
Citation: Xiao, D.; Yi, H.; Zhang, W.;

Shen, W. Status-Byte-Assisted RDMA

Transmission Mechanism for

Optimizing Multi-Task Video

Streaming in Edge Computing. Appl.

Sci. 2024, 14, 7437. https://doi.org/

10.3390/app14177437

Academic Editor: Christos Bouras

Received: 26 July 2024

Revised: 16 August 2024

Accepted: 21 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Status-Byte-Assisted RDMA Transmission Mechanism for
Optimizing Multi-Task Video Streaming in Edge Computing
Donglei Xiao 1, Huiyue Yi 2,* , Wuxiong Zhang 2 and Wenhui Shen 1,*

1 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;
dlxiao@shu.edu.cn

2 Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information
Technology, Chinese Academy of Sciences, Shanghai 201899, China; wuxiong.zhang@mail.sim.ac.cn

* Correspondence: huiyue.yi@mail.sim.ac.cn (H.Y.); haomeni@163.com (W.S.)

Abstract: In the context of the rapid development of edge computing, optimizing data transmission
and reducing latency is crucial for efficient collaborative processing among edge servers. Traditional
TCP/IP protocols are hindered by high latency and low throughput, while RDMA (Remote Direct
Memory Access) technology addresses these challenges by enabling direct memory access and
bypassing the operating system kernel. However, the RDMA data transmission mechanism based
on sliding windows requires frequent memory status exchanges in the order of memory blocks,
which can limit its ability to handle multiple concurrent tasks within a single Queue Pair (QP). To
address the limitations of the traditional sliding window transmission mechanism in multi-task
environments, we propose a novel RDMA data transmission mechanism that utilizes status bytes to
indicate memory block utilization, which utilizes stateless server connections, and multi-task shared
QP transmission strategies. In the proposed mechanism, fine-grained control over memory blocks
is achieved through the status byte, thereby enabling effective multi-task real-time video stream
transmission. Experimental results show that, compared to the sliding window method, the proposed
status-byte-assisted RDMA transmission mechanism provides higher throughput, lower latency, and
reduced resource consumption, thus enhancing system scalability and reducing CPU utilization.
Moreover, this mechanism achieves more stable throughput than the sliding window method when
transmitting multiple real-time video streams in edge computing scenarios, making it particularly
suitable for data transmission in such environments.

Keywords: RDMA; sliding window; shared QP; multitasking; status byte; data transmission

1. Introduction

With the rapid growth in the number of Internet of Things (IoT) devices and the surge
in data volume, edge computing has attracted increasing attention as a key paradigm for
decentralizing computational tasks near the source of data generation, thereby reducing
latency and improving bandwidth utilization [1,2]. Edge computing achieves this by
offloading some computational tasks from central cloud servers to edge nodes closer to
data sources. However, edge servers often face challenges related to limited computational
and storage resources and the heterogeneity of computational resources (e.g., CPUs, GPUs,
and FPGAs) complicates the ability of individual edge servers to independently handle
complex business processes [3]. Consequently, collaborative processing among multiple
edge servers becomes essential, which in turn necessitates large-scale data transmission
among multiple servers.

The traditional TCP/IP protocol stack faces significant bottlenecks in this environ-
ment, including high transmission latency, low transmission rates, and high CPU resource
consumption, which limit the overall performance and scalability of the system [4]. Remote
Direct Memory Access (RDMA) technology enables direct memory access between network

Appl. Sci. 2024, 14, 7437. https://doi.org/10.3390/app14177437 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177437
https://doi.org/10.3390/app14177437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8795-2201
https://orcid.org/0000-0002-5084-3351
https://orcid.org/0000-0002-8647-4455
https://doi.org/10.3390/app14177437
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177437?type=check_update&version=1

Appl. Sci. 2024, 14, 7437 2 of 24

nodes by bypassing the operating system kernel. This approach substantially reduces
transmission latency and CPU resource consumption, making RDMA a powerful tool for
addressing data transmission bottlenecks in edge computing.

Despite the notable advantages of RDMA in enhancing data transmission performance,
the existing RDMA data transmission mechanisms still face several challenges in practical
applications. Most current work primarily exploits RDMA’s unilateral operation feature to
accelerate data transmission without further optimization, and RDMA NICs face scalability
issues [5–10]. Furthermore, the existing RDMA technologies show limitations in multitask-
ing transmissions and resource management, particularly when supporting multiple tasks
within a single QP. For example, the sliding window transmission mechanism proposed
by Tu et al. [11] requires frequent exchanges of memory status during data transmissions
to prevent memory overwriting or reading invalid data. Additionally, since it uses only
two pointers to indicate the status of all memory blocks, it limits flexible manipulation of
memory blocks and lacks robust support for multitasking transmissions within a single QP.

To further optimize resource scheduling and data processing in edge computing envi-
ronments, container technology, along with Kubernetes (K8s) [12,13], has been introduced.
Kubernetes is used to manage containers, automating their deployment, scaling, and oper-
ation. As the smallest unit of processing, containers can flexibly and efficiently manage
and allocate computing resources while ensuring resource isolation, allowing edge servers
to collaborate more effectively in handling complex business processes.

The contributions of this paper can be summarized as follows. Firstly, we propose
the use of status bytes to indicate the status of all memory blocks and introduce a novel
status-byte-assisted RDMA transmission mechanism that addresses the limitations of the
traditional sliding window mechanism. The proposed transmission mechanism optimizes
data transmission and provides synchronization methods for the transmission of multiple
data streams, and thus provides higher throughput, lower latency, and reduced resource
consumption. Moreover, this improvement enhances system scalability and reduces CPU
utilization. Secondly, we design and implement an efficient multi-task shared QP trans-
mission strategy, which achieves fine-grained control over memory blocks through status
byte transmission. This mechanism provides more stable throughput compared to the
sliding window method in multi-task real-time video streaming scenarios. Thirdly, in
conjunction with our data transmission mechanism, we use containers as the smallest
processing units to handle data and enable collaborative resource scheduling and allocation
among edge servers, thereby enhancing the multitask processing and system scalability of
edge computing.

The rest of the paper is organized as follows. Section 2 provides the background and
motivation for our work. In Section 3, we detail the design and implementation of the
status-byte-assisted RDMA transmission mechanism. Section 4 presents our experimental
evaluation results to illustrate the effectiveness of the proposed status-byte-assisted RDMA
transmission mechanism. Finally, Section 5 concludes the paper with a summary.

2. Related Works and Motivations
2.1. Edge Computing and RDMA Technology

Edge computing aims to deploy computing and storage resources closer to the data
source to meet the demands for low latency and high bandwidth [14]. However, the
computing and storage resources of edge servers are often limited, and the heterogeneous
computing resources severely complicate the ability of a single server to complete complex
business processes. When performing collaborative processing among edge servers, large
volumes of data need to be transmitted, making it crucial to coordinate the allocation and
scheduling of edge server resources to meet the requirements of multitask processing. The
works [15–17] demonstrate that the traditional TCP/IP network protocol stack requires
multiple copies of data between the kernel and user space during data transmission,
resulting in numerous limitations such as high transmission latency, low transmission
speed, low throughput, and significant CPU core resource consumption.

Appl. Sci. 2024, 14, 7437 3 of 24

The RDMA technology is a high-performance data transmission technology that
allows network nodes to directly access the memory of remote nodes. By bypassing the
operating system kernel, it significantly reduces transmission latency and CPU resource
consumption [18,19]. In the field of RDMA, many studies utilize RDMA’s one-sided
operation characteristics to improve system performance [20–22], while others focus on
enhancing RDMA’s scalability [23]. For example, Wang et al. [7] improve connection
scalability by minimizing on-chip data structures and their memory requirements through
protocol and architecture co-design. Huawei’s StaR [24] adopts stateless server connection
technology to reduce RDMA resource consumption on the server side, thereby alleviating
connection scalability issues. Mellanox attempts to limit the number of active network
connections through dynamic connection transport service technology [25], aiming to avoid
frequently triggering cache miss events in the network interface. Chen et al. s’ Scalable [26]
effectively mitigates resource contention through connection grouping and virtualization
mapping. However, in resource-limited situations, there is a need for improved memory
management and data synchronization methods [27].

Moreover, to further optimize resource scheduling and data processing in edge com-
puting environments, container technology has been introduced as the smallest processing
unit. K8s is employed to manage these containers, automating deployment, scaling, and
operations. Container technology can flexibly and efficiently manage and allocate com-
puting resources while ensuring isolation, enabling edge servers to better collaborate in
handling complex business processes.

2.2. Asymmetry in RDMA Unilateral Communication

The core of the RDMA protocol lies in its one-sided read-and-write capabilities, which
provide the foundation for efficient data transmission. RDMA’s one-sided operations can be
categorized into active and passive operations [28]. In active operations, the server initiates
RDMA operations to write data to or read data from the client. In passive operations,
the client initiates requests for data reads or writes, and then the server merely responds
to these requests passively. However, the resources consumed and latency incurred by
actively initiating RDMA operations differ from those involved in passively responding to
RDMA operations.

Due to the unique nature of RDMA communication, some data processing functions
are directly integrated into the RDMA NIC (RNIC) hardware, allowing RDMA operations
to bypass the operating system kernel and occur directly at the hardware level [29]. During
one-sided RDMA transmissions, passive RDMA operations (receive operations) are entirely
handled by the RNIC hardware. In contrast, active RDMA operations (initiate requests)
involve interaction between hardware and software. This process includes sending a work
request, waiting for an acknowledgment (ACK) from the remote RNIC, and generating
a completion queue entry (CQE) upon request completion, which requires data tracking
throughout to ensure successful operation.

This asymmetry, referred to as the asymmetry of RDMA one-sided communication,
implies that during data transmission, the initiating side (active party) bears most of the
processing burden, while the responding side (passive party) only needs to provide simple
responses. Consequently, under the same conditions, the cost of processing passive RDMA
operations is significantly lower than that of initiating active RDMA operations.

In edge computing, although servers work collaboratively, once the RDMA connection
is established, the receiving server often does not need to send large amounts of data to
the sending server. Therefore, in an RDMA-based data transmission system, the sending
server uses active RDMA operations exclusively, while the receiving server exclusively uses
passive RDMA operations. This approach not only conserves significant CPU and RNIC
resources for the receiving server but also improves throughput and supports a higher
number of RDMA connections.

Appl. Sci. 2024, 14, 7437 4 of 24

2.3. Motivations for the Status-Byte-Assisted RDMA Transmission Mechanism

Currently, there are two primary transmission mechanisms: traditional RDMA data
transmission and sliding window-based data transmission [11]. Traditional RDMA data
transmission requires at least three network interactions: memory address notification,
remote data reading/writing, and completion notification. This method incurs significant
overhead in communication control and is more suitable for scenarios where transmissions
are infrequent and latency is less critical.

As illustrated in Figure 1a, the sliding window technique proposed by Han et al.
requires only two RDMA interactions per transmission. This technique consists of two
phases: initialization and data transmission. In the initialization phase, the sender invokes
the memory pool initialization interface (RmInit). RmInit is an interface that sets up the
sliding window using the received memory pool information (address, length, and KEY).
This function of RmInit is to initialize the memory pool for use in the RDMA communication
and create a circular queue with n members, as shown in Figure 1b. The sender then uses
the remote memory write interface (RmWrite) to perform data transmission. RmWrite is
an interface that writes data to a specified remote memory location. The RDMA Write
With Immediate (Write_with_imm) operation is utilized, which includes immediate data to
notify the receiver about the data’s starting position and length. After the data has been
processed, the receiver sends an ACK notification to confirm receipt. Finally, the sender
calls the memory release interface (RmFree). RmFree is an interface that updates the sliding
window status by releasing the memory block and making it available for reuse.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 25

2.3. Motivations for the Status-Byte-Assisted RDMA Transmission Mechanism
Currently, there are two primary transmission mechanisms: traditional RDMA data

transmission and sliding window-based data transmission [11]. Traditional RDMA data
transmission requires at least three network interactions: memory address notification,
remote data reading/writing, and completion notification. This method incurs significant
overhead in communication control and is more suitable for scenarios where transmis-
sions are infrequent and latency is less critical.

As illustrated in Figure 1a, the sliding window technique proposed by Han et al. re-
quires only two RDMA interactions per transmission. This technique consists of two
phases: initialization and data transmission. In the initialization phase, the sender invokes
the memory pool initialization interface (RmInit). RmInit is an interface that sets up the
sliding window using the received memory pool information (address, length, and KEY).
This function of RmInit is to initialize the memory pool for use in the RDMA communica-
tion and create a circular queue with 𝑛 members, as shown in Figure 1b. The sender then
uses the remote memory write interface (RmWrite) to perform data transmission.
RmWrite is an interface that writes data to a specified remote memory location. The
RDMA Write With Immediate (Write_with_imm) operation is utilized, which includes
immediate data to notify the receiver about the data’s starting position and length. After
the data has been processed, the receiver sends an ACK notification to confirm receipt.
Finally, the sender calls the memory release interface (RmFree). RmFree is an interface
that updates the sliding window status by releasing the memory block and making it
available for reuse.

However, this sliding window transmission mechanism has several limitations. As
illustrated in Figure 1c, the sliding window tracks the usage status of all memory blocks
with two pointers, which necessitates that memory block sending and releasing memory
blocks follow a strict sequence, resulting in a lack of flexibility. During task transmission,
as shown in Figure 1d, if an ACK confirmation for a memory block is not received
promptly or the memory block at the receiver needs to remain in waiting status, the head
pointer cannot advance and the window position occupied by this data block cannot be
released for new data. When the tail pointer cycles back to this position, the system might
misinterpret the situation as no available memory blocks, despite actual availability, lead-
ing to transmission delays or even crashes due to the logical constraints of the sliding
window. Additionally, this transmission mechanism requires the receiver to actively re-
turn ACK notifications and the sender to periodically poll for ACK notifications. This
method not only consumes the receiver’s CPU resources but also results in poor real-time
performance.

Figure 1. (a) Data transmission process based on sliding window mechanism; (b–d) Memory anal-
ysis of sliding window transmission mechanism facing special status.

Figure 1. (a) Data transmission process based on sliding window mechanism; (b–d) Memory analysis
of sliding window transmission mechanism facing special status.

However, this sliding window transmission mechanism has several limitations. As
illustrated in Figure 1c, the sliding window tracks the usage status of all memory blocks
with two pointers, which necessitates that memory block sending and releasing memory
blocks follow a strict sequence, resulting in a lack of flexibility. During task transmission, as
shown in Figure 1d, if an ACK confirmation for a memory block is not received promptly or
the memory block at the receiver needs to remain in waiting status, the head pointer cannot
advance and the window position occupied by this data block cannot be released for new
data. When the tail pointer cycles back to this position, the system might misinterpret the
situation as no available memory blocks, despite actual availability, leading to transmission
delays or even crashes due to the logical constraints of the sliding window. Additionally,
this transmission mechanism requires the receiver to actively return ACK notifications and
the sender to periodically poll for ACK notifications. This method not only consumes the
receiver’s CPU resources but also results in poor real-time performance.

When processing the transmission of multiple data streams of various devices, the
receiver may require multiple processing threads, which may result in varying sequences
of ACK returns. Given that the release of sliding window memory blocks must follow

Appl. Sci. 2024, 14, 7437 5 of 24

a strict order, this can easily lead to confusion in the release of memory blocks, making
it difficult to handle the inputs from multiple devices effectively. If concurrency control
mechanisms are employed to synchronize access to resources, it will severely impact
RDMA performance, rendering it no better than single-threaded performance [30]. Thus,
when transmitting data streams from multiple devices, the sliding window transmission
mechanism typically requires establishing multiple RDMA connections, which consumes
significant RDMA NIC resources [31,32], potentially leading to performance bottlenecks. To
offer a comprehensive understanding of the key characteristics, advantages, and limitations
of existing RDMA transmission mechanisms, Table 1 presents a comparative analysis
of traditional RDMA transmission methods and the sliding window-based approach.
This comparison highlights the inherent trade-offs and challenges associated with each
mechanism, providing a foundation for discussing potential improvements.

Table 1. Comparison of various RDMA transmission mechanisms.

Method/Technique Name Key Features Advantages Limitations

Traditional
RDMATransmission

Dynamic memory block
allocation, requires at least
three network interactions

per transmission

Simple implementation,
high flexibility

High network latency and
communication overhead

Sliding Window-based
RDMA Transmission

Controls data transmission
using a sliding window

mechanism, requiring only
two RDMA interactions

Optimized for fixed window
size, reduces network

interactions

Memory blocks must be used
in order, consuming excessive
CPU and RNICA resources.

Building on this analysis, we propose to utilize status bytes to indicate the status of
each memory block and introduce a status-byte-assisted RDMA transmission mechanism.
By introducing the status byte, we achieve fine-grained control over memory blocks, reduce
the need for frequent memory status exchanges, and enhance multi-task transmission
efficiency and system scalability. Moreover, the proposed status-byte-assisted transmission
mechanism better manages memory block status, thereby overcoming the limitations of
the sliding window transmission mechanism and providing higher stability and scalability
in multi-device environments.

3. Proposed Status-Byte-Assisted RDMA Transmission Mechanism

In this section, the overall system architecture of the proposed status-byte-assisted
RDMA transmission system is first described. Then, the status-byte-assisted transmission
mechanism is illustrated in detail, covering the processes involved in data filling, sending,
receiving, synchronization, and processing. Next, this section details the specificity of the
status-byte-assisted RDMA transmission mechanism, which offers fine-grained control
over memory blocks. Finally, it explains the multi-device shared QP strategy to efficiently
handle data streams from multiple devices.

3.1. Overall System Architecture

Figure 2 provides an overview of the architecture of our proposed system, which
includes a cloud-edge collaborative global management platform and multiple edge servers.
The cloud-edge collaborative global management platform is a cloud-based system that
manages and allocates resources across all edge servers, ensuring efficient use of resources
and coordination among them. Each edge server is connected to several sensor devices such
as radar and cameras. When the data processing requirements of an edge server exceed
its processing capacity, the server sends a resource scheduling request to the cloud-edge
collaborative global management platform. The platform then responds with a resource
scheduling result based on the resource status of each edge server and the requested
amount of resources.

Appl. Sci. 2024, 14, 7437 6 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 25

the cloud-edge collaborative global management platform. The platform then responds
with a resource scheduling result based on the resource status of each edge server and the
requested amount of resources.

Based on the resource scheduling results, the edge server that sends the request is
designated as the data-sending end, while the edge server allocated for the collaborative
processing function is the data-receiving end. The data transmission between the sending
and receiving ends utilizes the proposed status-byte-assisted RDMA data transmission
mechanism to accelerate data transmission and synchronization. Moreover, Docker and
container technology, managed by K8s, are implemented at the data-receiving ends to
achieve flexible and efficient data processing workflows. By enabling collaborative data
processing among edge servers, the system can fully utilize the unique characteristics and
resources of each edge server.

Figure 2. Overall architecture of the proposed status-byte-assisted RDMA transmission system.

3.2. Design of the Status-Byte-Assisted RDMA Transmission Mechanism
3.2.1. Overview of the Status-Byte-Assisted RDMA Transmission Mechanism

In our proposed data transmission mechanism, the system is divided into two main
parts: the data-sending end and the data-receiving end. The sending end is responsible
for filling, sending, and synchronizing data, while the receiving end is responsible for re-
ceiving, storing, and processing data. Moreover, we propose a novel memory manage-
ment approach that utilizes a ‘status byte’ to track and indicate the current state of
memory blocks, which helps in managing data flow more effectively.

Initially, the sending end sets up status bytes to indicate the status of all memory
blocks. When sending data, these status bytes are transmitted along with the data. The
receiving end monitors for new data arrivals by checking the status bytes. The sending
end also retrieves the status bytes from the receiving end to track their states. This system
leverages status bytes to effectively manage synchronization between the sending and re-
ceiving ends.

Figure 3 illustrates the data transmission process based on the status-byte-assisted
RDMA transmission mechanism. As shown in Figure 3, the data-sending end first calls
the memory pool initialization interface (RmInit) to create the status byte. After that, it
uses RDMA Write requests (via the RmWrite interface) to continuously send data. When
no memory blocks are available, the sending end invokes the memory release interface

Figure 2. Overall architecture of the proposed status-byte-assisted RDMA transmission system.

Based on the resource scheduling results, the edge server that sends the request is
designated as the data-sending end, while the edge server allocated for the collaborative
processing function is the data-receiving end. The data transmission between the sending
and receiving ends utilizes the proposed status-byte-assisted RDMA data transmission
mechanism to accelerate data transmission and synchronization. Moreover, Docker and
container technology, managed by K8s, are implemented at the data-receiving ends to
achieve flexible and efficient data processing workflows. By enabling collaborative data
processing among edge servers, the system can fully utilize the unique characteristics and
resources of each edge server.

3.2. Design of the Status-Byte-Assisted RDMA Transmission Mechanism
3.2.1. Overview of the Status-Byte-Assisted RDMA Transmission Mechanism

In our proposed data transmission mechanism, the system is divided into two main
parts: the data-sending end and the data-receiving end. The sending end is responsible
for filling, sending, and synchronizing data, while the receiving end is responsible for re-
ceiving, storing, and processing data. Moreover, we propose a novel memory management
approach that utilizes a ‘status byte’ to track and indicate the current state of memory
blocks, which helps in managing data flow more effectively.

Initially, the sending end sets up status bytes to indicate the status of all memory
blocks. When sending data, these status bytes are transmitted along with the data. The
receiving end monitors for new data arrivals by checking the status bytes. The sending
end also retrieves the status bytes from the receiving end to track their states. This system
leverages status bytes to effectively manage synchronization between the sending and
receiving ends.

Figure 3 illustrates the data transmission process based on the status-byte-assisted
RDMA transmission mechanism. As shown in Figure 3, the data-sending end first calls
the memory pool initialization interface (RmInit) to create the status byte. After that, it
uses RDMA Write requests (via the RmWrite interface) to continuously send data. When
no memory blocks are available, the sending end invokes the memory release interface

Appl. Sci. 2024, 14, 7437 7 of 24

(RmFree) to issue the RDMA Read requests. These RDMA Read requests read the status
bytes of all memory blocks on the receiving end at once and store them in the second status
byte memory block. This method reduces communication overhead on the receiving end
and improves real-time performance since the sending end manages the status updates.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 25

(RmFree) to issue the RDMA Read requests. These RDMA Read requests read the status
bytes of all memory blocks on the receiving end at once and store them in the second
status byte memory block. This method reduces communication overhead on the receiv-
ing end and improves real-time performance since the sending end manages the status
updates.

Figure 4 illustrates the relationship between the status byte and the status byte
memory blocks on the sender and receiver ends. As shown in Figure 4, the data-sending
end includes N sending memory blocks, the first status byte memory block for storing
the usage status of the local memory blocks, and the second status byte memory block for
storing the usage status of the receiving end’s memory blocks. The data receiving end
includes N receiving memory blocks and the third status byte memory block for storing
the usage status of the local memory blocks. Here, the status bytes are used to describe
the usage status of memory blocks. The usage status of the N sending memory blocks is
represented by the status bytes stored in the first status byte memory block, while the
usage status of the N to receive memory blocks is represented by the status bytes stored
in the third status byte memory block. The structures of the first, second, and third status
byte memory blocks are shown in Figure 4.

Figure 3. Data transmission process based on the status-byte-assisted RDMA transmission mecha-
nism.

Figure 4. Relationship between status byte and status byte memory blocks on the sender and re-
ceiver end.

The status bytes for the sending memory blocks can have two statuses: 0 indicates
that the sending memory block does not contain data, while 1 indicates that it contains

Figure 3. Data transmission process based on the status-byte-assisted RDMA transmission mechanism.

Figure 4 illustrates the relationship between the status byte and the status byte memory
blocks on the sender and receiver ends. As shown in Figure 4, the data-sending end includes
N sending memory blocks, the first status byte memory block for storing the usage status
of the local memory blocks, and the second status byte memory block for storing the usage
status of the receiving end’s memory blocks. The data receiving end includes N receiving
memory blocks and the third status byte memory block for storing the usage status of
the local memory blocks. Here, the status bytes are used to describe the usage status of
memory blocks. The usage status of the N sending memory blocks is represented by the
status bytes stored in the first status byte memory block, while the usage status of the N
to receive memory blocks is represented by the status bytes stored in the third status byte
memory block. The structures of the first, second, and third status byte memory blocks are
shown in Figure 4.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 25

(RmFree) to issue the RDMA Read requests. These RDMA Read requests read the status
bytes of all memory blocks on the receiving end at once and store them in the second
status byte memory block. This method reduces communication overhead on the receiv-
ing end and improves real-time performance since the sending end manages the status
updates.

Figure 4 illustrates the relationship between the status byte and the status byte
memory blocks on the sender and receiver ends. As shown in Figure 4, the data-sending
end includes N sending memory blocks, the first status byte memory block for storing
the usage status of the local memory blocks, and the second status byte memory block for
storing the usage status of the receiving end’s memory blocks. The data receiving end
includes N receiving memory blocks and the third status byte memory block for storing
the usage status of the local memory blocks. Here, the status bytes are used to describe
the usage status of memory blocks. The usage status of the N sending memory blocks is
represented by the status bytes stored in the first status byte memory block, while the
usage status of the N to receive memory blocks is represented by the status bytes stored
in the third status byte memory block. The structures of the first, second, and third status
byte memory blocks are shown in Figure 4.

Figure 3. Data transmission process based on the status-byte-assisted RDMA transmission mecha-
nism.

Figure 4. Relationship between status byte and status byte memory blocks on the sender and re-
ceiver end.

The status bytes for the sending memory blocks can have two statuses: 0 indicates
that the sending memory block does not contain data, while 1 indicates that it contains

Figure 4. Relationship between status byte and status byte memory blocks on the sender and
receiver end.

Appl. Sci. 2024, 14, 7437 8 of 24

The status bytes for the sending memory blocks can have two statuses: 0 indicates that
the sending memory block does not contain data, while 1 indicates that it contains data.
The status bytes for the receiving memory blocks can have three statuses: 0 indicates that a
receiving memory block does not contain data, 1 indicates that it has data, and 2 indicates
that it is currently unavailable.

The structures of the sending memory block and receiving memory block used in the
proposed transmission mechanism are shown in Table 2. Each memory block, whether
sending or receiving, contains two sections: the data status section and the valid content
section. The data status section includes one byte for the device number and two bytes for
the data packet number, which facilitates sharing the QP and prevents data confusion.

Table 2. Structure of sending and receiving memory blocks.

device number (one byte) packet number (two bytes) valid data (fixed size)

3.2.2. Transmission Mode Selection

The sliding window transmission mechanism uses RDMA Write With Immediate to
transmit data, utilizing immediate data to notify the receiver of the data’s arrival. Although
this method is a one-sided RDMA transmission, it still requires the receiver to issue a receive
request, which generates a Completion Queue Entry (CQE). A CQE is a data structure used
in RDMA to indicate the completion of an operation. The location of the transmitted data is
determined by the immediate data in the CQE, which requires interaction with the receiver.
To address this issue, we propose to utilize two RDMA Writes for data transmission: the
first RDMA Write transmits the valid data and the second RDMA Write transmits the status
byte of the corresponding memory block to the third status byte memory block on the
receiving end. These two requests are sent using a linked list to minimize context switching.
The first request does not generate a CQE, while the second request uses inline data. This
approach effectively reduces the exchange between the RNIC and memory. Evidently,
this approach achieves true one-sided transmission without interacting with the receiver,
thereby enhancing transmission efficiency and reducing resource consumption.

3.2.3. Data-Filling Module

The data-filling module on the sender end is responsible for filling the data into the
sending memory blocks. First, it checks the status byte stored in the first status byte memory
block to determine whether there are available sending memory blocks. If available, the
data-filling process is executed.

Figure 5 shows the flowchart of the data-filling process. Specifically, the steps of the
data-filling process are as follows:

1. Check the status of the sending memory blocks: The filling thread first checks the
first status byte memory block to determine the status of the i-th sending memory
block. If the i-th memory block already contains data (status is 1), it needs to wait. If
the i-th memory block has no data (status is 0), the filling thread proceeds with the
data-filling operation;

2. Perform data-filling operation: During this operation, the filling thread writes the
device number and packet number into predefined positions within the block;

3. Update the status byte: Finally, after completing the data-filling operation, the filling
thread updates the status byte of the sending memory block in the first status byte
memory block to indicate that it contains data.

Appl. Sci. 2024, 14, 7437 9 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 25

Figure 5. Flowchart of the data-filling process.

3.2.4. Data-Sending Module
The data-sending module first checks the status byte stored in the second status byte

memory block to determine whether there are available receiving memory blocks. Next,
it checks the first status byte memory block to determine whether there are available send-
ing memory blocks, and then executes the data-sending process.

Figure 6 shows the flowchart of the data-sending process. Specifically, the steps of
the data-sending process are as follows:
1. Check the status of the receiving memory blocks: The sending thread examines the

second status byte memory block to determine the status of the receiving memory
blocks. If the j-th receiving memory block contains data (status is 1), it means there
are no available memory blocks, and synchronization operations must be performed
until the j-th receiving memory block is empty (status is 0);

2. Check the status of the sending memory blocks: The sending thread verifies the first
status byte memory block to determine the status of the j-th sending memory block.
If the j-th sending memory block is empty (status is 0), it waits for the filling thread
to fill the data. If the memory block contains data (status is 1), the sending thread
initiates RDMA Write requests to transmit the data stored in the sending memory
block to the j-th receiving memory block on the receiver end;

3. Update the status byte: The sending thread uses inline operations to update the status
byte in the third status byte memory block, reflecting that the j-th receiving memory
block now contains data. After the data sending is complete, the sending thread up-
dates the corresponding status byte of the sending memory block in the first status
byte memory block to indicate that it is empty. Additionally, the sending thread up-
dates the status byte in the second status byte memory block to reflect that the j-th
receiving memory block now contains data and waits for the receiver to process the
data.

Figure 5. Flowchart of the data-filling process.

3.2.4. Data-Sending Module

The data-sending module first checks the status byte stored in the second status byte
memory block to determine whether there are available receiving memory blocks. Next, it
checks the first status byte memory block to determine whether there are available sending
memory blocks, and then executes the data-sending process.

Figure 6 shows the flowchart of the data-sending process. Specifically, the steps of the
data-sending process are as follows:

1. Check the status of the receiving memory blocks: The sending thread examines the
second status byte memory block to determine the status of the receiving memory
blocks. If the j-th receiving memory block contains data (status is 1), it means there
are no available memory blocks, and synchronization operations must be performed
until the j-th receiving memory block is empty (status is 0);

2. Check the status of the sending memory blocks: The sending thread verifies the first
status byte memory block to determine the status of the j-th sending memory block.
If the j-th sending memory block is empty (status is 0), it waits for the filling thread
to fill the data. If the memory block contains data (status is 1), the sending thread
initiates RDMA Write requests to transmit the data stored in the sending memory
block to the j-th receiving memory block on the receiver end;

3. Update the status byte: The sending thread uses inline operations to update the status
byte in the third status byte memory block, reflecting that the j-th receiving memory
block now contains data. After the data sending is complete, the sending thread
updates the corresponding status byte of the sending memory block in the first status
byte memory block to indicate that it is empty. Additionally, the sending thread
updates the status byte in the second status byte memory block to reflect that the
j-th receiving memory block now contains data and waits for the receiver to process
the data.

Appl. Sci. 2024, 14, 7437 10 of 24Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 25

Figure 6. Flowchart of the data-sending process.

3.2.5. Data-Receiving Module
The data-receiving module determines whether there are available receiving memory

blocks by checking the status byte stored in the third status byte memory block. If there
are available receiving memory blocks, the data-receiving process is executed.

Figure 7 shows the flowchart of the data-receiving process. Specifically, the steps of
the data-receiving process are as follows:
1. Check the status of the receiving memory blocks: The receiving thread checks the

third status byte memory block to determine the status of the j-th receiving memory
block. If the j-th receiving memory block is empty (status is 0), it means no data have
arrived, and the thread sleeps for a fixed time before querying again;

2. Perform the data processing operation: If the j-th receiving memory block contains
data (status is 1), the receiving thread performs the data processing operation. Before
executing the data processing operation, the receiving thread extracts the contents of
the first predetermined position in the j-th receiving memory block to obtain the
device number and then extracts the contents of the second predetermined position
to obtain the packet number;

3. Update the status byte: After completing the data processing operation, the receiving
thread updates the status byte in the third status byte memory block to indicate that
the j-th receiving memory block is empty.

Figure 7. Flowchart of the data-receiving process.

Figure 6. Flowchart of the data-sending process.

3.2.5. Data-Receiving Module

The data-receiving module determines whether there are available receiving memory
blocks by checking the status byte stored in the third status byte memory block. If there are
available receiving memory blocks, the data-receiving process is executed.

Figure 7 shows the flowchart of the data-receiving process. Specifically, the steps of
the data-receiving process are as follows:

1. Check the status of the receiving memory blocks: The receiving thread checks the
third status byte memory block to determine the status of the j-th receiving memory
block. If the j-th receiving memory block is empty (status is 0), it means no data have
arrived, and the thread sleeps for a fixed time before querying again;

2. Perform the data processing operation: If the j-th receiving memory block contains
data (status is 1), the receiving thread performs the data processing operation. Before
executing the data processing operation, the receiving thread extracts the contents
of the first predetermined position in the j-th receiving memory block to obtain the
device number and then extracts the contents of the second predetermined position
to obtain the packet number;

3. Update the status byte: After completing the data processing operation, the receiving
thread updates the status byte in the third status byte memory block to indicate that
the j-th receiving memory block is empty.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 25

Figure 6. Flowchart of the data-sending process.

3.2.5. Data-Receiving Module
The data-receiving module determines whether there are available receiving memory

blocks by checking the status byte stored in the third status byte memory block. If there
are available receiving memory blocks, the data-receiving process is executed.

Figure 7 shows the flowchart of the data-receiving process. Specifically, the steps of
the data-receiving process are as follows:
1. Check the status of the receiving memory blocks: The receiving thread checks the

third status byte memory block to determine the status of the j-th receiving memory
block. If the j-th receiving memory block is empty (status is 0), it means no data have
arrived, and the thread sleeps for a fixed time before querying again;

2. Perform the data processing operation: If the j-th receiving memory block contains
data (status is 1), the receiving thread performs the data processing operation. Before
executing the data processing operation, the receiving thread extracts the contents of
the first predetermined position in the j-th receiving memory block to obtain the
device number and then extracts the contents of the second predetermined position
to obtain the packet number;

3. Update the status byte: After completing the data processing operation, the receiving
thread updates the status byte in the third status byte memory block to indicate that
the j-th receiving memory block is empty.

Figure 7. Flowchart of the data-receiving process. Figure 7. Flowchart of the data-receiving process.

Appl. Sci. 2024, 14, 7437 11 of 24

3.2.6. Data Synchronization Module

The synchronization module performs operations when no available receiving memory
blocks on the sender end. The specific process is as follows: the sender uses an RDMA
Read request to obtain the status bytes of the receiving memory block from the receiver
end and saves the retrieved status bytes in the second status byte memory block.

3.2.7. Data-Processing Module

During the data-receiving phase, the data from the same sensing device are stored
in the same directory based on the device number and arranged sequentially by packet
number. By using container volume mounting technology for data sharing, the data from
different devices are mounted into separate containers for processing. By allocating differ-
ent resources to different containers, the containers are treated as the smallest computing
units for data processing.

To enhance the efficiency and scalability of container management, K8s is utilized to
automate the deployment, scaling, and operations of containers, ensuring optimal resource
utilization and fault tolerance. By managing the lifecycle of containers, K8s simplifies the
orchestration of containerized data processing applications and thus allows the system to
handle dynamic workloads more effectively. Thus, this approach facilitates collaborative
data processing by the edge server and enhances the scalability of the system.

3.2.8. Stateless Connection at the Receiving End

Both the synchronization module and the sending module are initiated by the sender
through RDMA operations, and the receiver passively receives the data. Since the receiver
does not perform sending operations, it does not need to retain connection information
or maintain the sender’s connection status, thereby freeing up RNIC resources on the
receiver end.

3.3. Specificity of the Status-Byte-Assisted Transmission

In the proposed status-byte-assisted transmission mechanism, an innovative memory
management solution is proposed by implementing the concept of status byte, as illustrated
in Figure 8. The status byte indicates the usage status of a memory block: 0 signifies the
memory block is available, 1 indicates the memory block contains data, and 2 means the
memory block is currently unavailable. Compared with the sliding window transmission
mechanism, the status-byte-assisted transmission can handle memory blocks more flexibly.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 25

3.2.6. Data Synchronization Module
The synchronization module performs operations when no available receiving

memory blocks on the sender end. The specific process is as follows: the sender uses an
RDMA Read request to obtain the status bytes of the receiving memory block from the
receiver end and saves the retrieved status bytes in the second status byte memory block.

3.2.7. Data-Processing Module
During the data-receiving phase, the data from the same sensing device are stored in

the same directory based on the device number and arranged sequentially by packet num-
ber. By using container volume mounting technology for data sharing, the data from dif-
ferent devices are mounted into separate containers for processing. By allocating different
resources to different containers, the containers are treated as the smallest computing
units for data processing.

To enhance the efficiency and scalability of container management, K8s is utilized to
automate the deployment, scaling, and operations of containers, ensuring optimal re-
source utilization and fault tolerance. By managing the lifecycle of containers, K8s simpli-
fies the orchestration of containerized data processing applications and thus allows the
system to handle dynamic workloads more effectively. Thus, this approach facilitates col-
laborative data processing by the edge server and enhances the scalability of the system.

3.2.8. Stateless Connection at the Receiving End
Both the synchronization module and the sending module are initiated by the sender

through RDMA operations, and the receiver passively receives the data. Since the receiver
does not perform sending operations, it does not need to retain connection information or
maintain the sender’s connection status, thereby freeing up RNIC resources on the re-
ceiver end.

3.3. Specificity of the Status-Byte-Assisted Transmission
In the proposed status-byte-assisted transmission mechanism, an innovative memory

management solution is proposed by implementing the concept of status byte, as illus-
trated in Figure 8. The status byte indicates the usage status of a memory block: 0 signifies
the memory block is available, 1 indicates the memory block contains data, and 2 means
the memory block is currently unavailable. Compared with the sliding window transmis-
sion mechanism, the status-byte-assisted transmission can handle memory blocks more
flexibly.

Figure 8. Memory status in the status-byte-assisted transmission mechanism.

In burst scenarios, if the current receiving memory block is unavailable, the status
byte of the corresponding memory block can be marked as 2. This mechanism allows the

Figure 8. Memory status in the status-byte-assisted transmission mechanism.

In burst scenarios, if the current receiving memory block is unavailable, the status
byte of the corresponding memory block can be marked as 2. This mechanism allows the
sending thread to skip the unavailable memory block and continue sending other memory

Appl. Sci. 2024, 14, 7437 12 of 24

blocks, thereby avoiding the blocking of threads. This flexibility makes the transmission
mechanism more suitable for various edge-computing data transmission scenarios.

3.4. Multi-Device Shared QP Strategy

In the proposed status-byte-assisted RDMA transmission mechanism, the system
scalability is improved by introducing device numbers and packet numbers to manage
the memory blocks. Figure 9 provides a comparison of data transmission methods for
different transmission mechanisms in the multitasking scenarios. As shown in Figure 9a,
the existing sliding window RDMA transmission techniques struggle to support multi-
threaded sending and receiving on both ends when transmitting multiple data streams from
multiple devices. The sliding window approach establishes multiple RDMA connections,
which significantly consumes the on-chip cache resources of the RDMA NIC. When the
number of devices is large, low-speed PCIe channels may be required to retrieve connection
status from main memory, which will lead to performance bottlenecks. Additionally,
due to the uncertainty in the sending times of data blocks, multiple memory blocks may
be sent simultaneously or not at all, resulting in significant fluctuations in the system’s
instantaneous throughput and low bandwidth utilization.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 25

sending thread to skip the unavailable memory block and continue sending other memory
blocks, thereby avoiding the blocking of threads. This flexibility makes the transmission
mechanism more suitable for various edge-computing data transmission scenarios.

3.4. Multi-Device Shared QP Strategy
In the proposed status-byte-assisted RDMA transmission mechanism, the system

scalability is improved by introducing device numbers and packet numbers to manage
the memory blocks. Figure 9 provides a comparison of data transmission methods for dif-
ferent transmission mechanisms in the multitasking scenarios. As shown in Figure 9a, the
existing sliding window RDMA transmission techniques struggle to support multi-
threaded sending and receiving on both ends when transmitting multiple data streams
from multiple devices. The sliding window approach establishes multiple RDMA connec-
tions, which significantly consumes the on-chip cache resources of the RDMA NIC. When
the number of devices is large, low-speed PCIe channels may be required to retrieve con-
nection status from main memory, which will lead to performance bottlenecks. Addition-
ally, due to the uncertainty in the sending times of data blocks, multiple memory blocks
may be sent simultaneously or not at all, resulting in significant fluctuations in the sys-
tem’s instantaneous throughput and low bandwidth utilization.

To address this issue, as shown in Figure 9b, the proposed status-byte-assisted
RDMA transmission technology enables multiple tasks to share a single RNIC QP, in con-
trast to existing multi-task RDMA transmission methods where each task uses a separate
QP connection. Although the multi-task QP sharing can lead to parallel access to QP re-
sources and result in resource contention, the status-byte-assisted RDMA transmission
mechanism serializes the process of filling device data into the RNIC QP resource. During
data filling, the filling thread adds device numbers and packet numbers to the memory
blocks. The receiving end identifies data from different devices using device numbers and
arranges the data in sequence based on the packet number to ensure data reliability.

Moreover, by utilizing container mounting technology to share transmitted data
among containers for processing, a single-edge server can simultaneously control multi-
ple devices. Additionally, K8s is employed to manage these containers, which automates
the deployment, scaling, and operations. This approach addresses the issue of low re-
source utilization and poor scalability typically encountered with traditional RDMA tech-
nologies when transmitting data streams from multiple devices.

Figure 9. Comparison of data transmission methods for different transmission mechanisms facing
multitasking.
Figure 9. Comparison of data transmission methods for different transmission mechanisms facing
multitasking.

To address this issue, as shown in Figure 9b, the proposed status-byte-assisted RDMA
transmission technology enables multiple tasks to share a single RNIC QP, in contrast
to existing multi-task RDMA transmission methods where each task uses a separate QP
connection. Although the multi-task QP sharing can lead to parallel access to QP resources
and result in resource contention, the status-byte-assisted RDMA transmission mechanism
serializes the process of filling device data into the RNIC QP resource. During data filling,
the filling thread adds device numbers and packet numbers to the memory blocks. The
receiving end identifies data from different devices using device numbers and arranges the
data in sequence based on the packet number to ensure data reliability.

Moreover, by utilizing container mounting technology to share transmitted data
among containers for processing, a single-edge server can simultaneously control multiple
devices. Additionally, K8s is employed to manage these containers, which automates the
deployment, scaling, and operations. This approach addresses the issue of low resource
utilization and poor scalability typically encountered with traditional RDMA technologies
when transmitting data streams from multiple devices.

Appl. Sci. 2024, 14, 7437 13 of 24

4. Results and Analysis

In this section, comprehensive test results are presented to demonstrate the effective-
ness of the proposed status-byte-assisted RDMA transmission mechanism and compare it
with existing RDMA transmission techniques.

4.1. Test Environment and Experimental Design
4.1.1. Test Environment

The experiments were conducted on two x86 servers, each equipped with dual Intel
Xeon Gold 2650 CPUs. Both servers ran the Ubuntu 22.04 LTS operating system with kernel
version 6.2.0-33-generic. Each server was fitted with a 100 Gbps Mellanox ConnectX-5
InfiniBand NIC and connected via 100 Gbps fiber.

4.1.2. Experimental Design

The experiments were carried out in the following two parts to evaluate and verify the
performance and characteristics of the status-byte-assisted RDMA transmission mechanism:

1. Comparison of transmission mechanisms: This part compares the performance of
the status-byte-assisted RDMA transmission mechanism and the sliding window
transmission mechanism in terms of multiple metrics, including synchronization
control latency, transmission latency, throughput, and CPU utilization.

2. Validation of transmission mechanism specificity: This part aims to verify the advan-
tages of the status-byte-assisted RDMA transmission mechanism in terms of flexible
memory block control and its application capabilities in multi-task data transmis-
sion scenarios.

The goal of the above experiments is to comprehensively evaluate the effectiveness of
the status-byte-assisted RDMA transmission mechanism in an edge computing environ-
ment and provide a detailed performance comparison with the existing methods.

4.2. Comparative Testing of Transmission Mechanisms and Results Analysis

In the comparison tests, the procedures for data filling and processing were standard-
ized in both transmission mechanisms, so the duration of these steps was not factored into
the results. Each sender and receiver was allocated three memory blocks for data transmis-
sion and reception. This choice of three memory blocks was intended to simulate a realistic
scenario where at least two blocks are necessary for continuous data transmission from
the sender, with an additional block providing redundancy to address potential delays in
data processing by the receiver. This configuration helps to balance sending and receiving
activities. Furthermore, the data packet sizes varied from 64 B to 8 MB to cover a broad
spectrum of transmission scenarios. In addition, the upper limit of 8 MB was chosen to
ensure fairness in the tests. These considerations were made to thoroughly evaluate the
proposed mechanism under practical conditions.

4.2.1. Synchronization Control Delay

For the sliding window transmission mechanism, only the time from when the receiver
successfully polled to the start of the next poll was calculated, excluding the time for the
sender to process the ACK. This is because the sender handles ACKs in real time using
a dedicated ACK polling thread, which does not interrupt the sending thread. Since the
measurement steps for synchronization control latency and the amount of transmitted data
remain constant regardless of the number of memory blocks, the communication control
latency for the sliding window transmission mechanism was measured only once. In
contrast, the status-byte-assisted RDMA transmission mechanism blocks the sending thread
during communication control operations. Therefore, the time for the receiver to modify
the status byte is negligible, while the amount of communication control transmission data
varies with the number of memory blocks. As a result, the communication control latency

Appl. Sci. 2024, 14, 7437 14 of 24

for the status-byte-assisted RDMA transmission mechanism was remeasured each time the
number of memory blocks changed.

Figure 10 compares the synchronization control latency of various transmission mech-
anisms with different numbers of memory blocks. As shown in Figure 10, the synchroniza-
tion control latency of the proposed status-byte-assisted RDMA transmission mechanism is
significantly lower than that of the sliding window transmission mechanism for different
number of memory blocks. For instance, with three memory blocks, the control latency for
the status-byte-assisted RDMA transmission mechanism is 5.1 µs, compared to 70 µs for
the sliding window transmission mechanism. This discrepancy arises because the sliding
window transmission mechanism employs RDMA Send to transmit synchronization data,
a bidirectional operation that requires both sending and receiving ends to generate Com-
pletion Queue Entries (CQEs), resulting in increased latency. Moreover, the control latency
of the sliding window transmission mechanism does not vary with window size as it im-
mediately returns an ACK after processing a memory block. In contrast, the control latency
of the status-byte-assisted RDMA transmission mechanism increases with the number of
memory blocks because it retrieves the status byte for all memory blocks simultaneously.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 25

transmission data varies with the number of memory blocks. As a result, the communica-
tion control latency for the status-byte-assisted RDMA transmission mechanism was re-
measured each time the number of memory blocks changed.

Figure 10 compares the synchronization control latency of various transmission
mechanisms with different numbers of memory blocks. As shown in Figure 10, the syn-
chronization control latency of the proposed status-byte-assisted RDMA transmission
mechanism is significantly lower than that of the sliding window transmission mecha-
nism for different number of memory blocks. For instance, with three memory blocks, the
control latency for the status-byte-assisted RDMA transmission mechanism is 5.1 µs, com-
pared to 70 µs for the sliding window transmission mechanism. This discrepancy arises
because the sliding window transmission mechanism employs RDMA Send to transmit
synchronization data, a bidirectional operation that requires both sending and receiving
ends to generate Completion Queue Entries (CQEs), resulting in increased latency. More-
over, the control latency of the sliding window transmission mechanism does not vary
with window size as it immediately returns an ACK after processing a memory block. In
contrast, the control latency of the status-byte-assisted RDMA transmission mechanism
increases with the number of memory blocks because it retrieves the status byte for all
memory blocks simultaneously.

Figure 10. Comparison of synchronization control latency of various transmission mechanisms with
different number of memory blocks.

4.2.2. Synchronization Control Delay Distribution
The status-byte-assisted RDMA transmission mechanism utilizes RDMA Read,

which blocks the sending thread during the transmission of synchronization data. This
approach results in relatively stable synchronization control latency. In contrast, the slid-
ing window transmission mechanism uses RDMA Send, with the receiver sending syn-
chronization data. This approach does not block the sending thread, and thus, it makes
transmission latency susceptible to sender-induced fluctuations and leads to greater vari-
ance. Figure 11 illustrates the distribution of synchronization control latency versus the
number of transmissions: (a) the sliding window RDMA transmission mechanism and (b)
the status-byte-assisted RDMA transmission mechanism. As can be seen from Figure 11,
under identical test conditions, the status-byte-assisted transmission mechanism exhibits
consistent latency with significantly smaller fluctuations compared to the sliding window
mechanism.

Figure 10. Comparison of synchronization control latency of various transmission mechanisms with
different number of memory blocks.

4.2.2. Synchronization Control Delay Distribution

The status-byte-assisted RDMA transmission mechanism utilizes RDMA Read, which
blocks the sending thread during the transmission of synchronization data. This approach
results in relatively stable synchronization control latency. In contrast, the sliding window
transmission mechanism uses RDMA Send, with the receiver sending synchronization
data. This approach does not block the sending thread, and thus, it makes transmission
latency susceptible to sender-induced fluctuations and leads to greater variance. Figure 11
illustrates the distribution of synchronization control latency versus the number of trans-
missions: (a) the sliding window RDMA transmission mechanism and (b) the status-byte-
assisted RDMA transmission mechanism. As can be seen from Figure 11, under identical
test conditions, the status-byte-assisted transmission mechanism exhibits consistent latency
with significantly smaller fluctuations compared to the sliding window mechanism.

Appl. Sci. 2024, 14, 7437 15 of 24Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 25

Figure 11. Distribution of synchronization control latency versus the number of transmissions: (a)
the sliding window RDMA transmission mechanism and (b) the status-byte-assisted RDMA trans-
mission mechanism.

4.2.3. Comparison of Transmission Delay
During the program initialization phase, the size of memory blocks used for trans-

mission varies from 64 B to 8 MB. Subsequently, the latency of both the sliding window
RDMA transmission mechanism and the status-byte-assisted RDMA transmission mech-
anism for transmitting a single memory block is measured. The transmission delay of each
mechanism is recorded and averaged over 100 independent experiments.

Figure 12 compares the transmission delay of various RDMA transmission mecha-
nisms under different packet sizes. As illustrated in Figure 12, the transmission latency of
the status-byte-assisted RDMA transmission mechanism is reduced by 2 ns to 3.4 µs com-
pared to the sliding window RDMA transmission mechanism. The sliding window
RDMA transmission mechanism uses RDMA Write With Immediate to transmit data,
which requires the receiver to issue a receive request and generate a CQE. This results in
significant latency due to interactions with the receiver. In contrast, the status-byte-as-
sisted RDMA transmission mechanism performs two RDMA Write operations in a linked
list: the first request does not generate a CQE and the second request uses inline data
transmission. This approach reduces both NIC and memory exchanges, eliminates the
need for receiver interaction, and thus achieves lower transmission latency due to its true
unilateral nature.

Figure 12. Comparison of the transmission delay for various RDMA transmission mechanisms un-
der different packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes
(8 KB to 8 MB).

4.2.4. Throughput Test
For different packet sizes, the time taken to 1000 consecutive transmissions was meas-

ured for both RDMA transmission mechanisms. This measurement was repeated 10 times

Figure 11. Distribution of synchronization control latency versus the number of transmissions:
(a) the sliding window RDMA transmission mechanism and (b) the status-byte-assisted RDMA
transmission mechanism.

4.2.3. Comparison of Transmission Delay

During the program initialization phase, the size of memory blocks used for trans-
mission varies from 64 B to 8 MB. Subsequently, the latency of both the sliding window
RDMA transmission mechanism and the status-byte-assisted RDMA transmission mecha-
nism for transmitting a single memory block is measured. The transmission delay of each
mechanism is recorded and averaged over 100 independent experiments.

Figure 12 compares the transmission delay of various RDMA transmission mecha-
nisms under different packet sizes. As illustrated in Figure 12, the transmission latency
of the status-byte-assisted RDMA transmission mechanism is reduced by 2 ns to 3.4 µs
compared to the sliding window RDMA transmission mechanism. The sliding window
RDMA transmission mechanism uses RDMA Write With Immediate to transmit data, which
requires the receiver to issue a receive request and generate a CQE. This results in significant
latency due to interactions with the receiver. In contrast, the status-byte-assisted RDMA
transmission mechanism performs two RDMA Write operations in a linked list: the first
request does not generate a CQE and the second request uses inline data transmission.
This approach reduces both NIC and memory exchanges, eliminates the need for receiver
interaction, and thus achieves lower transmission latency due to its true unilateral nature.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 25

Figure 11. Distribution of synchronization control latency versus the number of transmissions: (a)
the sliding window RDMA transmission mechanism and (b) the status-byte-assisted RDMA trans-
mission mechanism.

4.2.3. Comparison of Transmission Delay
During the program initialization phase, the size of memory blocks used for trans-

mission varies from 64 B to 8 MB. Subsequently, the latency of both the sliding window
RDMA transmission mechanism and the status-byte-assisted RDMA transmission mech-
anism for transmitting a single memory block is measured. The transmission delay of each
mechanism is recorded and averaged over 100 independent experiments.

Figure 12 compares the transmission delay of various RDMA transmission mecha-
nisms under different packet sizes. As illustrated in Figure 12, the transmission latency of
the status-byte-assisted RDMA transmission mechanism is reduced by 2 ns to 3.4 µs com-
pared to the sliding window RDMA transmission mechanism. The sliding window
RDMA transmission mechanism uses RDMA Write With Immediate to transmit data,
which requires the receiver to issue a receive request and generate a CQE. This results in
significant latency due to interactions with the receiver. In contrast, the status-byte-as-
sisted RDMA transmission mechanism performs two RDMA Write operations in a linked
list: the first request does not generate a CQE and the second request uses inline data
transmission. This approach reduces both NIC and memory exchanges, eliminates the
need for receiver interaction, and thus achieves lower transmission latency due to its true
unilateral nature.

Figure 12. Comparison of the transmission delay for various RDMA transmission mechanisms un-
der different packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes
(8 KB to 8 MB).

4.2.4. Throughput Test
For different packet sizes, the time taken to 1000 consecutive transmissions was meas-

ured for both RDMA transmission mechanisms. This measurement was repeated 10 times

Figure 12. Comparison of the transmission delay for various RDMA transmission mechanisms under
different packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes (8 KB
to 8 MB).

Appl. Sci. 2024, 14, 7437 16 of 24

4.2.4. Throughput Test

For different packet sizes, the time taken to 1000 consecutive transmissions was
measured for both RDMA transmission mechanisms. This measurement was repeated
10 times to calculate the average throughput. Figure 13 presents a comparison of throughput
between the different RDMA transmission mechanisms. As illustrated in Figure 13, the
throughput of the status-byte-assisted RDMA transmission mechanism is significantly
higher than that of the sliding window RDMA transmission mechanism, especially for
smaller packet sizes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 25

to calculate the average throughput. Figure 13 presents a comparison of throughput be-
tween the different RDMA transmission mechanisms. As illustrated in Figure 13, the
throughput of the status-byte-assisted RDMA transmission mechanism is significantly
higher than that of the sliding window RDMA transmission mechanism, especially for
smaller packet sizes.

To illustrate throughput for different data packet sizes, Figure 14 compares the
throughput of different RDMA transmission mechanisms: (a) for small data packet sizes
(64 B to 4 KB) and (b) for large data packet sizes (8 KB to 22 MB). As shown in Figure 14,
the throughput of the proposed status-byte-assisted RDMA transmission mechanism is
notably higher than that of the sliding window RDMA transmission mechanism, espe-
cially for smaller packet sizes. For packets smaller than 1 KB, the sliding window RDMA
transmission mechanism experiences high control latency that often exceeds the actual
data transmission time, severely limiting its throughput. In contrast, the status-byte-as-
sisted RDMA transmission mechanism shifts synchronization control to the sender and
employs low-latency unilateral operations to query control information in real time, sig-
nificantly reducing the control latency. This results in higher throughput for small packet
sizes. As the packet size increases, the transmission time lengthens, which reduces the
number of packets transmitted per unit of time. Consequently, the effect of communica-
tion control latency on throughput diminishes and the throughput of both transmission
mechanisms converges. The throughput peaks when transmitting packets of 1 MB. How-
ever, for packets larger than 1 MB, the throughput tends to stabilize at approximately 7000
MB/s due to the increased overhead of retransmissions for excessively large packets.

In summary, the status-byte-assisted RDMA transmission mechanism significantly
outperforms the sliding window RDMA transmission mechanism for packet sizes smaller
than 512 KB, and the throughput of both transmission mechanisms becomes relatively
similar for packet sizes larger than 512 KB.

Figure 13. Comparison of the throughput of various RDMA transmission mechanisms for different
packet sizes.

Figure 13. Comparison of the throughput of various RDMA transmission mechanisms for different
packet sizes.

To illustrate throughput for different data packet sizes, Figure 14 compares the through-
put of different RDMA transmission mechanisms: (a) for small data packet sizes (64 B
to 4 KB) and (b) for large data packet sizes (8 KB to 22 MB). As shown in Figure 14, the
throughput of the proposed status-byte-assisted RDMA transmission mechanism is notably
higher than that of the sliding window RDMA transmission mechanism, especially for
smaller packet sizes. For packets smaller than 1 KB, the sliding window RDMA trans-
mission mechanism experiences high control latency that often exceeds the actual data
transmission time, severely limiting its throughput. In contrast, the status-byte-assisted
RDMA transmission mechanism shifts synchronization control to the sender and employs
low-latency unilateral operations to query control information in real time, significantly
reducing the control latency. This results in higher throughput for small packet sizes. As
the packet size increases, the transmission time lengthens, which reduces the number of
packets transmitted per unit of time. Consequently, the effect of communication control
latency on throughput diminishes and the throughput of both transmission mechanisms
converges. The throughput peaks when transmitting packets of 1 MB. However, for packets
larger than 1 MB, the throughput tends to stabilize at approximately 7000 MB/s due to the
increased overhead of retransmissions for excessively large packets.

Appl. Sci. 2024, 14, 7437 17 of 24Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 25

Figure 14. Comparison of the throughput of various RDMA transmission mechanisms for different
packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes (8 KB to 22
MB).

4.2.5. CPU Utilization Analysis
Optimizing CPU utilization is a core objective in improving the RDMA transmission

mechanism’s efficiency, particularly under high-load conditions. Therefore, CPU utiliza-
tion serves as a key indicator of system performance and resource management.

During the throughput test experiments, the CPU utilization on the sender side was
recorded. Figure 15 compares CPU utilization for various RDMA transmission mecha-
nisms at the sending end for different data packet sizes. As shown in Figure 15, the CPU
utilization of the status-byte-assisted RDMA transmission mechanism is consistently
lower than that of the sliding window RDMA transmission mechanism. This is because
the sliding window RDMA transmission mechanism requires additional ACK receiving
threads on the sender end to handle ACKs promptly, which results in higher CPU utiliza-
tion. In contrast, the status-byte-assisted RDMA transmission mechanism eliminates the
need for extra ACK receiving threads by leveraging one-sided operations, resulting in a
20% reduction in average CPU utilization.

Figure 15. Comparison of CPU utilization for various RDMA transmission mechanisms at the send-
ing end for different data packet sizes.

Figure 14. Comparison of the throughput of various RDMA transmission mechanisms for different
packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes (8 KB to 22 MB).

In summary, the status-byte-assisted RDMA transmission mechanism significantly
outperforms the sliding window RDMA transmission mechanism for packet sizes smaller
than 512 KB, and the throughput of both transmission mechanisms becomes relatively
similar for packet sizes larger than 512 KB.

4.2.5. CPU Utilization Analysis

Optimizing CPU utilization is a core objective in improving the RDMA transmission
mechanism’s efficiency, particularly under high-load conditions. Therefore, CPU utilization
serves as a key indicator of system performance and resource management.

During the throughput test experiments, the CPU utilization on the sender side was
recorded. Figure 15 compares CPU utilization for various RDMA transmission mechanisms
at the sending end for different data packet sizes. As shown in Figure 15, the CPU utilization
of the status-byte-assisted RDMA transmission mechanism is consistently lower than that
of the sliding window RDMA transmission mechanism. This is because the sliding window
RDMA transmission mechanism requires additional ACK receiving threads on the sender
end to handle ACKs promptly, which results in higher CPU utilization. In contrast, the
status-byte-assisted RDMA transmission mechanism eliminates the need for extra ACK
receiving threads by leveraging one-sided operations, resulting in a 20% reduction in
average CPU utilization.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 25

Figure 14. Comparison of the throughput of various RDMA transmission mechanisms for different
packet sizes: (a) small data packet sizes (64 B to 4 KB) and (b) large data packet sizes (8 KB to 22
MB).

4.2.5. CPU Utilization Analysis
Optimizing CPU utilization is a core objective in improving the RDMA transmission

mechanism’s efficiency, particularly under high-load conditions. Therefore, CPU utiliza-
tion serves as a key indicator of system performance and resource management.

During the throughput test experiments, the CPU utilization on the sender side was
recorded. Figure 15 compares CPU utilization for various RDMA transmission mecha-
nisms at the sending end for different data packet sizes. As shown in Figure 15, the CPU
utilization of the status-byte-assisted RDMA transmission mechanism is consistently
lower than that of the sliding window RDMA transmission mechanism. This is because
the sliding window RDMA transmission mechanism requires additional ACK receiving
threads on the sender end to handle ACKs promptly, which results in higher CPU utiliza-
tion. In contrast, the status-byte-assisted RDMA transmission mechanism eliminates the
need for extra ACK receiving threads by leveraging one-sided operations, resulting in a
20% reduction in average CPU utilization.

Figure 15. Comparison of CPU utilization for various RDMA transmission mechanisms at the send-
ing end for different data packet sizes. Figure 15. Comparison of CPU utilization for various RDMA transmission mechanisms at the sending

end for different data packet sizes.

Appl. Sci. 2024, 14, 7437 18 of 24

This reduction in CPU utilization directly supports our research objective of enhancing
resource efficiency in RDMA transmission, especially in edge computing environments han-
dling large-scale data transmissions. The findings demonstrate that the status-byte-assisted
mechanism not only reduces computational overhead but also significantly enhances sys-
tem performance under high-load conditions, thereby offering considerable potential for
real-world applications.

4.2.6. NIC Resource Utilization Analysis

In terms of RDMA resource utilization, the status-byte-assisted RDMA transmission
mechanism demonstrates high efficiency and significantly reduces RNIC resource usage on
the receiver end. This is because the status-byte-assisted RDMA transmission mechanism
utilizes one-sided operations and implements a stateless transmission strategy on the
receiver end, which eliminates the need to maintain QP connection status and requires only
maintaining locally registered memory block information. Consequently, it greatly reduces
the consumption of RNIC on-chip resources on the receiver end.

Figures 16 and 17 compare the minimum RNIC resource consumption required during
transmission for different RDMA transmission mechanisms. As shown in these figures, the
RNIC resource consumption of the status-byte-assisted RDMA transmission mechanism is
significantly lower than that of the sliding window RDMA transmission mechanism. In
the sliding window transmission mechanism, to prevent the receiver from continuously
sending ACKs, the sender initially issues three consecutive receive requests. Additionally,
the sender may issue an RDMA Write With Immediate request and a receive request
simultaneously, generating two CQEs. Consequently, the receiver might continuously
receive three requests, so the minimum capacity required for both the receive queue and
the completion queue is three. Overall, to reduce processing latency, the sender in the
sliding window RDMA transmission mechanism initiates an ACK receiving thread and sets
up two CQ queues to maintain continuous send and receive operations. Both sides issue
multiple receive requests during initialization, which increases the consumption of RNIC
on-chip resources. In contrast, in the status-byte-assisted RDMA transmission mechanism,
the sender needs to issue two RDMA Write requests for each send operation, generating
one CQE. An RDMA Read request, which also generates a CQE, is issued only when a
status byte of 1 is encountered in the second status byte memory block. Since the sender
serializes Write and Read requests, the minimum capacity of the sender’s send queue is two
and the completion queue’s minimum capacity is one. The receiver does not explicitly send
or receive any requests, so the capacity required for both the send queue and receive queue
is zero. In addition, establishing an RDMA connection necessitates creating a completion
queue with a minimum capacity of one.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 25

This reduction in CPU utilization directly supports our research objective of enhanc-
ing resource efficiency in RDMA transmission, especially in edge computing environ-
ments handling large-scale data transmissions. The findings demonstrate that the status-
byte-assisted mechanism not only reduces computational overhead but also significantly
enhances system performance under high-load conditions, thereby offering considerable
potential for real-world applications.

4.2.6. NIC Resource Utilization Analysis
In terms of RDMA resource utilization, the status-byte-assisted RDMA transmission

mechanism demonstrates high efficiency and significantly reduces RNIC resource usage
on the receiver end. This is because the status-byte-assisted RDMA transmission mecha-
nism utilizes one-sided operations and implements a stateless transmission strategy on
the receiver end, which eliminates the need to maintain QP connection status and requires
only maintaining locally registered memory block information. Consequently, it greatly
reduces the consumption of RNIC on-chip resources on the receiver end.

Figures 16 and 17 compare the minimum RNIC resource consumption required dur-
ing transmission for different RDMA transmission mechanisms. As shown in these figures,
the RNIC resource consumption of the status-byte-assisted RDMA transmission mecha-
nism is significantly lower than that of the sliding window RDMA transmission mecha-
nism. In the sliding window transmission mechanism, to prevent the receiver from con-
tinuously sending ACKs, the sender initially issues three consecutive receive requests.
Additionally, the sender may issue an RDMA Write With Immediate request and a receive
request simultaneously, generating two CQEs. Consequently, the receiver might continu-
ously receive three requests, so the minimum capacity required for both the receive queue
and the completion queue is three. Overall, to reduce processing latency, the sender in the
sliding window RDMA transmission mechanism initiates an ACK receiving thread and
sets up two CQ queues to maintain continuous send and receive operations. Both sides
issue multiple receive requests during initialization, which increases the consumption of
RNIC on-chip resources. In contrast, in the status-byte-assisted RDMA transmission
mechanism, the sender needs to issue two RDMA Write requests for each send operation,
generating one CQE. An RDMA Read request, which also generates a CQE, is issued only
when a status byte of 1 is encountered in the second status byte memory block. Since the
sender serializes Write and Read requests, the minimum capacity of the sender’s send
queue is two and the completion queue’s minimum capacity is one. The receiver does not
explicitly send or receive any requests, so the capacity required for both the send queue
and receive queue is zero. In addition, establishing an RDMA connection necessitates cre-
ating a completion queue with a minimum capacity of one.

Figure 16. Comparison of the minimum RNIC resource consumption at the sending end for different
RDMA transmission mechanisms.

Appl. Sci. 2024, 14, 7437 19 of 24

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 25

Figure 16. Comparison of the minimum RNIC resource consumption at the sending end for different
RDMA transmission mechanisms.

Figure 17. Comparison of the minimum RNIC resource consumption at the receiving end for differ-
ent RDMA transmission mechanisms.

4.2.7. Special Features of the Status Byte in Memory Block Management
The status-byte-assisted RDMA transmission mechanism adds a status byte to each

memory block, enabling operations on individual memory blocks. In contrast, the sliding
window RDMA transmission mechanism requires sequential processing of memory
blocks. In practical applications, the receiver might need to retain data within a memory
block. The two transmission mechanisms handle this differently. To simulate this sce-
nario, it is assumed that the receiver retains the data from the third memory block at the
100-ms mark and resumes processing at the 200-ms mark.

Figure 18 shows the throughput changes in the sliding window RDMA transmission
mechanism and the status-byte-assisted RDMA transmission mechanism in response to
specific demands. As depicted in Figure 18, the status-byte-assisted RDMA transmission
mechanism experiences only a 12% decrease in throughput after the 100-ms mark and
recovers at the 200-ms mark. In contrast, the sliding window RDMA transmission mech-
anism stops sending data at the 100-ms mark, resulting in zero throughput until the
memory block is released at the 200-ms mark, after which the throughput recovers.

The reason for this difference lies in the status-byte-assisted RDMA transmission
mechanism’s ability to set the status byte of a retained memory block to “unavailable”
while continuing to process the next memory block. In this scenario, the sending thread
skips over the retained memory block and continues processing until the device returns
to normal. With only two memory blocks used for data transmission, the throughput only
slightly decreases. Therefore, this flexible memory block handling capability of the status-
byte-assisted RDMA transmission mechanism enhances the system’s ability to manage
various unexpected situations. In contrast, in the sliding window RDMA transmission
mechanism, memory block sending and receiving must occur sequentially. Consequently,
a subsequent memory block cannot be sent before the preceding one, and the ACK for a
subsequent memory block cannot be sent before the preceding memory block’s ACK. As
a result, its throughput drops to zero.

One of the key advantages of the status-byte-assisted RDMA transmission mecha-
nism in practical applications is its ability to maintain transmission continuity effectively.
When network conditions change or delays occur, this mechanism dynamically adjusts
the allocation of memory blocks, ensuring that the data transmission process is not

Figure 17. Comparison of the minimum RNIC resource consumption at the receiving end for different
RDMA transmission mechanisms.

4.2.7. Special Features of the Status Byte in Memory Block Management

The status-byte-assisted RDMA transmission mechanism adds a status byte to each
memory block, enabling operations on individual memory blocks. In contrast, the sliding
window RDMA transmission mechanism requires sequential processing of memory blocks.
In practical applications, the receiver might need to retain data within a memory block.
The two transmission mechanisms handle this differently. To simulate this scenario, it is
assumed that the receiver retains the data from the third memory block at the 100-ms mark
and resumes processing at the 200-ms mark.

Figure 18 shows the throughput changes in the sliding window RDMA transmission
mechanism and the status-byte-assisted RDMA transmission mechanism in response to
specific demands. As depicted in Figure 18, the status-byte-assisted RDMA transmission
mechanism experiences only a 12% decrease in throughput after the 100-ms mark and
recovers at the 200-ms mark. In contrast, the sliding window RDMA transmission mecha-
nism stops sending data at the 100-ms mark, resulting in zero throughput until the memory
block is released at the 200-ms mark, after which the throughput recovers.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 25

interrupted. This continuity is particularly crucial in critical applications such as real-time
video streaming and autonomous systems, where any pause or interruption could lead to
serious consequences. By quickly adapting to changing transmission conditions, this
mechanism significantly reduces the risk of system downtime, ensuring efficient and sta-
ble operation.

Although the status-byte-assisted RDMA transmission mechanism provides signifi-
cant flexibility in memory block management, this flexibility also comes with some poten-
tial drawbacks. Specifically, this mechanism requires status byte checks during data trans-
mission to flexibly manage the memory blocks. The status-byte-assisted mechanism does
not need to check the memory block status when the memory block is available. However,
it needs to perform an additional check to find an available memory block when a partic-
ular memory block is unavailable, which could increase additional CPU resource usage.
Moreover, the CPU resource consumption of the status-byte-assisted transmission mech-
anism remains lower than that of the sliding window transmission mechanism as the data
transmission of the status-byte-assisted RDMA transmission mechanism is handled by a
single thread.

Figure 18. Throughput change in various RDMA transmission mechanisms in response to special
demands.

4.3. System Testing for the Multi-Tasking Video Streaming Delivery
The status-byte-assisted RDMA transmission mechanism supports multi-task pro-

cessing because each memory block has an independent status byte indicating its usage
status. In contrast, the sliding window RDMA transmission mechanism utilizes only two
pointers, which require memory blocks to be used and released sequentially. This can lead
to contention for pointer resources when multiple threads send data, and the order of
returned ACKs can be inconsistent due to various factors when multiple threads receive
data. Therefore, the sliding window RDMA transmission mechanism does not effectively
support parallel multi-threading. For transmitting real-time video streams from multiple
cameras, typically, multiple sliding window programs are needed for the sliding window
RDMA transmission mechanism, whereas only one status-byte-assisted RDMA transmis-
sion program is necessary for the status-byte-assisted RDMA transmission mechanism.

In this experiment, 12 simulated cameras were used, each filling memory blocks with
25 frames of data per second; the size of each frame is 640 × 480 × 3 bytes, and the sys-
tem’s throughput variation over time is recorded. Figure 19 shows the throughput

Figure 18. Throughput change in various RDMA transmission mechanisms in response to special demands.

Appl. Sci. 2024, 14, 7437 20 of 24

The reason for this difference lies in the status-byte-assisted RDMA transmission
mechanism’s ability to set the status byte of a retained memory block to “unavailable”
while continuing to process the next memory block. In this scenario, the sending thread
skips over the retained memory block and continues processing until the device returns to
normal. With only two memory blocks used for data transmission, the throughput only
slightly decreases. Therefore, this flexible memory block handling capability of the status-
byte-assisted RDMA transmission mechanism enhances the system’s ability to manage
various unexpected situations. In contrast, in the sliding window RDMA transmission
mechanism, memory block sending and receiving must occur sequentially. Consequently,
a subsequent memory block cannot be sent before the preceding one, and the ACK for a
subsequent memory block cannot be sent before the preceding memory block’s ACK. As a
result, its throughput drops to zero.

One of the key advantages of the status-byte-assisted RDMA transmission mecha-
nism in practical applications is its ability to maintain transmission continuity effectively.
When network conditions change or delays occur, this mechanism dynamically adjusts
the allocation of memory blocks, ensuring that the data transmission process is not inter-
rupted. This continuity is particularly crucial in critical applications such as real-time video
streaming and autonomous systems, where any pause or interruption could lead to serious
consequences. By quickly adapting to changing transmission conditions, this mechanism
significantly reduces the risk of system downtime, ensuring efficient and stable operation.

Although the status-byte-assisted RDMA transmission mechanism provides signifi-
cant flexibility in memory block management, this flexibility also comes with some potential
drawbacks. Specifically, this mechanism requires status byte checks during data trans-
mission to flexibly manage the memory blocks. The status-byte-assisted mechanism does
not need to check the memory block status when the memory block is available. How-
ever, it needs to perform an additional check to find an available memory block when a
particular memory block is unavailable, which could increase additional CPU resource
usage. Moreover, the CPU resource consumption of the status-byte-assisted transmission
mechanism remains lower than that of the sliding window transmission mechanism as the
data transmission of the status-byte-assisted RDMA transmission mechanism is handled
by a single thread.

4.3. System Testing for the Multi-Tasking Video Streaming Delivery

The status-byte-assisted RDMA transmission mechanism supports multi-task pro-
cessing because each memory block has an independent status byte indicating its usage
status. In contrast, the sliding window RDMA transmission mechanism utilizes only two
pointers, which require memory blocks to be used and released sequentially. This can
lead to contention for pointer resources when multiple threads send data, and the order of
returned ACKs can be inconsistent due to various factors when multiple threads receive
data. Therefore, the sliding window RDMA transmission mechanism does not effectively
support parallel multi-threading. For transmitting real-time video streams from multiple
cameras, typically, multiple sliding window programs are needed for the sliding window
RDMA transmission mechanism, whereas only one status-byte-assisted RDMA transmis-
sion program is necessary for the status-byte-assisted RDMA transmission mechanism.

In this experiment, 12 simulated cameras were used, each filling memory blocks with
25 frames of data per second; the size of each frame is 640 × 480 × 3 bytes, and the system’s
throughput variation over time is recorded. Figure 19 shows the throughput variations in
multitasking scenarios using both the sliding window RDMA transmission mechanism
and the status-byte-assisted RDMA transmission mechanism. As shown in Figure 19, the
overall throughput of the status-byte-assisted RDMA transmission mechanism remains
relatively stable, concentrating around 7000 MB/s over a longer period. This is because the
status-byte-assisted RDMA transmission mechanism sequentially queries the first status-
byte memory block and sends memory blocks serially. The periods where throughput
is zero indicate that no data need to be sent, during which the program enters a sleep

Appl. Sci. 2024, 14, 7437 21 of 24

mode and periodically checks for new data to send. In contrast, the throughput of the
sliding window RDMA transmission mechanism fluctuates significantly over time, with a
broader range of transmission rates compared to the status-byte-assisted mechanism. This
is because each sliding window RDMA transmission program’s transmission times are in-
dependent, and multiple memory blocks can sometimes be transmitted in parallel, causing
substantial throughput variations and leading to unstable performance. Moreover, when
transmitting multiple data streams over the same period, the status-byte-assisted RDMA
transmission mechanism demonstrates more stable throughput than the sliding window
RDMA transmission mechanism, thus enhancing the system’s stability and reliability while
avoiding resource waste and bottlenecks.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 25

Figure 19. Throughput variation in multitasking: (a) the sliding window RDMA transmission mech-
anism and (b) the status-byte-assisted RDMA transmission mechanism.

To summarize the key findings and facilitate a clear comparison between the two
RDMA transmission mechanisms, the following Table 3 is provided. This table highlights
the main strengths and weaknesses of each approach, offering a concise overview of the
performance, resource utilization, and specific features discussed above.

Table 3. Comparative analysis of RDMA transmission mechanisms.

Comparison Dimension Sliding Window-Based Mechanism Status-Byte-Assisted Mechanism

Synchronization Control
Latency

High, especially due to delays introduced
by ACK processing.

Low, using RDMA Read for unidirectional
synchronization, significantly reducing

control latency.

Transmission Latency High, involves bidirectional operations
and processing of ACKs.

Low, optimized transmission method
using unilateral transmission.

Throughput High, but performs poorly with small
packets, limiting throughput.

High, especially for small packets,
significantly improving throughput.

CPU Utilization
High, need to create and manage

additional ACK receiving threads.
Low, reduces CPU utilization by using

one-sided operations.

RNIC Resource Consumption
High, requires bidirectional

communication.
Low, one-sided operation and stateless

connections reduce resource consumption.

Figure 19. Throughput variation in multitasking: (a) the sliding window RDMA transmission
mechanism and (b) the status-byte-assisted RDMA transmission mechanism.

During the transmission process, the average CPU utilization of the status-byte-
assisted RDMA transmission mechanism is 106% and memory usage is 1.3%. In contrast,
the sliding window RDMA transmission mechanism has an overall average CPU utiliza-
tion of 168% and memory usage of 2.4%. In summary, the status-byte-assisted RDMA
transmission mechanism maintains a smooth throughput curve by efficiently organizing
tasks on the sending end and concentrating them into a single QP, while also saving CPU
and memory resources and reducing RNIC resource consumption.

To summarize the key findings and facilitate a clear comparison between the two
RDMA transmission mechanisms, the following Table 3 is provided. This table highlights

Appl. Sci. 2024, 14, 7437 22 of 24

the main strengths and weaknesses of each approach, offering a concise overview of the
performance, resource utilization, and specific features discussed above.

Table 3. Comparative analysis of RDMA transmission mechanisms.

Comparison Dimension Sliding Window-Based Mechanism Status-Byte-Assisted Mechanism

Synchronization Control
Latency

High, especially due to delays introduced by
ACK processing.

Low, using RDMA Read for unidirectional
synchronization, significantly reducing

control latency.

Transmission Latency High, involves bidirectional operations and
processing of ACKs.

Low, optimized transmission method using
unilateral transmission.

Throughput High, but performs poorly with small
packets, limiting throughput.

High, especially for small packets,
significantly improving throughput.

CPU Utilization High, need to create and manage additional
ACK receiving threads.

Low, reduces CPU utilization by using
one-sided operations.

RNIC Resource Consumption High, requires bidirectional communication. Low, one-sided operation and stateless
connections reduce resource consumption.

Memory Block Management
Characteristics

Sequential processing, less suited for parallel
data transmission.

Flexible handling, allows independent
management of each memory block and

supports parallel processing.

Limitations Poor performance with small packets,
limiting throughput.

Additional checks of status bytes may
increase CPU resource consumption.

Applicable Scenarios Suitable for general data transmission and
supports basic transmission needs.

Suitable for multi-task data transmission
scenarios, especially video streaming.

4.4. Future Work and Potential Improvements

Although the status-byte-assisted RDMA transmission mechanism demonstrates sig-
nificant advantages over the existing methods in optimizing multi-task video streaming,
there are several aspects that warrant further exploration and improvement.

One area for future research is optimizing status byte management. While the status-
byte-assisted RDMA transmission mechanism effectively manages memory blocks and
improves transmission efficiency, the handling and determination of status bytes might in-
crease system overhead. Therefore, future research could explore more efficient algorithms
for managing status bytes to reduce memory and computational resource consumption.
For instance, investigating methods to dynamically adjust the frequency of status byte
updates could optimize the system’s performance. Additionally, integrating advanced
technologies such as machine learning to predict and optimize status byte behavior may
lead to the development of more intelligent and autonomous systems. This integration
could not only enhance performance but also minimize the need for manual intervention
in data transmission management.

5. Conclusions

With the development of edge computing, there is an increasing need for edge servers
to collaboratively process data, accelerate data transmission, and reduce latency. This
paper evaluates the strengths and weaknesses of the sliding window RDMA transmis-
sion mechanism, particularly in relation to the multitasking requirements of the current
edge computing environment and the asymmetry inherent in RDMA’s unilateral opera-
tions. To address the shortcomings of the existing RDMA transmission mechanism, we
propose an RDMA data transmission mechanism based on status byte. The proposed
status-byte-assisted RDMA transmission mechanism modifies the data transmission and
synchronization methods of the sliding window RDMA transmission mechanism. By
utilizing the unique properties of status-byte-assisted RDMA transmission to precisely
control memory blocks, it provides a solution for multitasking processing and is well-suited

Appl. Sci. 2024, 14, 7437 23 of 24

for transmitting real-time video streams. Finally, we provide extensive experimental results
to validate the performance of the status-byte-assisted RDMA transmission mechanism.

Experimental analysis results demonstrate that the proposed status-byte-assisted
RDMA transmission mechanism improves all performance metrics compared to the sliding
window RDMA transmission mechanism. First, in terms of transmission latency and
throughput, when transmitting data packets ranging from 64 B to 8 MB, the status-byte-
assisted RDMA transmission mechanism reduces latency by 2 ns to 3.4 µs compared to the
sliding window scheme, and its throughput exceeds that of the sliding window scheme
for packet sizes up to 1 MB. Notably, for 256 B packets, the status-byte-assisted RDMA
transmission mechanism achieves a throughput 4.6 times higher than the sliding window
scheme. Second, in terms of resource utilization, experimental results show that the status-
byte-assisted RDMA transmission mechanism reduces average CPU utilization by 20%
under the same workload, while minimizing RNIC resource consumption. Lastly, the status-
byte-assisted RDMA transmission mechanism exhibits exceptional flexibility in memory
block transmission and support for multitasking, exhibiting greater stability and higher
throughput in multitasking scenarios. Additionally, in conjunction with multitasking
transmission, we utilize containers as the smallest computing units for data processing,
with K8s managing these containers by automating deployment, scaling, and operations.
This achieves more flexible resource coordination and allocation among edge servers.
These improvements make the status-byte-assisted RDMA transmission mechanism a
novel solution for efficient data transmission in edge computing environments, with broad
application prospects.

Author Contributions: Conceptualization, D.X., H.Y. and W.S.; Funding acquisition, W.Z. and W.S.;
Investigation, D.X. and H.Y.; Methodology, D.X.; Project administration, W.Z. and W.S.; Resources,
W.Z.; Supervision, H.Y. and W.S.; Validation, D.X.; Writing—original draft, D.X.; Writing—review
and editing, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Special Projects for Key R&D Tasks in the Au-
tonomous Region of Xinjiang Grant No. 2022B01009.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [CrossRef]
2. Zhou, X.; Ke, R.; Yang, H.; Liu, C. When intelligent transportation systems sensing meets edge computing: Vision and challenges.

Appl. Sci. 2021, 11, 9680. [CrossRef]
3. Liu, P.-C.; Tseng, H.-E.; Yang, S.-K.; Kuo, F.-H. New Multi-Access Network Transmission Technology to Enhance Edge Computing.

In Proceedings of the 2021 IEEE 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan,
Taiwan, 8–10 September 2021; pp. 9–12. [CrossRef]

4. A Quick Look at the Differences: RDMA vs. TCP/IP. Updated on 20 February 2023. Available online: https://community.fs.com/
article/roce-vs-infiniband-vs-tcp-ip.html (accessed on 1 July 2024).

5. Mitchell, C.; Geng, Y.; Li, J. Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In Proceedings of the
2013 USENIX Annual Technical Conference (USENIX ATC 13), San Jose, CA, USA, 26–28 June 2013; pp. 103–114.

6. He, Q.; Gao, P.; Zhang, F.; Bian, G.; Zhang, W.; Li, Z. Design and optimization of a distributed file system based on RDMA. Appl.
Sci. 2023, 13, 8670. [CrossRef]

7. Wang, Z.; Luo, L.; Ning, Q.; Zeng, C.; Li, W.; Wan, X.; Xie, P.; Feng, T.; Cheng, K.; Geng, X. SRNIC: A scalable architecture for
RDMA NICs. In Proceedings of the 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23),
Boston, MA, USA, 17–19 April 2023; pp. 1–14.

8. Gil, M.-S.; Moon, Y.-S. SPinDP: A High-Speed Distributed Processing Platform for Sampling and Filtering Data Streams. Appl. Sci.
2023, 13, 12998. [CrossRef]

https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.3390/app11209680
https://doi.org/10.23919/APNOMS52696.2021.9562663
https://community.fs.com/article/roce-vs-infiniband-vs-tcp-ip.html
https://community.fs.com/article/roce-vs-infiniband-vs-tcp-ip.html
https://doi.org/10.3390/app13158670
https://doi.org/10.3390/app132412998

Appl. Sci. 2024, 14, 7437 24 of 24

9. Mellanox ConnectX-5 Product Brief. 2020. Available online: https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-
datasheet-connectx-5-2069273 (accessed on 22 July 2024).

10. Mellanox ConnectX-6 Product Brief. 2020. Available online: https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-
datasheet-1987500-r2 (accessed on 22 July 2024).

11. Tu, Y.; Han, Y.; Jin, H.; Chen, Z.; Zhao, Y. RDMA Based Performance Optimization on Distributed Database Systems: A Case
Study with GoldenX. In Proceedings of the Wireless Algorithms, Systems, and Applications: 16th International Conference,
WASA 2021, Nanjing, China, 25–27 June 2021; Part II 16. Springer: Berlin/Heidelberg, Germany; pp. 237–248. [CrossRef]

12. Use Containers to Build, Share and Run Your Applications. Available online: https://www.docker.com/resources/what-
container/ (accessed on 22 July 2024).

13. Kubernetes Documentation. Available online: https://kubernetes.io/docs/home/ (accessed on 22 July 2024).
14. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A survey on mobile edge networks: Convergence of computing,

caching and communications. IEEE Access 2017, 5, 6757–6779. [CrossRef]
15. Taranov, K.; Rothenberger, B.; De Sensi, D.; Perrig, A.; Hoefler, T. NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage

Applications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles,
CA, USA, 7–11 November 2022; pp. 2765–2778. [CrossRef]

16. Shi, W.; Wang, Y.; Corriveau, J.-P.; Niu, B.; Croft, W.L.; Peng, M. Smart shuffling in MapReduce: A solution to balance network
traffic and workloads. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC), Limassol, Cyprus, 7–10 December 2015; pp. 35–44. [CrossRef]

17. Wu, Y.; Ma, T.; Su, M.; Zhang, M.; Chen, K.; Guo, Z. RF-RPC: Remote fetching RPC paradigm for RDMA-enabled network. IEEE
Trans. Parallel Distrib. Syst. 2018, 30, 1657–1671. [CrossRef]

18. About InfiniBand. Available online: https://www.infinibandta.org/about-infiniband/ (accessed on 22 July 2024).
19. RDMA in Data Centers: Looking Back and Looking Forward. 2017. Available online: https://conferences.sigcomm.org/events/

apnet2017/slides/cx.pdf (accessed on 22 July 2024).
20. Zhu, Y.; Yu, W.; Jiao, B.; Mohror, K.; Moody, A.; Chowdhury, F. Efficient user-level storage disaggregation for deep learning.

In Proceedings of the 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA, 23–26
September 2019; pp. 1–12. [CrossRef]

21. Abbasi, U.; Bourhim, E.H.; Dieye, M.; Elbiaze, H. A performance comparison of container networking alternatives. IEEE Netw.
2019, 33, 178–185. [CrossRef]

22. Cassell, B.; Szepesi, T.; Wong, B.; Brecht, T.; Ma, J.; Liu, X. Nessie: A decoupled, client-driven key-value store using RDMA. IEEE
Trans. Parallel Distrib. Syst. 2017, 28, 3537–3552. [CrossRef]

23. Wang, Z.; Wan, X.; Zeng, C.; Chen, K. Accurate and Scalable Rate Limiter for RDMA NICs. In Proceedings of the 7th Asia-Pacific
Workshop on Networking, Hong Kong, China, 29–30 June 2023; pp. 15–20. [CrossRef]

24. Wang, X.; Chen, G.; Yin, X.; Dai, H.; Li, B.; Fu, B.; Tan, K. StaR: Breaking the scalability limit for RDMA. In Proceedings of the 2021
IEEE 29th International Conference on Network Protocols (ICNP), Dallas, TX, USA, 1–5 November 2021; pp. 1–11. [CrossRef]

25. Graham, R. Dynamically Connected Transport. In Proceedings of the Annual OFA Workshop, The Hague, The Netherlands, 11
April 2014; pp. 13–14.

26. Chen, Y.; Lu, Y.; Shu, J. Scalable RDMA RPC on reliable connection with efficient resource sharing. In Proceedings of the
Fourteenth EuroSys Conference 2019, Dresden, Germany, 25–28 March 2019; pp. 1–14. [CrossRef]

27. Ziegler, T.; Nelson-Slivon, J.; Leis, V.; Binnig, C. Design Guidelines for Correct, Efficient, and Scalable Synchronization Using
One-Sided RDMA. Proc. ACM Manag. Data 2023, 1, 1–26. [CrossRef]

28. RDMA Tutorial.2018. Available online: https://www.doc.ic.ac.uk/~jgiceva/teaching/ssc18-rdma.pdf (accessed on 22 July 2024).
29. Kalia, A.; Kaminsky, M.; Andersen, D.G. Design guidelines for high performance RDMA systems. In Proceedings of the 2016

USENIX Annual Technical Conference (USENIX ATC 16), Denver, CO, USA, 22–24 June 2016; pp. 437–450.
30. Hemmatpour, M.; Montrucchio, B.; Rebaudengo, M. Communicating Efficiently on Cluster-Based Remote Direct Memory Access

(RDMA) over InfiniBand Protocol. Appl. Sci. 2018, 8, 2034. [CrossRef]
31. Tsugami, R.; Fukui, T.; Narikawa, S. RDMA Transmission Control Method: Using Network Resource Allocation For Wide-Area

Data Collection. In Proceedings of the 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), Las Vegas,
NV, USA, 6–9 January 2024; pp. 578–581. [CrossRef]

32. Zhang, Z.; Cai, D.; Zhang, Y.; Xu, M.; Wang, S.; Zhou, A. FedRDMA: Communication-Efficient Cross-Silo Federated LLM via
Chunked RDMA Transmission. In Proceedings of the 4th Workshop on Machine Learning and Systems, Athens, Greece, 22 April
2024; pp. 126–133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-datasheet-connectx-5-2069273
https://nvdam.widen.net/s/pkxbnmbgkh/networking-infiniband-datasheet-connectx-5-2069273
https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-datasheet-1987500-r2
https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-datasheet-1987500-r2
https://doi.org/10.1007/978-3-030-86130-8_19
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://kubernetes.io/docs/home/
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1145/3548606.3560568
https://doi.org/10.1109/UCC.2015.18
https://doi.org/10.1109/TPDS.2018.2889718
https://www.infinibandta.org/about-infiniband/
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://doi.org/10.1109/CLUSTER.2019.8891023
https://doi.org/10.1109/MNET.2019.1800141
https://doi.org/10.1109/TPDS.2017.2729545
https://doi.org/10.1145/3600061.3600078
https://doi.org/10.1109/ICNP52444.2021.9651935
https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3589276
https://www.doc.ic.ac.uk/~jgiceva/teaching/ssc18-rdma.pdf
https://doi.org/10.3390/app8112034
https://doi.org/10.1109/CCNC51664.2024.10454818
https://doi.org/10.1145/3642970.3655834

	Introduction
	Related Works and Motivations
	Edge Computing and RDMA Technology
	Asymmetry in RDMA Unilateral Communication
	Motivations for the Status-Byte-Assisted RDMA Transmission Mechanism

	Proposed Status-Byte-Assisted RDMA Transmission Mechanism
	Overall System Architecture
	Design of the Status-Byte-Assisted RDMA Transmission Mechanism
	Overview of the Status-Byte-Assisted RDMA Transmission Mechanism
	Transmission Mode Selection
	Data-Filling Module
	Data-Sending Module
	Data-Receiving Module
	Data Synchronization Module
	Data-Processing Module
	Stateless Connection at the Receiving End

	Specificity of the Status-Byte-Assisted Transmission
	Multi-Device Shared QP Strategy

	Results and Analysis
	Test Environment and Experimental Design
	Test Environment
	Experimental Design

	Comparative Testing of Transmission Mechanisms and Results Analysis
	Synchronization Control Delay
	Synchronization Control Delay Distribution
	Comparison of Transmission Delay
	Throughput Test
	CPU Utilization Analysis
	NIC Resource Utilization Analysis
	Special Features of the Status Byte in Memory Block Management

	System Testing for the Multi-Tasking Video Streaming Delivery
	Future Work and Potential Improvements

	Conclusions
	References

