production unit forms a resource plan for equipment or work‑
stations based on process information and work hour quota information. Through this
mechanism, a planned dispatch from the production unit to the equipment is formed. The
last layer is the equipment planning layer. At the device planning level, the DDPGAO
model takes resource planning onmechanical processing equipment as an intelligent agent
and optimizes resource planning autonomously through reinforcement learning. During
the optimization of the DDPGAO model, the operation processing plan is adjusted. Af‑
ter changes in the process processing plan, the process processing plan is fed back to the
product plan, which has an impact on the total time difference. This paper adds a feed‑
back algorithm to the PERT model so that the results of the equipment planning layer can
be fed back to the enterprise planning layer, enhancing the robustness of the entire plan‑
ning system.

According to the theory of projectmanagement, manufacturing enterprises determine
the composition structure of products based on the product structure tree when designing
the product project organization. The composition structure of a product represents the
logical sequence of processing from parts to components and from components to the final
finished product. In addition, most manufacturing enterprises have established informa‑
tion systems that can conveniently determine the processing cycle of each product. There‑
fore, with knowledge of the product processing logic and processing cycle, the project can
be decomposed into work. Usually, companies add standard operating times to the prod‑
uct structure tree. The product structure tree information is represented by B, as shown
in Equation (1). In Equation (1), M represents the product name, L represents the product‑
level code, and the product processing logic relationship can be obtained through the
product‑level number. t1 represents the standard operating time, t2 represents the loose
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operating time, and t3 represents the emergency operating time. σ1 is the loose coefficient,
usually taken as 1.3. σ2 is emergency coefficient, usually taken as 0.8.

B = (M, L, t1, t2, t3) (1)

t2 = σ1 ∗ t1 (2)

t3 = σ2 ∗ t1 (3)

The calculation equations for the loose operation time and emergency operation time
are shown in Equation (2) and Equation (3), respectively.
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3.2. PERT Optimization Model
Current product projects are very complex. If the final product is unfolded in the

form of a product tree, a very complex tree‑like structure is obtained, and the number of
branches can reach thousands or tens of thousands. To cope with complex project manage‑
ment, manufacturing enterprises have developed the PERT model based on operations re‑
search theory. Thismodel calculates key time parameters based on project task decomposi‑
tion and the operation time of the task. By analyzing time arguments, elements such as the
planned time, critical work, critical path, and total duration are obtained to support man‑
agers in better project management. The setting of the model needs to consider the field
requirements of the information system. C must include the logical relationship expres‑
sion of the task and related time parameters, as detailed in Equation (4). The nodes before
and after the task are represented by di, and dj represents the logical relationship between
related tasks. The duration of the task is represented by m. The pre‑task and post‑task
work nodes are assigned by Pi and pj represents. Total float Tij and task completion status
w are key control parameters. w can be determined through the task handover procedure.

C = (di, dj, Tij, m, Pi, pj, w) (4)

The difference between the earliest start time and the latest start time is Tij. For a
one‑to‑one link, the earliest start time of point P on the left side of node i is denoted by
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tES(P, i) represents. The duration between node i and node j is represented by t(P, i). For
many‑to‑one links, it is ES′

ij. The calculation methods are shown in Equations (5) and (6).

ESij= tES(P, i)+t(P, i) (5)

ES′
ij= max(tES(P, i) + t(P, i)) (6)

Compared with Equation (6), the main logic for the latest start time is to change from
the maximum value to the minimum value. Duration between node j and node k is repre‑
sented by t(j, p). Latest start time of the node on the right side of node j is represented by
tLS(j, p).

LS′
ij= min(tLS(j, p)− t(j, p)) (7)

Using the principle of PERT technology, Equations (8) and (9) can be derived through
Equations (5)–(7).

Tij = ES′
ij−LS′

ij (8)

Tij = max(tES(P, i) + t(P, i))− min(tLS(p, k)− t(p, k)) (9)

The backend of the algorithm program uses Python 3.5 language and the NetwordX
1.11 module. In the front‑end design, the paper adopts SpringCloud. SpringCloud is able
to utilize the development of Spring Boot to simplify the development of distributed sys‑
tem infrastructure.

To increase the robustness of thePERTmodel, t3 and t1 are subtracted fromEquation (3),
as shown in Equation (10).

t′ = t1 − t3 (10)

This paper incorporates a feedback mechanism into the PERT model, as shown in
Figure 2.
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The focus of the feedback mechanism is to record and monitor the total time differ‑
ence. In addition, this paper introduces the emergency time in Equation (3). By using the
emergency time, the compressible time of the task can be calculated. By compressing the



Appl. Sci. 2024, 14, 7435 8 of 19

time of key tasks, the total project duration can be shortened, ultimately achieving the goal
of controlling the total project duration.

3.3. Resource Plan Processing Method
This paper achieves project plan decomposition through PERT technology. These de‑

composed plans can be called enterprise‑level plans or production unit plans. After receiv‑
ing the plan, the production unit can derive the process‑level plan based on the working
hour quota of each process of the product. The working hour quota for a certain product
is set to T, as shown in Equation (11).

T = (p1, p2, . . . pn) (11)

Although theworking hour quota cannot fully represent the actual processing time of
the product, it can accurately identify which processes have longer and shorter processing
times and determine the proportion of time needed for each process. Therefore, through
Equation (12), this paper can obtain the plan for process j. T′

j represents the planned time
of process j. Tf represents the project plan time calculated by PERT, usually the end time.
Tp represents the processing cycle of the product in the production unit.

T′
j = Tf − (

∑n
i=j pn

∑n
i=1 pn

) × Tp (12)

Through T′
j , this paper can obtain the production plan of the product process. After

associating production resources or equipment in the product process production plan, the
resource demand plan for a certain resource or equipment can be obtained.

This paper presents the resource plan in the formofmatrixX, as shown inEquation (13).
Based on the actual work situation, the model retrieves equipment resource plans on a
weekly basis. The horizontal column of X represents the daily processing quantity of
project a on this equipment within a week. The vertical column of X represents the types
of projects undertaken within a week.

X =

a1 · · · a7
...

. . .
...

z1 · · · z7

 (13)

Throughmatrix processing of resource planning, the resource plan can act as an intelli‑
gent agent for reinforcement learning, achieving automatic coordination and arrangement
of resource planning. To carry out resource planning and coordination, themanager needs
to calculate the total number of tasks undertaken on the equipment every day and compare
the processing capacity of the equipment. The current X matrix still lacks these elements,
so it cannot be used for subsequent calculations. To achieve the subsequent calculation
goals, it is necessary to extend matrix X to matrix X′, as shown in Equation (14). In Equa‑
tion (14), A represents the total planned quantity of vertical projects, and B represents the
task‑carrying capacity of the equipment (the maximum quantity that can be processed on
the same day). C represents the difference between the task‑carrying capacity and the total
number of assigned tasks.

X′ =



a1 · · · a7
...

. . .
...

z1
A1
B1
C1

. . .

z7
A7
B7
C7


(14)
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3.4. Automatic Optimization Model Based on DDPG
Through matrix processing, resource planning can serve as an intelligent agent for

reinforcement learning. Another advantage of the resource planning matrix is that it can
achieve overall planning actions through matrix operations.

Therefore, this paper improves matrix X′ by adding a new column and initializing it
to 0 to form final resource matrix M, as shown in Equation (15). Additionally, a new action
matrix N is established. The first few rows of the action matrix correspond to the planned
quantity rows of resource matrix M, and each row has only one pair (+1/−1), as shown in
Equation (16).

M =



a1 · · · a7 0
...

. . .
...

z1
A1
B1
C1

. . .

z7 0
A7 0
B7 0
C7 0


(15)

N =



−1 · · · +1 0
...

. . .
...

0
0
0
0

. . .

−1 +1
0 0
0 0
0 0


(16)

Matrix N enables resource planning agents to take action through paired (+1/−1) op‑
erations. We simulate the situation where the plan for this week is called out through the
eighth column of the matrix. This paper incorporates a plan adjustment constraint, which
means that the plan for this week should be completed as much as possible. If it cannot
be completed during the week, it must be arranged on the first day of the next week. The
paper adds matrix M to matrix Ni to obtain Mi, forming an adjusted resource plan.

Mi = M + Ni =



a1 · · · a7 0
...

. . .
...

z1
A1
B1
C1

. . .

z7 0
A7 0
B7 0
C7 0


+



−1 · · · +1 0
...

. . .
...

0
0
0
0

. . .

−1 +1
0 0
0 0
0 0


(17)

Our goal is to train a strategy to automatically coordinate and balance resource plans.
However, from matrix N, it can be seen that the action space of the resource planning ma‑
trix is relatively complex and diverse, and the combination of +1/−1 can randomly appear
at any position in matrix N. It is difficult to obtain the optimal strategy using only deep
reinforcement learning models. This paper proposes the use of the DDPG (deterministic
policy gradient) algorithm, with the actor–critic algorithm as its basic framework, deep
neural networks as approximations of the policy network and action value function, and
the use of the stochastic gradient method to train the parameters of the policy network and
value network models.

The DDPG algorithm framework is displayed in Figure 3. The value of proxy opera‑
tions is accurately evaluated by the critical network. There will be continuous interaction
between agents and the environment. This interaction is also an iterative and trial and er‑
ror process. Reward r, observed state s, selected action a, and new state s′ in replay buffer
D are saved in the network. The agent trains the critic network from small‑batch sampled
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data in the replay buffer. By using this training method, the difference in output from the
target neural network is reduced.

Li(θi)= E(s,a,r,s′)∼u(D)[(r+γQ(s′, µ
(
s′; φ−); θ− −Q(s, a; θi))

2] (18)

Li(θi) is the expected value of the difference between the Q‑value of the target critic
network and theQ‑value of the training critic network. (s, a, r, s′) ∼ u(D) is the sampling
through mini‑batch data from replay buffer D. γ is the discount factor. θi is the training
network parameter, and θ− is the target critic network parameter; these parameters give
the weights and bias. i is the parameter index. µ is the policy of the actor network, and
φ− is the parameter of the target actor network.
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The actor network uses the state of the environment as the input and actions as the
output to calculate the policy. The method of evaluating the policy of the actor network is
to use the Q‑value, which is the output of the critic network.

Ji(φi)= Es∼u(D)[Q(s, µ(s; φ); θ)] (19)

Ji(φi) is the expectedQ‑value through an action selected according to the policy, and
the actor network trains to increase Ji(φi). S ∼ u(D) denotes the states sampled from
replay buffer D. In fact, even if the model uses a determined participant network learn‑
ing strategy, the accuracy of the results is still questioned. An exploration process still
needs to be added to the model to determine the appropriate strategy. The Gaussian noise
method was used in the detection process in the paper. During the training process, Gaus‑
sian noise is added to the actions generated by the actor network, further allowing for the
exploration of various actions. The reward function mainly considers four elements. First,
the total sum of the vertical columns of the resource plan matrix does not exceed the ca‑
pacity, indicating task completion. Second, there is a collision when negative elements or
the total time difference of the task is negative. Third, the more nonzero values there are
in the eighth column, the greater the penalty. Fourth, the greater the total time difference
between the priority tasks, the greater the reward.
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The parameters of the target network for critics and actors are updated according to a
certain cycle. This update is based on the level of network training, and when the training
level is determined, the new target value is also determined. In the subsequent calculation
process, this value can be fixed.

4. Experimental Evaluation and Discussion
4.1. Experimental Environment Design

The multilevel planning system includes an enterprise‑level plan, a workshop‑level
plan, and an equipment‑level plan. The enterprise‑level plan mainly revolves around
project management. The PERT method is used in project management to decompose
plans. The project management environment is mainly based on the enterprise resource
planning (ERP) system. The ERP system distributes the plan to the production workshop.
The workshop receives tasks through the MES and dispatches them to equipment to form
a resource plan. The management of resource plans is mainly based on MES. ERP sys‑
tems and MES collect, transmit, and control equipment data through industrial control
networks. This paper officially runs the PERT‑RP‑DDPGAO algorithm through the indus‑
trial information implementation framework shown in Figure 4.
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Mechanical processing is the most common processing method used in manufactur‑
ing enterprises. The main types of mechanical processing equipment used are small me‑
chanical processing equipment, mediummechanical processing equipment, and large me‑
chanical processing equipment. Among them, large‑scale mechanical processing equip‑
ment is expensive, with a small number of pieces of equipment, and most of the time, it
undertakes the processing of key and difficult products. In the actual production process,
resource conflicts often occur.

Therefore, this paper focuses on the mechanical processing tasks of large‑scale prod‑
ucts in manufacturing enterprises, collects resource plans on large‑scale mechanical pro‑
cessing equipment through production information systems, and conducts experimental
analysis. The collection frequency of the resource plans is 7 days.
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Through the experimental environment, the paper extracted the resource plan of a
certain device and formed Table 1 using a visual approach. The outcomes of the resource
planning matrix are presented in Table 1, which indicates that the paper represents three
different items on the equipment in different colors, and the number of tasks for the day is
calculated according to the previous formula. Then, the difference between the number of
tasks and the equipment capacity is calculated to obtain the carrying capacity. If the total
number of tasks is greater than the device’s faculty, the image is red. If the number of tasks
is less than the device’s capacity, the image is green. Large‑scale mechanical processing
equipment is generally single‑piece processing, and the equipment’s capacity is based on
a 12 h working system with a maximum of two product tasks to be undertaken on the
same day.

Table 1. Resource plan matrix data.

Time
(Day)

Project 1
Blue

Project 2
Orange

Project 3
Gray

Total
Tasks

Equipment
Total Tasks

Load
Index

1 1 0 0 1 2 Green
2 0 1 0 1 2 Green
3 1 1 1 3 2 Red
4 1 1 1 3 2 Red
5 1 0 0 1 2 Green
6 1 1 1 3 2 Red
7 1 1 1 3 2 Red

This paper adopts visualization processing to contrast the actual performance of the
model after reinforcement learning training. The preliminary extracted resource plan visu‑
alization graph is illustrated in Figure 5, which indicates the task distribution of three large‑
scale machining tasks over a period of 7 consecutive days. The green and red columns
show that there is no conflict issue with respect to the tasks on Days 1, 2, and 5, while there
is a conflict issue with respect to the tasks on Days 3, 4, 6, and 7; these issues need to be
automatically adjusted through the model.
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4.2. Experiment and Discussion on the Automatic Coordination of Resource Planning
This paper substitutes the data in Table 1 into the new model for calculation and ob‑

tains the optimized results of themodel. Then, the optimized results are visualized to form
Figure 6.
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Figure 6 shows that themodel has successfully coordinated the resource plan through
continuous attempts. All tasks do not exceed the maximum capacity of the device. Com‑
paring Figures 5 and 6, this paper finds that themodelmoved Project 3 fromDay 3 to Day 1
andmoved Project 3 fromDay 4 to Day 2. Themain reason for this result is that our reward
function stipulates that the fewer parts there are beyond our ability, the greater the total
time difference of the task, and the greater the reward. Similarly, Project 3 on Day 6 was
moved to Day 5. In subsequent calculations, the paper finds that the model ultimately ex‑
hibited low convergence. Therefore, we add a control function for the total time difference
in the reward function. The control function of the total time difference calculates the total
time difference impact of each project task. This total time difference affects the search for
the corresponding project’s total time difference. If the impact on the total time difference
can be tolerated, there will be rewards; if it cannot be tolerated, there will be punishments.
We see this punishment as “hitting a wall”. Therefore, the results in Figure 6 are closely re‑
lated to the setting of the reward function. The feasibility of the model is verified through
the experiments in this paper.

In the process of continuous model calculation, this paper discovers another advan‑
tage of intelligent algorithms. Managers often have great confidence in their own judg‑
ments, with the main goal of solving practical problems. Moreover, intelligent algorithms
may achieve leaner results. Therefore, this paper analyzes and processes resource plans
with single‑point conflicts for experiencedmanagers and intelligentmodels, forming Figure 7;
Figure 7A shows the target resource plan; Figure 7B shows the results of the manager’s
analysis and processing, and Figure 7C shows the results of the intelligent algorithm’s
analysis and processing. This paper finds that managers achieve a balance in resource
planning by eliminating peaks and filling in low values in management. Managers believe
that their experience plays an important role when they do not see the results of intelligent
algorithms. The intelligent algorithm yields even better results. This paper requires the
optimal sum of the total time difference of project tasks in the reward function. Therefore,
the intelligent algorithm obtains the results in Figure 7C. These results not only achieve
a balance in resource planning but also improve the total time difference between project
tasks compared to Figure 7B. The greater the total time difference, the stronger and more
stable the anti‑interference ability of the project plan.
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From the above, it can be seen that managers may be influenced by various factors,
such as personal abilities, work environment, and work status, when balancing resources,
resulting in inadequate consideration. In other words, most of the decisions made byman‑
agers are correct solutions rather than optimal solutions. In order to achieve the goal of
an optimal solution, the paper proposes the PERT‑RP‑DDPGAO algorithm, which allows
machines to solve the optimal solution of planning and coordination through self‑learning.
The PERT‑RP‑DDPGAO algorithm converts the impact of plan adjustments and thematch‑
ing of resources and plans by managers into time parameters, resource planning matrices,
and reward functions. By using this method, the computer can obtain the optimal solution
through rigorous calculations. Of course, computers are also affected by the accuracy of
input data, the operating environment, system interfaces, and other factors during calcu‑
lations, resulting in biased results and risks. Therefore, the output results require manual
verification by managers. The results of retesting can only be used for actual production.
The computer‑aided production scheduling method enables managers to make more uni‑
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fied and scientific decisions, gradually reducing human uncertainty factors. This is also a
requirement for the development of modern enterprises.

The final core of the PERT‑RP‑DDPGAO algorithm lies in the DDPG algorithm sec‑
tion. The DDPG algorithm part is the key environment for implementing the planning and
coordination function. This paper aims to further validate the value of the engineering ap‑
plication of DDPG. We conduct comparative experiments between the DDPG algorithm,
the DQN algorithm, the greedy search algorithm, and the random search algorithm. This
paper first chooses the DQN algorithm because some of the principles of DDPG are the
same as those of DQN, but the actor–critic algorithm is added as the basic framework. It
is hoped that the superiority of DDPG in continuous control problems can be further veri‑
fied through new experimental objects. Moreover, we verify whether this algorithm can be
used in resource planning and coordination application scenarios, such as whether the re‑
sponse speed is better. Then, heuristic algorithms are considered for comparison to verify
the advantages of reinforcement learning in handling such control problems.

This paper compares the convergence and response speed of the four algorithmsmen‑
tioned above, forming Figures 8 and 9.
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The comparison results show that the DDPG algorithm outperforms the other algo‑
rithms in terms of convergence and response. The DQN algorithm is superior to heuristic
algorithms. First, this paper briefly explains that the DQN algorithm deep Q‑network can
be used to solve continuous state space problems. The uniqueness of the DQN algorithm
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lies in the experience replay and the target network. When training the Q‑network, ex‑
perience replay can break the correlation between data and make the data independently
distributed, thereby reducing the variance of parameter updates and improving the con‑
vergence speed. The use of the target network can alleviate the problem of overestimation
to a certain extent and increase the stability of learning. In the application scenario of re‑
source planning, DDPG has more advantages than DQN. In other words, DDPG has its
own uniqueness in continuous control problems.

The response time is an important indicator for measuring algorithm efficiency. This
paper extracts the average response time values of the DDPG algorithm, the DQN algo‑
rithm, the gray search algorithm, and the random search algorithm, shown in Table 2. This
table shows that the average response time of the DDPG algorithm is greater than that of
the other algorithms. The DDPG algorithm has a response time 3.0% lower than that of the
DQN algorithm. The DDPG algorithm has a response time that is 8.4% shorter than that
of the gray search algorithm. The DDPG algorithm has a response time reduced by 19.7%
compared to that of the random search algorithm.

Table 2. Comparison table of response times for different algorithms.

Algorithm Name Response Time (s)

DDPG algorithm 0.98
DQN algorithm 1.01

Grey search algorithm 1.07
Random search algorithm 1.22

The deep deterministic policy gradient algorithm is an optimization of the DQN that
combines the idea of the deterministic policy gradient algorithm and innovatively adopts a
model‑free deep reinforcement learning algorithm. The dual neural network architecture
is used in the DDPG algorithm architecture. Both the strategy function and value func‑
tion use a dual neural network model architecture (i.e., an online network and a target
network). This dual structure makes the learning process of the algorithmmore stable and
accelerates the convergence speed. Moreover, the DDPG algorithm introduces an experi‑
ence replaymechanism; the experience data samples generated by the interaction between
the actor and the environment are stored in the experience pool, and batch data samples are
extracted for training. This training method is similar to the experience replay mechanism
of the DQN. This mechanism can eliminate the correlation and dependency of samples,
facilitating algorithmic convergence. This is also the reason why the DDPG algorithm can
achieve good results in comparative analysis.

5. Conclusions
This paper proposes a new intelligent scheduling model, PERT‑RP‑DDPGAO. This

model decomposes project plans using PERT technology. After the project plan is decom‑
posed, a resource plan is formed, and the resource plan is trained as an intelligent agent
in the DDPG model to achieve automatic coordination of multiple projects and multilevel
plans in an enterprise.

The PERT‑RP‑DDPGAO model adds a feedback environment to traditional PERT
techniques, improving the robustness of traditional algorithms. This paper studies re‑
source planning, which has received little attention in scheduling algorithm research. For
the first time, the resource plan is transformed into a resource plan matrix through the
matrix formula, and the control action of the resource plan is simulated through matrix
operation. After the resource plan is matrixed, the DDPG algorithm is used to achieve
automatic coordination of the resource plan. After analysis, the results of automatic coor‑
dination have practical managerial implications and potential for engineering applications.

Finally, this paper conducts comparative experiments on theDDPGpart of the new al‑
gorithmwith the DQN algorithm, random search algorithm, and greedy search algorithm,
analyzing and verifying that the DDPG algorithm is superior to the other algorithms in
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terms of convergence and response speed. The DDPG algorithm has a response time 3.0%
lower than that of the DQN algorithm. The algorithm has a response time that is 8.4%
shorter than that of the gray search algorithm. The algorithm has a response time reduced
by 19.7% compared to that of the random search algorithm.

The PERT‑RP‑DDPGAO algorithm considers engineering applications, simplifies the
complexity of the production process, andmainly focuses on the core planning parameters
of project management. The core input parameters of the algorithm are planned time, time
parameters, and resource capability. The planned time and time parameters are derived
from the PERT algorithm, while the resource capability is obtained throughmanual filling.
Therefore, the core of the application of the algorithm is for enterprises to have the ability
to track product plans. Through practical application, it has been found that enterprises
with ERP andMES systems can use this algorithm. However, this algorithm still has the fol‑
lowing limitations: Firstly, algorithms require enterprises to have basic information tech‑
nology capabilities, such as establishing ERP or MES systems that can provide real‑time
feedback on product progress. Secondly, the algorithmhas only been applied tomachining
devices, and the generalization of the resource planning matrix still needs to be improved.
Thirdly, the application of algorithm results also needs to be combined with management
processes. The fourth issue is that the algorithm does not involve risk management.

6. Future Work
This study can be used to solve the complex scheduling problem of multilevel plan‑

ning and management for multiple projects in enterprises. By applying this algorithm,
automatic coordination and management of multilevel plans from the project level to the
workshop level and then to the equipment level can be achieved. This algorithm is highly
efficient in planning and schedulingmanagement, does not have a high dependence on en‑
terprise information construction, and has strong potential for engineering applications.

However, this paper mainly conducts experiments on large‑scale machining equip‑
ment tasks as the main research object. For other device plans, it is necessary to optimize
the resource planning matrix algorithm to further enhance the generalization of the algo‑
rithm. In the future, the research team will explore more application scenarios based on
this algorithm and consider more influencing factors, such as value and quality.

In the process of conductingmore practical scenario research, wewill incorporate risk
management content. By designing evaluationmodels, conductmore in‑depth research on
machine results and manual results.
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