
Citation: Ng, P.; Krieg, M.

Modifications to ArduSub That

Improve BlueROV SITL Accuracy and

Design of Hybrid Autopilot. Appl. Sci.

2024, 14, 7453. https://doi.org/

10.3390/app14177453

Academic Editor: Seongyeol Yoo

Received: 31 July 2024

Revised: 17 August 2024

Accepted: 21 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Modifications to ArduSub That Improve BlueROV SITL
Accuracy and Design of Hybrid Autopilot
Patrick Ng 1 and Michael Krieg 2,*

1 Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
png@hawaii.edu

2 Department of Ocean and Resources Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
* Correspondence: kriegmw@hawaii.edu

Abstract: Improvements to ArduSub for the BlueROV2 (BROV2) Heavy, necessary for accurate
simulation and autonomous controller design, were implemented and validated in this work. The
simulation model was made more accurate with new data obtained from real-world testing and
values from the literature. The manual control algorithm in the BROV2 firmware was replaced with
one compatible with automatic control. In a Robot Operating System (ROS), a proportional–derivative
(PD) controller to assist augmented reality (AR) pilots in controlling angular degrees of freedom (DOF)
of the vehicle was implemented. Open-loop testing determined the yaw hydrodynamic model of the
vehicle. A general mathematical method to determine PD gains as a function of the desired closed-
loop performance was outlined. Testing was carried out in the updated simulation environment.
Step response testing found that a modified derivative gain was necessary. Comparable real-world
results were obtained using settings determined in the simulation environment. Frequency response
testing of the modified yaw control law discovered that the bandwidth of the nonlinear system had
a one-to-one correspondence with the desired closed-loop natural frequency of a simplified linear
approximation. The control law was generalized for angular DOF and linear DOF were operated
with open-loop control. A full six-DOF simulated dive demonstrated excellent tracking.

Keywords: ROV; UUV; control; ArduSub; ocean robotics; ROS; AR/VR

1. Introduction

Remotely operated vehicles (ROVs) are unmanned marine submersible vehicles that
play a vital role in the ocean industry and ocean research, in that they enable interven-
tion and visual access to underwater environments inhospitable to humans. Large work-
class ROVs have long served the oil and gas industry in the surveying and inspection
of deep-sea operations. Through efforts like the Scientific and Environmental ROV Part-
nership using Existing Industrial Technology (SERPENT) Project, industrial ROVs’ broad
access to the deep recesses of the ocean is leveraged to share scientific data with the re-
search community [1,2]. Other work-class ROVs like the Hercules, Jason, SuBastian, and
Lu’ukai [3–6] are dedicated solely to research interests, contracted to collect samples from
unique ocean locations and events, and building marine infrastructure (Figure 1).

Thanks to the ubiquity of powerful electronics and advances in manufacturing, the
hardware behind ROVs and other marine technologies has become increasingly afford-
able, paving the way for more users and varied use cases. For example, the mining
industry has shown a growing interest in deep-sea exploration because of dwindling
land-based resources, massive monetary potential, and the improving costs of underwater
exploration [7]. Some research groups have built their own custom vehicles like the Reef
Rover for monitoring coral reefs [8], the Hovering Autonomous Underwater Vehicle that
explores vision-based simultaneous localization and mapping [9], and the Acrobatic Low-
cost Portable Hybrid Autonomous Underwater Vehicle [10]. Other projects have used or

Appl. Sci. 2024, 14, 7453. https://doi.org/10.3390/app14177453 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177453
https://doi.org/10.3390/app14177453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3780-948X
https://doi.org/10.3390/app14177453
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177453?type=check_update&version=2

Appl. Sci. 2024, 14, 7453 2 of 33

modified consumer-priced ROVs like the Trident OpenROV for conservation planning [11].
OpenROV started out as a crowd-funded project that grew into an open-source platform
for affordable ROV hardware and software. They have since been merged into Sofar Ocean
Technologies [12] and discontinued their support for Trident, now focusing on passive
ocean sensing.

Figure 1. Clockwise from top left: Hercules [3], Jason [4], SuBastian [5], and Lu’ukai [6] are examples
of research remotely operated vehicles (ROVs) currently in service.

Blue Robotics has a similar crowdfunding backstory, but has continued operations
to the present day. It has established itself as a prominent source of affordable high-
quality marine robotics equipment like thrusters, tethers, and pressure vessels. Their
flagship product is the BlueROV2 (BROV2, Blue Robotics, CA, USA) [13], which comes
in standard six-thruster or eight-thruster Heavy configurations (Figure 2), which have
been popular choices among researchers. The BROV2 has been used in aquaculture to
track the length of kelp with machine learning image processing [14] and been modified
for under-ice sensing [15]. In light of the popularity of the BROV2, other works have
focused on control topics, modeling the BROV2 and incorporating automation techniques.
A comprehensive simulation study of the Heavy configuration was conducted in [16]
but no real-world validation was performed. The study conducted by [17] looked at
the six-thruster configuration and also conducted real-world validation; however, they
swapped out the original controller components and implemented an entirely new software
library. In this paper, both simulation and real-world testing shall be performed using stock
components of a BROV2 Heavy and a modified version of the original software library so
that the results may be more immediately applicable to other users.

Although ROVs are not suitable for long-distance travel due to their large drag and
tether, they are equipped with numerous thrusters granting enhanced mobility over their
hydrodynamic torpedo-like (AUV) counterparts. Piloting ROVs can be a daunting con-
trol task because of the challenges in underwater station keeping and managing several
degrees of freedom, sometimes including one or more manipulator arms simultaneously,
often requiring multiple pilots [18]. In order to address these challenges, the authors and

Appl. Sci. 2024, 14, 7453 3 of 33

other collaborators have proposed an augmented reality (AR) pilot–ROV interface that
aspires to incorporate a human’s natural intuitive understanding of control by simplifying
interactions in commanding the vehicle and to reduce the hurdles for training the future
workforce [19,20]. This proposed interface uses virtual reality (VR) goggles and haptic
feedback to immerse AR pilots. Given the novelty of this interface, several details need
to be addressed. Throughout this study, we keep in mind the goal of gesture-based pilot
commands and how they should be implemented within a flight controller. A long-term
goal of this project involves collaboration between the University of Florida (UF) and the
University of Hawaii at Manoa (UHM). The AR/VR system is managed by collaborators
at the UF; pilots are hooked up to the system at their location. These pilots then send
control commands to our group’s location at the UHM where the physical BROV2 is lo-
cated and is controlled by remote pilots over seven thousand kilometers away. Before
accomplishing this vision, we must first address the control software that lies between the
pilot and the vehicle.

Figure 2. The BlueROV2 (BROV2) Heavy has eight thrusters; four are positioned vertically on the
upper layer and four are positioned at symmetric angles on a lower plane.

Ardupilot is a well established open-source autopilot firmware and software repository
which provides user interfaces to aerial drones, terrestrial rovers, marine submersibles, and
their ground stations via MAVLink messaging protocols [21]. The software is compatible
with off-the-shelf controller hardware options from manufacturers like CUAV, CubePilot,
mRO, and Holybro [22]. Its ability to provide guidance, navigation, and control features
while also allowing for customization thanks to its open-source nature and compatibility
with the Robot Operating System (ROS) makes it a popular choice among researchers. The
Ardupilot project is divided up into vehicle-specific libraries (e.g., ArduCopter, ArduPlane,
and ArduSub), shared common libraries, and packages dedicated to simulation. Software-
in-the-loop (SITL) simulation lets users test out programs written for vehicles in a virtual
environment and later use the code verbatim to control vehicle hardware in the real word.
This interchangeability is valuable to researchers because it can achieve massive savings in
resources by allowing a significant portion of the vehicle testing and familiarization phases
to be carried out virtually before physical deployment.

Other simulation environments using the ROS exist, like Project Dave [23], Stonefish
ROS [24], and ROS-MVP [25] that offer detailed three-dimensional (3D) graphical envi-
ronments capable of simulating sensors and collision. None of these options integrate
directly with off-the-shelf controllers like the SITL capabilities that are included with Ar-
duSub, which is its major advantage. The compilation process that builds ArduSub vehicle

Appl. Sci. 2024, 14, 7453 4 of 33

firmwares is tied to SITL so that alterations to software that work in the virtual environment
will also work on the physical vehicle. Unfortunately, the existing BROV2 hydrodynamic
model used in ArduSub SITL is not accurate and only useful for the most rudimentary test
cases. This study fixes this issue and updates the vehicle model with experimental results
from real-world testing.

Another limitation of ArduSub is the existing manual control implementation that
follows a heuristic scheme that prioritizes the prevention of motor saturation by scaling
down outputs with respect to the largest input. While this control method does generate
smooth motion under manual control, such as joystick input with multiple degrees of
freedom, thruster power levels no longer match those commanded when large inputs cause
small commands to be damped indiscriminately. A new thruster distribution algorithm is
proposed that operates within the existing software framework, granting precise quanti-
tative control. This ability to command exact thrust levels instead of heuristically scaling
down commands is required to accept commands from, and interface correctly with, error
feedback autonomous control. This study updates the manual control algorithm to this
quantitative description.

Using the revamped algorithm, proportional–derivative (PD) control laws for rota-
tional degrees of freedom are implemented via ROS. The PD control law is intended to
assist a human pilot sending commands over an AR interface, in which movements of
the pilot’s physical body are interpreted and assisted by the autopilot to carry out control.
Consider a non-AR pilot controlling a six-degree-of-freedom (6DOF) vehicle with a joystick;
the most natural interpretation of a joystick’s movement is to relate the movement of any
given joystick axis directly to an open-loop control force corresponding to that degree of
freedom. This design is ineffective for an AR pilot because while some gestures/motions,
such as bending forward, backward, or to the side, can be interpreted as direct thruster
commands similar to joystick motions, other gestures such as pose should be interpreted
as a desired vehicle orientation state. As such, an autopilot is required to provide thruster
commands to achieve this pose based on closed-loop error feedback.

The development of the AR/VR project is an ongoing process; at the time of writing,
the authors and collaborators have decided on a “hybrid autopilot” for control of the ROV.
“Hybrid” means that the angular degrees of freedom are controlled with closed-loop error
feedback, and linear degrees of freedom are controlled with open-loop inputs that do not
use error feedback; this is in contrast to an autopilot that would use error feedback for
all 6DOF, which would not need to be differentiated with the “hybrid” qualifier. During
actual operations, a human pilot asserting control over the vehicle would consider sensor
information in determining trajectory, and this would therefore be a form of closed-loop
control known as pilot in the loop (PIL). However, from the perspective of the onboard
controller the pilot inputs for linear degrees of freedom directly command thruster forces
and so are considered open-loop.

The underwater setting is a challenging one; due to viscous effects and thruster lim-
itations, the resulting system has nonlinear dynamics. A standard PD control law for a
linear time-invariant (LTI) approximation of the nonlinear dynamics is proposed as a starting
template. In this paper, the results of the yaw degree of freedom calibration are covered in
depth. Preliminary experimental water tank testing was performed to determine the yaw
hydrodynamic coefficients, which were then generalized and combined with existing values
available from the literature to update simulation and controller hydrodynamic models. The
source code of the vehicle firmware was also updated to accept quantitative inputs from the
ROS hybrid autopilot and produce quantitative motion of the vehicle.

After performing step response experiments, it was determined that a modified version
of the derivative gains best accommodated nonlinearities and it was found that results in
simulation corroborated the water tank testing. Real-world testing of the yaw step response
was also conducted to verify the efficacy of the results derived from theory and simulation.
A final series of tests uses the complete hybrid autopilot, incorporating control laws for all
angular DOF and open-loop linear control, in which the ability to follow a simulated pilot

Appl. Sci. 2024, 14, 7453 5 of 33

6DOF input provided by collaborators from the UF is measured in simulation. On one hand,
this work improves the ArduSub SITL model and we demonstrate its effectiveness and
practicality through experimental results. On the other hand, we also describe alterations
to ArduSub that connect to the hybrid autopilot developed in the ROS for quantitative
control. In building this hybrid autopilot system, we pave the way for AR/VR pilots to
command the BROV2 with gesture-based control.

In Section 2, the changes to the original ArduSub shall be covered, in which the
original implementation is reviewed and the proposed changes that were tested are justified.
Section 3 describes the open-loop testing performed and its analysis to determine the yaw
hydrodynamic model of the BROV2. Section 4 covers the mathematical and control theory
framework behind the PD controller for the autopilot. Section 5 walks through the selection
of trim conditions for nonlinear dynamics approximations, an experimental procedure
to adjust the control law for the yaw degree of freedom, characterizing the tuned yaw
PD control law performance with Bode plots, and an experiment testing the full 6DOF
autopilot with a simulated AR pilot flight. Finally, Section 6 shall summarize and draw
conclusions about the current state of the project and preview future work.

2. ArduSub Alterations

This section discusses the hardware and software limitations of ArduSub used on
the BROV2 platform. Some conjecture and commentary on why such limitations exists
are included in the discussion. After the system overview, a brief introduction to the
coordinate systems of the following theoretical framework is laid out. Changes to the au-
topilot firmware are reviewed by walking through the organization of the ArduSub control
software, identifying flaws in the original algorithm, and introducing a new algorithm and
the mathematical theory supporting it. Other changes to the SITL model as well as the
simulation control allocation for virtual vehicle state updates are also documented.

2.1. Hardware and Software Limitations

Out of the box, the R1, R2, and R3 versions of the BROV2 come equipped with
a Pixhawk and the R4 version (those sold after 7 June 2023) comes with a Navigator [26],
both of which are flight management units (FMUs). Regarding hardware connections,
onboard the FMU are input and output serial ports, sensors, and pulse width modulation
(PWM) output connections for accessories and motor electronic speed controllers (ESCs).
Onboard the R1-R3 version, the Pixhawk FMU handles the pilot inputs, sensor processing,
and state estimation on a STM32F427 system on a chip (SoC). The Pixhawk SoC has
a 180 MHz CPU, 256 KB of RAM, and a 2 MB flash drive which the ArduSub firmware is
stored on [27].

Navigator FMUs on R4 versions act as a hardware-on-top augmentation of the Rasp-
berry Pi 4 companion computer, giving FMU computations direct access to the much more
powerful single-board computer.

Perhaps in consideration of the lean technical specifications of the Pixhawk and other
lightweight FMUs that may be utilized on marine vehicles, the ArduSub source code
was written with efficiency in mind [17]. That is to say, certain software limitations stem
from hardware limitations. The autopilot libraries indicated with the ‘AP_’ filename prefix
are built using custom math functions and primitive data types, performing the bulk of
computations with three element vectors, three-by-three matrices, and a limited selection of
linear algebra operations. While this implements an Extended Kalman Filter on a Pixhawk,
it must do so in roundabout ways to circumvent a more extensive matrix math library that
would require larger processing overhead. In the ArduSub source code, this manifests
as frequently breaking apart calculations into smaller pieces, like separating linear and
angular dimensions into two three-dimension vectors, using program loops that iterate
over the elements, and then recombining pertinent values with summation and scaling.

The key challenge in developing ArduSub is operating within the existing software
framework because external libraries cannot be used.

Appl. Sci. 2024, 14, 7453 6 of 33

2.2. Changes to ArduSub and Motivation

In this study, bolded variables represent vectors or matrices and non-bolded variables
represent scalars. The body-fixed frame standard for ROS vehicles follows Forward–Left–Up
(FLU) relative to an East–North–Up (ENU) inertial frame, whereas ArduSub’s body-fixed
frame is Forward–Right–Down (FRD), referencing a North–East–Down (NED) inertial frame.
In robotics applications that use the ROS, there are certain guidelines that exists known as the
ROS Enhancement Proposals (REPs). Generally, the REPs are guidelines to follow that help
developers integrate with the larger ROS ecosystem. They serve as valuable touchstones which
provide common threads for the community to latch on to, and standardize many fundamental
things that help demystify the open-source landscape. For example, the convention that all
ROS vehicles follow FLU-ENU is because of REP 103 [28]. There is a longstanding issue that
those using the ROS in maritime applications were urged to use FLU-ENU frames by REP
103, but the rest of the industry followed the FRD-NED, also known as forward–starboard–
down, FSD-NED, frame conventions. A new REP, 156, puts this issue to rest and advises
that ROS users in maritime applications preserve FLU-ENU as the primary frames, but also
maintain secondary frames with the appended suffixes “_fsd” or “_ned” [29]. Readers are
also encouraged to follow the ROS Maritime Working Group updates on the ROS Discourse
forums [30]. Moving forward, in this section all discussion and theory will reference an
FRD-NED/FSD-NED frame if applicable.

The thruster configuration of the BROV2 Heavy can be seen in Figure 3: horizon-
tal azimuthal thrusters 1–4 create surge, sway, and yaw motions; vertical thrusters 5–8
create heave, roll, and pitch motions; and thrusters are numbered with indices that are
referenced from this point onward. The symbols for vehicle states in the inertial frame are
η = [η1, η2]⊤, where linear components are grouped in η1 = [x, y, z]⊤ and angular compo-
nents are grouped in η2 = [ϕ, θ, ψ]⊤. The symbols for velocities in the body-fixed frame
are ν = [ν1, ν2]⊤, where linear components are grouped in ν1 = [u, v, w]⊤ and angular
components are grouped in ν2 = [p, q, r]⊤. The symbols for forces and torques are grouped
together in a single vector τ = [X, Y, Z, K, M, N]⊤, where τ1:3 = [X, Y, Z]⊤ are linear forces
and τ4:6 = [K, M, N]⊤ are angular torques.

Figure 3. The BROV2 Heavy has four horizontal azimuthal thrusters and four vertical upright
thrusters; the red triangle indicates the forward orientation of the vehicle; propellers of the thrusters
shown with the color green (1, 2, 5 and 8) rotate counter-clockwise and those in blue (3, 4, 6, and 7)
rotate clockwise, i.e., for the vertical thruster, the green ones have negative rotation about the z-axis
and the green ones have positive rotation about the z-axis; the force resultant on the vehicle from
positive forward thrust is in the direction of the more textured half of the azimuthal thrusters and
downwards (on the page) for the vertical thrusters [31].

Appl. Sci. 2024, 14, 7453 7 of 33

The autopilot design for our intended pilot interface receives desired angular states of
the BROV2 from the virtual reality headset orientation in η2, ν2, and τ4:6 to achieve pilots’
desired rotation with closed-loop feedback control. Linear degrees of freedom are currently
handled with open-loop control from pilot gestures and handheld controller inputs that do
not use error feedback (Figure 4).

Figure 4. The mapping of gestures to control, as proposed by collaborators from University of
Florida (UF); the coordinate systems for the human interface follow the Forward–Right–Down (FRD)
body-fixed frame convention [19], as pictured.

2.2.1. Thruster Allocation Matrix Overview

ROVs like the BROV2 owe their high manoeuvrability to the multiple thrusters that
their boxy frame carries. Each of these thrusters work in tandem to impart control forces
and torques on the body of the vehicle to carry out movements and stabilize the vehicle.

For the BROV2 Heavy equipped with eight thrusters, this can be expressed quantitatively,

τ = Tm (1)

where τ is the six-by-one vector of control forces and torques, T is the six-by-eight thruster
allocation matrix [32], and m is the eight-by-one vector of the force contributions of the eight
thrusters. The constant matrix T is a linear transformation that maps the force and torque
inputs of the motors m to the overall resultant forces and torques on the vehicle body τ.

The first three rows of T transform the eight thruster input forces into the resultant
body linear forces and are constructed column-wise with

T1:3,i = [cos(αi) sin(αi) sin(βi)]
⊤, (2)

where αi is the angle of the i-th thruster in the horizontal plane of the vehicle and βi is
the angle of the i-th thruster in the perpendicular upright plane (see Figure 3). The vector
described in Equation (2) encodes the geometric orientation of the i-th thruster in space
and can be considered a type of unit vector for forces. All the force unit vectors for the
eight thrusters’ orientations put together form the top three rows of T , which when given
an input m, outputs the linear forces (i.e., the first three entries of τ). Figure 3 displays
the FRD body frame coordinate axes, relative locations, and orientations of the thruster
configuration. Thruster 1 is annotated as an example of how α1 is defined: the angle
α follows the right-hand convention for clockwise yaw rotation about the downwards-

Appl. Sci. 2024, 14, 7453 8 of 33

pointing z-axis; β is not visible in the figure but also follows the right-hand convention for
pitch rotation about the y-axis.

The last three rows of T map the thruster force inputs to the resultant body torques
and are constructed column-wise with

T4:6,i = ri × T1:3,i. (3)

where ri is the location of the i-th thruster relative to the vehicle’s center of mass, and a cross
product is performed with it and the first three rows of the i-th column of T determined
earlier in Equation (2). Similar to how Equation (2) is a unit vector for forces, Equation (3) is
a unit vector for torques. All the torque unit vectors for the eight thrusters are put together
to form the bottom three rows of T, which when given an input m, output the angular
torques (last three entries of τ).

Using the vehicle system geometry presented in [16] and concatenating the eight
vectors resulting from Equations (2) and (3), the total thruster allocation matrix for the
BROV2 Heavy is given in Equation (4) rounded to two decimal places. Given a vector m
containing the variable thrust of all eight thrusters, Equations (1) and (4) can determine the
control forces and torques τ resulting from the thrusters on the BROV2 body.

T =

−0.71 −0.71 0.71 0.71 0 0 0 0
0.71 −0.71 0.71 −0.71 0 0 0 0

0 0 0 0 1.0 1.0 1.0 1.0
−0.06 0.06 −0.06 0.06 0.22 −0.22 0.22 −0.22
−0.06 −0.06 0.06 0.06 −0.12 −0.12 0.12 0.12
0.99 −0.99 −0.99 0.99 0 0 0 0

, (4)

Now, consider if some desired forces and torques on the BROV2 were given and the
necessary motor activations m needed to be calculated instead, as is the case of an autopilot
mechanism; the inverse thruster allocation matrix would be required. This is

m = T†τ (5)

where T† is the pseudo-inverse of the rectangular matrix T. The actual matrix computed
from the pseudo-inverse of Equation (4) has values of

T† =

−0.35 0.35 0 0 0 1.32
−0.35 −0.35 0 0 0 −1.32
0.35 0.35 0 0 0 −1.32
0.35 −0.35 0 0 0 1.32
0.18 0.10 0.25 1.15 −2.08 0
0.18 −0.10 0.25 −1.15 −2.08 0
−0.18 0.10 0.25 1.15 2.08 0
−0.18 −0.10 0.25 −1.15 2.08 0

. (6)

The matrix above can transform an input vector of desired forces and torques on the
vehicle body τ into the required motor activations m to achieve them. These arrays T, m,
τ, and T† have compatible physical units in the Meters–Kilogram–Second (MKS) system of
measurements. With these definitions in place, the process of implementing the changes in
the software shall be explained next.

2.2.2. Implementation

In implementing custom changes to ArduSub, it is important that modifications are
precise and that the rest of the codebase’s functionality is preserved. The locations in
the code handling individual thruster allocation were identified to be within the files
SIM_Submarine.cpp and AP_Motors6DOF.cpp. The former carries out calculations for state
updates of the SITL virtual vehicle due to motor inputs and contains a matrix

Appl. Sci. 2024, 14, 7453 9 of 33

T̂ =

−1 −1 1 1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 −1 1 −1
0 0 0 0 −1 −1 1 1
1 −1 −1 1 0 0 0 0

. (7)

In this equation, a hat is used to distinguish T̂ from the matrix T . The latter contains a
matrix for distributing pilot control inputs to the individual thruster activations with the
form

T̂⊤ =

−1 1 0 0 0 1
−1 −1 0 0 0 −1
1 1 0 0 0 −1
1 −1 0 0 0 1
0 0 1 1 −1 0
0 0 1 −1 −1 0
0 0 1 1 1 0
0 0 1 −1 1 0

, (8)

where T̂⊤ is the transpose of Equation (7). Upon closer inspection of the two matrices, both
are organized in the same fashion as the thruster allocation matrix and its inverse, and are
used for similar purposes: T̂ is to T as T̂⊤ is to T†. Where the zero entries in T̂ and T̂⊤ are
the entries close to zero in T and T†, the nonzero entries also share the same positive or
negative sign. However, the hatted matrices lack the dimensionality that the theoretical
ones possess because they do not implicitly encode physical units and were intended for a
heuristic control scheme instead of a quantitative one.

Figure 5 provides a simple flow chart visualization of the following description.
Every iteration of the software control loop checks the RC_Input channel for the six-by-
one vector of PWM signals ranging from 1100µs to 1900µs, centered on 1500µs where
values > 1500µs are positive values and < 1500µs are negative values. The six entries
correspond to surge, sway, heave, roll, pitch, and yaw commands and are each normalized
to a −1.0 to 1.0 range that becomes the user input vector u. This vector u is then read into
AP_Motors6DOF.cpp where the function motor_command() calculates the thruster allocation;
Algorithm 1 details this loop and shall be discussed shortly.

Figure 5. Manual control data travel through programs sequentially in arrays which are marked with
arrows below their symbolic variables; above the boxes are the library names and the inside of the
boxes are the module names.

Calculations performed in the primary loop of AP_Motors6DOF.cpp take the forces
and torques requested by u and determine how the eight individual thrusters should
activate to serve these commands. The resulting eight-by-one vector of these calculations
m∗ is analogous to the forces from Equation (5). Each entry represents one of the eight

Appl. Sci. 2024, 14, 7453 10 of 33

thrusters and is normalized to a −1.0 to 1.0 range. The entries of m∗ are converted once
more to PWM signals in the 1100µs to 1900µs range and output as m̂ to the RC_Output
channel. Once in RC_Output, the PWMs are distributed throughout the respective ESCs
corresponding to the eight individual thrusters. Ultimately, this activates the thrusters that
generate forces and torques on the vehicle.

To understand how exactly T̂⊤ is used, Algorithm 1 provides a step-by-step clarifica-
tion. As of the ArduSub 4.5.0 beta1 release on 22 February 2024, the Ardupilot/ArduSub
source code still utilizes Algorithm 1 found in AP_Motors6DOF.cpp for the manual control
mode [33]. The matrix is used as a constant parameter that helps transform user input u
into motor activation m∗. The function performing the computation is motor_command().
Within the function, there are various forms of ξ which serve as buffer variables used inside
the function. The first usage is introduced on lines 2 and 9, with the form (j)ξmax, where the
left superscript j can be either 1 for roll, pitch, and heave control or 2 for yaw, surge, and
sway control and the right subscript “max” labels its purpose as a normalizing variable.
The second type of usage is introduced on lines 4 and 11, with the form (j)ξi, where the
left superscript j again can be either 1 for roll, pitch, and heave control or 2 for yaw, surge,
and sway control and the right subscript i is an index indicating the i-th thruster which is
being calculated for. The groupings of forces in (1)ξ terms correspond to those generated
primarily by the vertical thrusters and groupings of forces in (2)ξ correspond to those
generated primarily by the azimuthal thrusters.

Algorithm 1: Original Manual Control Algorithm

Parameters: T̂⊤
8×6

Input: u6×1
Output: m∗

8×1
1 Function motor_command(u,T̂⊤):
2 (1)ξmax = 1;
3 for i← 1 to 8 do
4 (1)ξi = u3 · T̂⊤i,3 + u4:5 · T̂⊤

i,4:5;
5 if |(1)ξi| >(1) ξmax then
6 (1)ξmax =(1) ξi;
7 end
8 end
9 (2)ξmax = 1;

10 for i← 1 to 8 do
11 (2)ξi = u1:2 · T̂⊤

i,1:2 + u6 · T̂⊤i,6;
12 if |(2)ξi| >(2) ξmax then
13 (2)ξmax =(2) ξi;
14 end
15 end
16 for i← 1 to 8 do

17 m∗i =
(1)ξi

(1)ξmax
+

(2)ξi
(2)ξmax

;

18 constrain(mi ∈ [−1.0, 1.0]);
19 m̂i = 1500 + 400m∗i ;
20 end
21 send m̂ to RC_Output channels;

The function motor_command() consists of three loops, two for calculating preliminary
output values based on inputs and the third loop for constructing the output. The first loop
and second loop are identical except that the first loop calculates for roll, pitch, and heave
control and the second loop calculates for yaw, surge, and sway control. The first two loops

Appl. Sci. 2024, 14, 7453 11 of 33

step through the thrusters in order and scale outputs with respect to the corresponding
parts of T̂⊤ with respect to the corresponding user inputs of u and sum them together in
the buffer (j)ξi (lines 4 and 11). These numbers are then checked against the current value
of (j)ξmax and replaced with the value of the (j)ξi buffer if it is larger (lines 5 and 12). After
all eight thrusters have been looped over twice, the final third loop normalizes (j)ξi with
respect to the final values of (j)ξmax and adds the vertical and azimuthal ratios together
(line 17). The trimming function constrain() checks that each value of m∗ is in the range
of−1.0 to 1.0 (line 18); if a value is outside the bounds, the function chooses the limit closest.
Then, the values of m∗ are scaled up to appropriate PWMs (line 19), and finally sent to
RC_Output which relays the signals to the respective ESCs.

If a user were to command any combination of movement, the vehicle would respond
with all requested movements, but all would be scaled with respect to the largest com-
manded force or torque. The overall effect of Algorithm 1 is that it generates intuitive
vehicle responses that a pilot will recognize as matching joystick inputs. This heuristic
method is a good way to prevent cases of motor saturation where the vehicle appears to be
unresponsive due to motors being maxed out. However, the exact value of the resulting
forces/torques, τ, will not directly correlate to the magnitude of the input commands,
which is necessary for automatic control laws. Instead, quantification of forces should be
preserved, and saturation avoided through selection of an adequate control bandwidth.

Thus, with this assessment of the original control implementation and the goal of imple-
menting a PD control law, a new simple algorithm is determined which can replace the pre-
existing framework without disrupting anything else or introducing unnecessary complexity.

In order for the new manual control algorithm to be integrated seamlessly, without
altering processes on either end of the software control loop, it must use the same inputs
and produce the same outputs. The main challenge is incorporating physical units that will
allow the autopilot to command specific quantities of forces and torques. To achieve this,
T† replaces T̂⊤ and new parameters and functions are introduced that encode the BROV2
hardware limitations while preserving the control architecture. These new parameters
are τmax, PW M∗, and t, which are a six-by-one vector containing the maximum forces
and torques that the BROV2 is capable of, eighty-one normalized PWMs and eighty-one
corresponding thrusts produced by a T200 thruster. The contents of PW M∗ and t are
experimental data collected by Blue Robotics [34] and graphed in Figure 6 and used
as a lookup table, utilized by the FMU thrust distribution and the SITL hydrodynamic
model. The values of τmax are determined analytically by solving for τ using Equation (1)
given m, constructed of maximum thrusts according to the lookup table in combinations
producing solely surge, sway, heave, roll, pitch, or yaw manoeuvrers. This results in
τmax,1:3 = [141.29, 141.29, 199.81]N for forces and τmax,4:6 = [43.56, 23.98, 37.72]Nm for
torques. To use input signals from RC_Input of u ∈ [−1.0, 1.0], the signals are converted
to units of forces and torques with τmax, and transformed with T† to find m directly.
Mathematically, these operations are

m = T†diag(τmax)u. (9)

Algorithm 2 shows how Equation (9) is accomplished in ArduSub step by step. Using
the new parameters τmax, PW M∗, and t, the same inputs u are used and the same outputs
m̂ are produced. However, now u originates from a hybrid autopilot which has calculated
physical forces and torques (that have been normalized with respect to τmax), as opposed
to interpreting inputs heuristically. Linear DOF control is handled with an open-loop
controller that directly passes inputs into u1:3. Angular control is handled with a closed-
loop PD control law that interprets an AR pilot’s gestures with error feedback, before
passing inputs into u4:6. Section 4 shall discuss the control law in detail.

The new function motor_command_new() uses one software loop; first, it iteratively
performs Equation (9) (line 3) to determine mi. This is then input into the function
find_bounding_indicies(), which determines the closest indices of t below (low) and
above (high) the force of mi (line 4). In the event that mi is outside the range of t, the low

Appl. Sci. 2024, 14, 7453 12 of 33

index will equal the high index and default to either −1.0 for negative forces or 1.0 for
positive forces (lines 5 through 12). For all other instances, the bounding indices will be
used to perform linear interpolation that produces a normalized value of m∗i (lines 13
through 15). This value is trimmed (line 16) and then converted to PWMs (line 18) to finally
be sent to RC_Output.

Figure 6. Blue Robotics experimental test results of pulse width modulation (PWM) input and
resulting thrust for a single T200 thruster.

It is important to emphasize that while this new algorithm accounts for vehicle limitations,
it depends on inputs from the hybrid autopilot that encode vehicle limitations as well.

Algorithm 2: New Manual Control Algorithm

Parameters: T†
8×6, τmax,8×1, PW M∗

81×1, t81×2
Input: u6×1
Output: m∗

8×1
1 Function motor_command_new(u,T†, τmax):
2 for i← 1 to 8 do
3 mi = ∑6

j=1
(
T†

i,j · τmax,j · uj
)
;

4 low,high = find_bounding_indices(mi);
5 if low =high then
6 if mi < 0 then
7 m∗i = −1.0
8 end
9 else if mi > 0 then

10 m∗i = 1.0
11 end
12 end
13 else

14 m∗i = PWM∗low +
PWM∗high − PWM∗low

thigh − tlow
(mi − tlow);

15 end
16 constrain(mi ∈ [−1.0, 1.0]);
17 m̂i = 1500 + 400m∗i ;
18 end
19 send m̂ to RC_Output channels;

Appl. Sci. 2024, 14, 7453 13 of 33

2.2.3. Simulation Discussion

The module that enables devices to interface with ArduSub is known as the hardware
abstraction layer (HAL). Each supported variety of hardware has a unique library; Pixhawk
uses the AP_HAL_ChibiOS library, whereas our simulation uses AP_HAL_SITL. Once the
vehicle’s low-level hardware is able to communicate using ArduSub, it is able to access
the shared libraries for general-purpose sensors, state estimation, and motor control. For
example, the motor libraries that control the thrusters on the BROV2 share a common code
with the libraries used to control thrusters on a quadcopter. In the case of a simulated
virtual mission, a special SITL HAL is utilized to emulate a physical FMU that does not
require a physical device to be in the loop; shared libraries further upstream remain the
same regardless of the hardware connected to the HAL.

ArduSub uses the Python script sim_vehicle.py to invoke the SITL HAL that on one
branch generates the virtual firmware and by default on a separate branch generates the
virtual environment for submersible vehicles. At runtime, the latest state of the codebase is
built and must pass through a robust verification process that checks that the raw code is
written properly and will be able to be flashed to an actual vehicle FMU. This capability
that seamlessly bridges virtual firmware testing and real-world vehicles is invaluable.

The other branch called by default when sim_vehicle.py is run generates the SITL
virtual environment from SIM_Submarine.cpp and its header. Contained in these files are
the hydrodynamic model of the BROV2 and control allocation algorithms (see Section 2.2.5)
for the state updates of the virtual vehicle. Alternatively, users may use Gazebo instead of
SIM_Submarine.cpp to perform these calculations. Gazebo is a powerful simulation environ-
ment that renders 3D dynamic scenes that represent robots and their environments, simulating
physics, collisions, and sensors through an ever-expanding library of plugins. Current ver-
sions of Gazebo have plugins for thrusters, buoyancy, and hydrodynamics, including added
mass effects [35]. Added mass characterizes the inertia of water that needs to be displaced by
objects as they accelerate through water, increasing the effective mass. All of this amounts to a
high-fidelity simulation that also uses the ArduSub virtual firmware backend.

Despite these appealing characteristics, researchers are likely to encounter challenges
in using Gazebo. For projects using ROS 1 (like the subject of this work), there are not any
well-documented methods for using Gazebo with ArduSub SITL; the guide available on
the ArduSub website [36] is outdated. Versions of Gazebo that include the high-fidelity
plugins described run only on ROS 2, which requires operating systems that do not support
ROS 1. Using Gazebo also requires a computer with hardware capabilities able to run the
3D simulation at the desired refresh rate, which can be a considerable bottleneck. However,
for those who are not limited by hardware or to ROS 1, there is an actively maintained, at
the time of this writing, ArduSub SITL with Gazebo for ROS 2 called Orca4 [37].

In this study, we will not be using Gazebo and will be exploring and updating the
default sim_vehicle.py simulation model in SIM_Submarine.cpp. While the default Ar-
duSub SITL environment is a lower fidelity simulation without a 3D visualization compo-
nent, we update it to use the same hydrodynamic coefficients that Gazebo would, and it
can be expected to produce similar results for simple underwater movement not involving
collision. The physical properties of the generic vehicle defined as the “Submarine” object,
meant to represent the BROV2, in the SITL source code was inaccurate because it used
several crude approximations, underestimated damping effects, and was missing added
mass. For a vehicle like the BROV, there is an expected abundance of acceleration and
deceleration because it is likely to be performing many stop-and-go manoeuvrers; there-
fore, a missing added mass factor amounts to significant errors. The specific updates are
catalogued in Section 2.2.4. The virtual frame representing the BROV2 uses the heuristic
thruster allocation matrix described in Equation (7). Nonzero elements are appropriately
distributed and the signs are correct, but, as was mentioned, values do not correspond to
physical units. The fix for this is to replace the thruster allocation matrix with Equation (4),
which was calculated earlier.

Appl. Sci. 2024, 14, 7453 14 of 33

The simulation code calculated vehicle accelerations similar to Algorithm 1, where
the thruster allocation matrix was broken into three element vector pieces of the linear and
angular components to be looped over for each motor. Linear and angular accelerations
were originally calculated by dividing the thrust and torque by vehicle mass and moment
of inertia; this operation was treated as a flat scaling operation where the reciprocal of the
mass or inertia was multiplied by each element. In our modified code, an element-wise
division function was implemented to allow dividing by the different values of the updated
combined inertia and added mass vector in a single operation. The angular acceleration
calculations originally approximated the vehicle as a sphere with all thrusters equidistant
from the center of mass; this was corrected to model the actual geometric locations of
the BROV2 thrusters as described in the thruster allocation matrix of Equation (4). Drag
was calculated using the standard drag equation, where the coefficient of drag was set to
that of a sphere. This might be an acceptable approximation, but was also implemented
erroneously; the fix for this is described in Appendix A.

2.2.4. Vehicle Simulation Model Update

The original ArduSub vehicle model is inaccurate and produces unrealistic behavior.
Appendix B introduces the full hydrodynamic model that the updates are based on as
well as a method for determining control gains for a critically damped linear system
approximation which is relevant to Section 4. As discussed in Section 2.2.1, the thruster
allocation matrix used by SITL to calculate state updates was updated from Equation (7)
to Equation (4). See the later Section 3 for a description of the experimental testing that
was performed to determine the yaw hydrodynamic model of the BROV2. All 6DOF drag
models were updated to follow the generalized form of Equation 11. In order to generate
simulation results that have practical usability, that yaw hydrodynamic hydrodynamic
model updated yaw and pitch degrees of freedom identically, whereas coefficients in
roll were scaled to around 86% of the former to match the proportionality suggested
by [17]. Missing added mass parameters were introduced. Linear degree of freedom
parameters or other untested parameters were updated to the values used in [16]. Vehicle
mass was changed from 10.5 kg to 11.5 kg and the center of buoyancy with respect to the
center of gravity was changed from [0, 0, 0.15]m to [0, 0, 0.02]m. First-order linear drag
coefficients were introduced BL,1:3 = [4.03, 6.22, 5.18]Ns/m, as well as first-order angular
drag coefficients BL,4:6 = [0.0, 0.0, 0.0]Ns/rad. Second-order drag was incorporated with
BNL,1:3 = [18.18|u|, 21.66|v|, 36.99|w|]Ns2/m and second-order angular drag coefficients
with BNL,4:6 = [2.08|p|, 2.42|q|, 2.42|r|]Ns2/rad2. The linear and angular added mass
vectors were also introduced, with values of MA,1:3 = [5.5, 12.7, 14.57] kg m2 and MA,4:6 =
[0.10, 0.12, 0.12] kg m2/rad, respectively.

Other minor changes included a correction of the application of the transformation matrix
of the inertial-to-body frame J−1

1 to FB; previously, this was applied to rB. Also, thruster force
output calculations were updated to reference a lookup table, see Section 2 and Figure 6. In the
next sections, the updates to the underlying hydrodynamic models of the autopilot and SITL
produce accurate results useful for designing controllers that operate in real water settings.

2.2.5. Simulation Control Allocation

In Section 2.2.1 and Algorithm 2, the process of how desired forces and torques are
converted to thruster activations was detailed. In this section, how the updated SITL
code calculates state updates given these thruster inputs is explained. The simulation
code receives the vector of forces from the eight thrusters and determines the body forces
and torques by applying the thruster allocation matrix introduced in Section 2.2.1 and
Equation (1). Unlike Equation (1), however, the matrix operation T : m 7→ τ is performed
one thruster at a time using software array looping, and the inputs representing the
motors are in units of PWMs not force since the simulation is reading the RC_Output
channel. There is also a lookup table that complements the one used in Algorithm 2; where
the one used in the algorithm used linear interpolation to find PWMs from forces, the

Appl. Sci. 2024, 14, 7453 15 of 33

simulation code determines forces from PWMs. The 6DOF force and torque effect of each
thruster is determined with column-wise multiplication with the thruster allocation matrix
Equation (4). The force and torque values are then divided element-wise with the inertia
coefficients (M + MA) from Equations (A7) and (A8) of the hydrodynamic model described
in Appendix B, to solve for intermediate values of linear and angular accelerations that are
stored in a buffer. The simulation code then uses the velocity states of the given time step to
perform drag force and torque calculations for each degree of freedom using the generalized
model of Equation (11), where element-wise multiplication of the corresponding BL from
Equation (A10) scales first-order terms and BNL) from Equation (A11) scales second-order
terms, to determine 6DOF forces and torques resulting from drag. These drag forces
and torques are then element-wise divided with (M + MA) as well to determine linear
and angular accelerations which are added to the buffer. Buoyancy forces and torques
and resulting accelerations are also calculated based on the virtual vehicle’s depth and
orientation, which are then element-wise divided with (M + MA) and added to the buffer.

3. Open-Loop Experimental Testing and Hydrodynamic Characterization

In this section, a description of the open-loop yaw torque experimental testing that
was performed to determine the yaw hydrodynamic coefficients for hybrid autopilot model
and ArduSub SITL shall be covered. This round of testing was necessitated because initial
trials of the autopilot described in the following sections produced inadequate performance
due to discrepancies in the models available from other works and the actual BROV2 used
in this work. The yaw degree of freedom isolated from the full hydrodynamic model in
Appendix B is

N = (Iz + Nṙ)ṙ + Nrr + Nr|r|r
2 (10)

where N is the external yaw torque acting on the BROV2, Iz is the moment of inertia in yaw,
Nr ṙ is the added mass in yaw, Nr is the linear viscous damping in yaw, Nr|r| is the quadratic
damping in yaw, r is the vehicle’s yaw velocity, and ṙ is the vehicle’s yaw acceleration.

Control gains were calculated using this strategy, initially based on hydrodynamic
coefficients found in [16,38] for vehicles similar to the BROV2. Using the hydrodynamic
coefficients found in the literature, initial results of real-world testing of the yaw step
response produced large discrepancies between the settling times predicted by SITL, where
actual settling times were much longer. Therefore, a preliminary round of water tank
testing for system identification was performed that determined a more accurate model for
simulations and the hybrid autopilot.

Figure 7. Real-world testing was performed in a small tank approximately two meters in diameter
and a meter and a half in depth.

Open-loop testing of the yaw degree of freedom of the BROV2 Heavy was performed
in a water tank (Figure 7). During this, six different yaw torques were applied to the

Appl. Sci. 2024, 14, 7453 16 of 33

BROV2 and the resulting yaw velocities were measured, with at least five trials performed
per torque tested. These tests were intended to observe inertia and drag behavior. The
particular BROV2 Heavy used in these experiments had additional ballast in the form of
metal washers attached to the front corners of the vehicle to level out its resting floating
state. It was slightly positively buoyant, and before each trial was allowed to come to rest
near the surface of the water, mostly submerged so that less than a quarter inch of the
buoyancy floats was exposed. An experimenter also held the vehicle’s tether above and
out of the way, careful not to disturb the vehicle. At the start of each trial at time t = 0, a
fixed yaw torque input command was sent to the vehicle and held constant. Data collection
recorded yaw velocity r for times t ≥ 0. Yaw torques were held constant for several seconds
to give the velocity output ample time to stabilize before ceasing the trial. Each open-loop
response had two distinct regions of the velocity output: an initial unsteady region while
the vehicle was accelerating from rest and a steady-state region where the vehicle was
no longer accelerating and maintained a constant velocity r f . The unsteady region of the
velocity output of the open-loop response was analyzed to determine inertia characteristics
and the steady-state region to determine drag characteristics.

3.1. Viscous Drag Analysis

Given a constant yaw torque, the BROV2 starting from rest eventually reaches an
equilibrium state after enough time has elapsed, where the drag torque balances with the
thruster torque. While in equilibrium, acceleration largely ceases and a steady-state velocity
is maintained. Equation (10) is reduced to Equation (A2) or

N(ṙ = 0) = Nrr + Nr|r|r
2. (11)

Previous work in [38] tested a slightly smaller ROV similar to the BROV2 at low
torques; in this work, a variety of test torques above this range were tested.

It was found that all open-loop responses at the various torques reached a steady state
within two and a half seconds after the input torque was initiated. Because the experimental
velocity data collected were noisy, a two-second interval spanning the range 2.5 s ≤ t ≤ 4.5 s
was averaged to obtain the steady-state velocity. Mean and variance measurements of
the interval were taken and are recorded in Figure 8. Using the experimental results, a
least squares curve was fit to Equation (A2) and plotted with the open-loop experimental
data as well as the data from [38]. It can be seen that there is good agreement between the
fitted curve across the entire range of experimental torques and velocities. The resulting
hydrodynamic coefficients for this curve found that the linear term Nr was zero and the
quadratic term Nr|r| = 2.42 Ns2/rad2.

Figure 8. Experimental results from the drag analysis of the open-loop yaw testing; the complete drag
function is actually symmetric about the origin. Error bars were calculated as two sample standard
deviations to the left and right of the mean.

Appl. Sci. 2024, 14, 7453 17 of 33

3.2. Inertia Analysis

Every BROV2 has unique inertia properties resulting from their payload, which may
consist of custom modules or different sensors. In the case of the BROV2 that underwent
open-loop testing, the ballasts stabilized its buoyancy altered its angular moments of
inertia. Having determined that there is no linear term Nr, and constraining the value of
Nr|r| according to the analysis just described, the acceleration term ṙ may be reintroduced
to study the unsteady regime and determine the remaining inertia terms. If added mass Nṙ
assumes the values suggested in [16,38], and the N controlled by the experimenter is also
considered constrained, then the only remaining unknown quantity in Equation (10) is the
moment of inertia Izz.

Stated mathematically, Equation (10) reduces to the ordinary differential equation

ṙ(N) =
N − Nr|r|r2

Iz + Nṙ
(12)

where ṙ(N) is the vehicle’s yaw acceleration given an applied input yaw torque N, Nr|r| is
the quadratic damping in yaw, Izz is the moment of inertia in yaw, Nr ṙ is the added mass
in yaw, and r is the measured output yaw velocity. Hence, for any of the six yaw torques
tested Equation (12) has a one-parameter family of solutions

r(N) = f (t, Iz) (13)

where r is yaw velocity, which is a function of time t, respective control torque N, and
moment of inertia Izz.

The solutions proposed above are applicable for constant torques N. Referencing
Figure 9, it can be seen that in the moments immediately after the yaw torque input initiates
there is a concave up region where the yaw torque is ramping up and has not yet reached
its intended magnitude. Every trial has this initial thruster ramp-up time when yaw torque
increases with time; the velocity at the time when constant torque is reached describes
the left-hand boundary conditions for the added mass fitting. While a constant torque
is maintained, velocity continues to increase with time. Eventually, in every trial the
vehicle reaches an equilibrium steady state as defined in the previous viscous drag analysis.
Therefore, the intervals and boundary conditions of Equation (13) are

t0 ≤ t ≤ t f , r(t0) = r0, r(t f) = r f . (14)

where t is time, t0 is the thruster ramp-up time while the vehicle is accelerating, t f is the
settling time when steady-state velocity is reached, r0 is the velocity when constant torque
is reached, and r f is the steady-state velocity.

At the time t0, where the curve transitions from concave up to concave down, full
respective constant torque is reached; the corresponding velocity at the inflection point
also gives the initial conditions r(t0) = r0 for the particular solution. Extracting t f from
the experimental data required other processing. To account for noise and the overshoot
present at higher torques, a sliding window that calculated a moving average starting from
the initial overshoot moving to the right was utilized which converged when the sliding
window average absolute error from r f was within a 5% tolerance, choosing the left-hand
limit of the sliding window as t f .

Now that the differential Equation (12) is well defined, with all other constants con-
strained, and the boundary conditions are established, the ordinary differential Equation (13)
poses initial value problems for r(N) dependent on the choice of Izz.

Appl. Sci. 2024, 14, 7453 18 of 33

Figure 9. The yaw heading data contained in the dotted blue box is the averaging interval to
determine steady-state yaw velocity r f first, shown with the dash-dotted horizontal blue line. Then
a sliding window moving average shown with a solid green box was used to determine settling time
t f , shown by the dashed vertical green line.

Essentially, Equation (12) is an initial value problem with the boundary conditions shown
in Equation (14) having a one-parameter family of solutions Equation (13) dependent on Izz. To
trim down the search space of the infinite number of solutions, Izz was assumed to be greater
than the values suggested in [16,17,38] and less than a solid rectangle with the dimensions of the
BROV2. A set of values within this range was iteratively tested against the actual unsteady re-
sponse recorded in the experimental data using the root mean square error along the t0 ≤ t ≤ t f
interval. Results of this analysis are shown in Figure 10. The best agreement was found
at Izz = 1.0 kg m2/rad.

Figure 10. Comparison of the solutions of the lower moment of inertia in the yaw direction Izz

suggested by [16,17,38] alongside the chosen Izz = 1.0 kg m2/rad.

An alternative to the experimental strategy described here for estimating inertial
properties is the moment of inertia calculator included with Gazebo Harmonic [39]. If users
do not constrain inertia parameters themselves ahead of runtime, Gazebo can estimate the
moment of inertia matrix of a robot while loading its 3D mesh model. The simulator does
this with a type of finite element analysis and a density parameter given by the user. This
method provides a convenient way for users to estimate inertia. However, this method
does rely on the accuracy of the 3D models and the comprehensiveness of the configuration
file containing joints, links, and density information. In other words, this type of estimation
is reliable and convenient for simple homogeneous shapes, but becomes more cumbersome

Appl. Sci. 2024, 14, 7453 19 of 33

when the shapes get more complex and consist of multiple materials. This work has opted
not to use Gazebo, but encouraged readers to explore their options.

4. Designing Autopilot Performance

Appendix B provides a methodology for calculating the gains of a critically damped
closed-loop linear system. In this section, the specifications of the PD control law of this
particular ROV are described. Because the proposed error feedback control only applies to
angular states, the generic variable state variables γd and γ used to derive control gains in
Appendix B are replaced with the specific state vectors η2d and η2. Desired angular states
are designated in the inertial frame and passed into the autopilot as η2d. The rate of change
of the desired state η̇2d is calculated as a moving average from η2d, because the pilot input
for the desired state is provided in real time rather than as a pre-defined trajectory. The
FMU tracks the vehicle’s velocity in the body frame ν2 and this is transformed into the
inertial frame with the transformation matrix

J2,η2 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/cos(θ) cos(ϕ)/cos(θ)

, (15)

by left multiplying to result in
η̇2 = J2,η2 ν2. (16)

These velocity state vectors are compared to determine the derivative error

˙̃η2 = η̇2d − η̇2. (17)

Proportional gains kp and derivative gains kd are calculated in Equation (A17) and
Equation (A18), respectively, as diagonal matrices and are applied to the errors through
the control law as seen in Equation (A5). For the proposed autopilot for AR pilots, only
angular torques are generated; hence, the specific control law is

τ4:6 = kp J−1
2,η2

η̃2 + kd J−1
2,η2

˙̃η2 +
(

rB × J−1
1,η2d

FB

)
, (18)

where the inertial-to-body frame transformation matrix of angular components in the
current angular state is

J−1
2,η2

=

1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos(θ)
0 − sin(ϕ) cos(ϕ) cos(θ)

, (19)

where rB is the constant vector from the center of gravity to the center of buoyancy in
the body frame, FB is the constant buoyancy force of the completely submerged vehicle
in the inertial frame, and J−1

1,η2d
is the inertial-to-body frame transformation matrix for

linear components at the desired angular state (not shown here in its entirety due to space
limitations, please see [32] for the full form).

The cross-product term in Equation (18) not present in Equation (A5) is a feed-forward
term that accounts for the hydrostatic righting moment τb,4:6. Without the feed-forward
term, the angular control law converges to a steady-state with an offset error resulting from
the unaccounted for torque bias. In Appendix B, it is claimed that buoyancy effects can
be ignored during calculations of PD gains. This is allowable because when the desired
state is achieved, i.e., η2 = η2d, the feed-forward term exactly cancels out the hydrostatic
righting moment such that

τb,4:6 =
(

rB × J−1
1,η2

FB

)
=

(
rB × J−1

1,η2d
FB

)
. (20)

Appl. Sci. 2024, 14, 7453 20 of 33

Thus, when equating the control forces from Equation (18) with the hydrodynamic model
Equation (A6) while calculating gains, the formula reduces to the same form as Equation (A13),
meaning that the calculations that follow in Equations (A17) and (A18) are unchanged.

5. Controller Tuning Methodology

In this section, the procedure followed for tuning one degree of freedom, specifically
the yaw direction, shall be reviewed. The equation for control forces in the yaw direction is

NC = kp(ωd)[ψd − ψ] + kd(ωd)[ψ̇d − ψ̇], (21)

which is the third element of the vector represented in Equation (18). Notice that there
are no buoyant torques in the yaw direction, which simplifies calculations. In the case of
control forces in the other directions, an additional feed-forward term would appear in KC
and MC, as seen in Equation (20).

To give a high-level overview of how all the parts covered previously go together,
Figure 11 shows a block diagram of the information flow throughout the portion of the
hybrid autopilot that controls angular DOF. “Pilot Input” during the tests discussed in
this section originated from prerecorded csvs outputting desired angular states η2d. These
desired states are input into the “Control Law”, which uses gains calculated in Appendix B
and produces the desired angular body torques τ4:6. These torques are parsed with the
“Thruster Allocation” block, implementing logic described in Section 2.2.1 and Algorithm 2
to determine thruster forces m that achieve the desired body torques. The collective effect of
the eight thruster forces drive the “State/SITL” block, outputting the angular orientations
η2 of the actual/virtual vehicle, respectively. Ultimately, the angular states are fed back to
the “Control Law” block, establishing the closed loop of the angular controller.

Figure 11. A block diagram of the information flow throughout the closed-loop portion of the hybrid
autopilot that controls the angular degrees of freedom; arrows are labeled with the important vectors
that pass between the nodes.

In Appendix B, the BROV2 is approximated as an LTI system in order to calculate
control gains as a function of desired closed-loop natural frequency ωd, but in actuality
drag behaves nonlinearly, scaling quadratically with velocity as explained in Section 2.2.
Therefore, an effective linear drag value N̆r was determined with trim conditions, which
was used to set the linear PD controller. The step response of the nonlinear system under
Equation (21) was tested in SITL to verify behavior similar to a critically damped system.
It was observed that the step response exhibited underdamped behavior, where the level
of oscillation was inversely proportional to ω2

d, so the controller was modified to include
an additional damping term inversely proportional to ω2

d. With the additional damping
term, the step response achieved critically or close-to-critically damped behavior for a
wide range of desired closed-loop natural frequencies. Using the yaw PD control law
tuned in SITL, the closed-loop step response was determined through water tank testing,

Appl. Sci. 2024, 14, 7453 21 of 33

demonstrating agreement with simulation results. Following the step response tuning, a
series of frequency response tests documented in Appendix C were performed in SITL
for low (ωd = 2.0 rad/s), medium (ωd = 3.0 rad/s), and high (ωd = 4.0 rad/s) desired
closed-loop natural frequency settings to produce a Bode plot. The final sequence of testing
generalized the yaw control law across all angular degrees of freedom and activated the
open-loop linear controls to test the performance of the total hybrid autopilot in STIL given
a simulated dive involving all six degrees of freedom.

5.1. Determining Trim Conditions

While the standard technique to linearize the drag would be a first-order Taylor-series
approximation at the center of the expected operational range of velocities, this would
be unusable because the line would not have any slope. The idea was to choose a line
trimmed about the origin so that there was no y-intercept allowing the slope to be used as
N̆r. This trimmed line should approximate the expected drag torques as well as possible
over the expected range of velocities. Considering that most ROV movements are typically
low-amplitude minor adjustments, the value of N̆r = 5.97 Nms/rad was selected. The
linear fit of this approximation compared to the nonlinear yaw model determined earlier in
Section 3 is shown in Figure 12.

Figure 12. Nonlinear drag torque vs. velocity along with the trimmed linear fit; the line designated
by N̆r = 5.97 Nms/rad fit well in the possible yaw torque range.

5.2. Additional Damping Term to Correct for Nonlinear Behavior

With the effective linear damping approximation selected, step response tests were
performed and compared to the theoretical LTI system step response to assess how the
controller handled a step input to rotate from a 0◦ heading to a heading of 90◦ and hold
the position. A simple step input was generated such that at t < 0, ψd = 0 and at t ≥ 1,
ψd = 90◦, with all other inputs null and put into comma-separated value (csv) file format.
The step input was fed through a ROS csv_reader node into a separate ROS control_law
node, which monitored vehicle state and calculated the force outputs according to the PD
control law as described in Section 4. The resulting step responses were recorded to csv
files with a ROS logger node. This was then graphed against the theoretical step response.

The theoretical step response was calculated using the transfer function of the control
law in the yaw direction which can be derived from Equation (A13) by taking the Laplace
transform and rearranging. The resulting transfer function is

HL =
Ψ(s)
Ψd(s)

=
kp(ωd) + skd(ωd)

s2(Izz + Nṙ) + s(N̆r + kd(ωd)) + kp(ωd)
(22)

Appl. Sci. 2024, 14, 7453 22 of 33

where HL is the closed-loop LTI transfer function, Ψ(s) is the Laplace transform of yaw
heading, Ψd(s) is the Laplace transform of the desired yaw heading, kp is proportional gain
determined by the ωd setting, kd is derivative gain determined by the ωd setting, and N̆r is the
chosen characteristic linear damping. Setting ψd = H(0), the Heaviside step function becomes
Ψd(s) = 1/s and performing the inverse Laplace transform on Equation (22), a function for
ψ(t) is obtained, which was used to generate the theoretical step response for various gains.

According to the linear function of the LTI system, the chosen ωd and resulting kp
and kd gains theoretically produce a critically damped response, which are shown as the
dashed lines in Figure 13. Of note is the theoretical low ωd = 2.0 rad/s step response; there
is an initial undershoot due to kd < 0 causing the system to become a nonminimum-phase
system [40]. The actual response of the nonlinear system, shown with solid lines, produced
underdamped step responses, that steadily improved with increasing ωd, but did not reach
critically damped behavior. As the goal is to attain critically damped behavior for the entire
range of ωd, the solution is to increase the damping via the artificial damping enacted by
kd. Observing how low ωd needs more damping than higher ωd, the amount of additional
damping necessary is inversely related to ωd. Hence, a small δkd term was added to the
original calculated kd, which scales inversely with ωd, with the form

δkd =
κ

ω2
d

(23)

where κ is a constant of proportionality and ωd is the desired bandwidth that kd was
originally calculated for. The ωd term is squared because of the relatively low values of ωd
for this system. The new control law becomes

NC = kp(ωd)[ψd − ψ] + [kd(ωd) + δkd(ωd)][ψ̇d − ψ̇], (24)

A range of various constants of proportionality were tested across a wide range of ωd.
It was found that the value for the constant of proportionality that nullified oscillations best
resulting in a critically damped or nearly critically damped step response was κ = 20.0. The
resulting step response with the added δkd term is shown in Figure 13 with dash–dotted lines.

Figure 13. Step response testing in the nonlinear simulation; a tolerance of±5% was needed to enable
convergence because the thruster deadzone prevented slight adjustments when very close to the
steady-state value of 90◦.

It can be seen that with this additional term, the controller creates the desired behavior
for the nonlinear vehicle system. At ωd = 2.0 rad/s, the kd + δkd > 0 modified derivative
gain addresses the initial undershoot, and is large enough to prevent any overshoot having
an even better settling time than the LTI theoretical settling time. For the ωd = 3.0 rad/s

Appl. Sci. 2024, 14, 7453 23 of 33

and ωd = 4.0 rad/s cases, there are slight overshoots, but they are acceptable for practical
purposes.

A range of experimental step response settling times of the nonlinear system with
δkd were tested in 0.25 rad/s increments in the range of 1.5 rad/s ≤ ωd ≤ 5.0 rad/s and
compared with their theoretical linear settling times shown in Figure 14. In the case of
ωd = 3.0 rad/s, the overshoot falls within the ±5% tolerance and may be neglected. In the
case of ωd = 4.0 rad/s, the initial overshoot exceeds the tolerance, but after one oscillation
the step response converges; this is why there is a jump in the settling times for ωd ≥ 3.5.

Figure 14. Settling time was defined as the amount of time it took the vehicle given a step input to
stabilize within ±5% of the steady-state value of 90◦ yaw heading; results from the real-world test
show error bars of two sample standard deviations.

Also shown in Figure 14 are the settling times for the water tank step response tests
at ωd = {2.0, 2.5, 3.5, 4.0, 4.5} rad/s using the tuned yaw controller of Equation (24) with
κ = 20.0. Every ωd was tested seven times each during water tank testing. Like the
open-loop tests described in Section 3, each step response test was performed with the
BROV2 nearly completely submerged, floating near the surface of the water, and initiated
once while the BROV2 was totally at rest. Figure 14 demonstrates that the SITL simulation
better approximates the actual response of the BROV2 than the LTI model, because the
simulation predicts faster settling times at lower ωd and the simulation results mirror
this pattern. Settling times progress in a continuous fashion because they do not oscillate
before converging; yet, there is a discontinuity in the simulation settling because the
SITL model, while taking into account hydrodynamic nonlinearity, does not account for
thruster unsteady behavior and other physical complexities beyond the scope of this work.
Tuned step responses of ωd = {2.0, 3.0, 4.0} rad/s of the water tank experiments are shown
with their accompanying simulation step responses in Figure 15. The ωd = 2.0 rad/s
experimental response is nearly identical to the simulation; however, as ωd increases the
responses diverge slightly. This is in part due to the thruster ramp up time causing lag
and otherwise resulting from imperfections in the model. It appears that the SITL model
predicts sharper overshoots and faster convergence, which may be due to un-modeled
higher dimensional drag terms.

Despite these shortcomings, the updated simulation model is a vast improvement
over the old simulation model, as can be seen in Figure 16. The old hydrodynamic model
predicts a much slower step response than what was actually observed during the water
tank experiments. This is due to the numerous errors outlined in Section 2.2.4. Further
quantification is presented in Table 1, where the average normalized error of the simulated
step responses of the old and new SITL models are compared to what was observed
experimentally across a range of ωd settings. Average normalized error, e, is defined as

e =
1
T

∫ T

0

|e|
ψ

dt, (25)

Appl. Sci. 2024, 14, 7453 24 of 33

where T is the length of time that the averaging interval is measured, |e| is the absolute
error between the simulated and experimental heading, ψ is the experimental heading, and
t represents time, of which both |e| and ψ are functions. The columns labeled eold and enew
characterize the error of the old and new SITL models, respectively. It can be seen in Table 1
that the old model predicts significantly more errors than the our updated model. Figure 16
also displays that the updated model captures the higher order behavior well. This proves
that the methodologies for system identification described in Section 3 and controller tuning
described in Section 5 are effective tools for designing BROV2 performance.

Figure 15. Experimental data from water tank step response testing are shown with a shaded region,
where each vertical slice of time represents two sample standard deviations around the average
response of seven trials; also plotted are simulation results and linear approximation predictions.

Table 1. Average normalized error of old and new SITL models with respect to experimental step
responses for five-second window.

ωd (rad/s) eold (deg) enew (deg)

2.0 63.80 3.66
2.5 45.53 8.26
3.0 37.53 5.20
3.5 34.18 4.32
4.0 26.36 5.27
4.5 24.60 4.10

Figure 16. Step responses comparing simulation results of the original software-in-the-loop (SITL)
hydrodynamic model, the new SITL model from this work, and the water tank results.

5.3. Simulated Pilot Testing

The final set of testing used a simulated pilot dive containing all 6DOF provided by
collaborators from the UF. Like the previous tests, inputs were parsed by a csv_reader
ROS node and logged with a logger node. What was different for this test was that the

Appl. Sci. 2024, 14, 7453 25 of 33

control_law node was extended to include all three angular degrees of freedom, as shown
in Equation (18). The equations for KC and MC are identical to Equation (21) except for
additional feed-forward buoyancy terms that were discussed in Section 4. The presence of
the feed-forward terms directly counteract the hydrostatic righting moment at the desired
orientation, preventing persistent steady-state error due to false convergence. As the
simulation and control law models for roll and pitch are identical to yaw, nonminimum
phase behavior at low ωd and underdamped behavior were observed, so δkd = κ/ω2

d, with
κ = 20, was also applied.

Linear controls in the surge, sway, and heave directions were treated like direct inputs
from a joystick and did not have error feedback control laws associated with them. This meant
that the magnitude of a linear signal required the percentage of the associated elements of
τmax,1:3, as discussed in Section 2.2. The following results of the orientation trajectory are
shown row-wise for ωd = {2.0, 3.0, 4.0} rad/s in Figure 17. For every increase of ωd, there
are marginal improvements in satisfying the desired trajectories, most apparent in the yaw
column. To represent these improvements more clearly, Figure 18 displays the integral of the
absolute error between the desired and actual trajectories. Of note is how the pitch error does
not improve significantly by increasing ωd from 2.0 rad/s to 3.0 rad/s. This could be a result
of managing buoyancy stability while carrying out challenging roll commands simultaneously.
In general, it can be seen that error decreases with increasing ωd.

Figure 17. Each row graphs the desired and actual trajectories of different ωd; every column displays
a different angular degree of freedom.

Appl. Sci. 2024, 14, 7453 26 of 33

Figure 18. Shown are the integrals of absolute error with respect to time at the different ωd. The same
general pattern of error is present for all ωd, but there are decreases in magnitude with increases in ωd.

Figure 19 shows the linear open-loop command signals of the simulated dive in the
top row, and graphs representative of the energy costs of the angular controllers are in the
lower row. The values for the energy costs are summed and normalized to the PWM signal
from their respective controllers or

n

∑
i=1

(
|PWM− 1500|

400

)
(26)

where PWM is the control signal sent for the respective degree of freedom, i is the index of the
autopilot update, and n is the total autopilot iterations of the dive. An absolute value is taken
in the numerator to group the magnitudes of positive and negative control signals because
the PWM signals are centered on 1500µs. This value is normalized with the maximum range
±400µs of control signals. It can be seen that energy costs increase with increasing ωd.

As a whole, the hybrid autopilot performed very well in tracking the angular states
prescribed by the simulated pilot dive. A noticeable improvement in pitch error in ωd,
changing from 3.0 rad/s to 4.0 rad/s, indicates the nuance in selecting appropriate hybrid
autopilot settings that the pilot must grow accustomed to. Energy costs are also another
consideration that should be considered by pilots when planning their missions. Broadly
speaking, the BROV2’s performance will depend in equal parts on the choice of ωd and the
pilot’s handling via the AR/VR interface.

Figure 19. First row shows the open-loop control PWMs of linear degrees of freedom with respect to
time, and second row shows summed PWMs of angular degrees of freedom defined in Equation (26),
correlating energy costs of different ωd.

Appl. Sci. 2024, 14, 7453 27 of 33

6. Conclusions and Future Work

The SITL simulation suite offered by ArduSub is a potentially useful tool for designing
systems for the BROV2 Heavy, because it allows for rapid testing without requiring actual
water or even the vehicle itself. The main advantage of using ArduSub SITL over other
simulations is that the exact same programs, like those written in the ROS for example, and
customized firmware can be used both in SITL and in the field. Software frameworks which
implement control can be iterated on at a much higher rate with SITL, be in a much better
state by the time of the first field test, and have greater improvements between subsequent
deployments. However, in its current configuration available to the public, these potential
advantages cannot be capitalized on because the vehicle model and hydrodynamic model
are so inaccurate. Proper control applications also require a quantitative model that can
work with physical quantities like force and torque; the current manual control is a heuristic
model which caters to more casual users. In order to access the full potential of ArduSub
for our particular project, a few steps were taken. First, on the firmware side of ArduSub, a
rework of the manual control flight mode was implemented which incorporated inverse
thruster allocation, determined from BROV2 Heavy vehicle specifications found in the
available literature, to enable precise control applications by allowing requested forces
and torques to be interpreted by the vehicle. Second, open-loop experimental testing
was performed to build a reliable model for the specific configuration of the BROV2 that
the hybrid autopilot was being developed for. Third, on the simulation side of ArduSub
SITL, the thruster allocation complementing the firmware’s inverse thruster allocation that
updates the vehicle state with respect to thruster inputs was incorporated, as well as a new
hydrodynamic model including added mass parameters, updated drag calculations, and
corrections to physics.

The development process of a hybrid autopilot for assisting AR ROV pilots was started
on this new and improved ArduSub platform. A PD control law for critically damped
yaw trajectory following was derived using an effective linear drag N̆r = 5.97 Nms/rad,
which approximated the nonlinear drag. Through thee ROS, the error feedback control
mechanism was implemented and could be set to different sensitivities with the selection
ωd. During simulation step response testing, it was found that the nonlinear system
behaved in an underdamped manner and was corrected with the addition of a δkd term
creating nearly critically damped response. It was found in the water tank tests that the
controller tuned in SITL performed as expected in the real world and demonstrated the
improved ArduSub SITL’s value as a design tool. In continued simulation testing, recorded
in Appendix C, a linear regime of the closed-loop yaw frequency responses occurring
withinn gains of 0.71 ≤ |H| ≤ 1.0 was identified, providing a working definition for the
control bandwidth of the nonlinear system.

Testing of the hybrid autopilot proceeded with extending the tuned control law for yaw
to roll and pitch terms with additional feed-forward terms. The control laws for all three
angular degrees of freedom were implemented simultaneously and linear controls were
passed through directly without error feedback. A dive was simulated with prerecorded
simulated inputs containing low-frequency angular trajectories and open-loop linear control
followed the desired states well. Simulated dive testing highlighted the challenges that
pilots are bound to face in managing autopilot settings, energy costs, and mastering the
AR/VR pilot’s interface. It is hard to draw definite conclusions from the simulation data
alone because ultimately the future human pilots’ experience of the hybrid autopilot will
be the deciding factor in performance.

The immediate next steps for this project are having live AR pilots interact with the
hybrid autopilot in SITL and real water dives. Future work in gathering experimental
data to model roll and pitch hydrodynamics of the BROV2 is also planned. Conducting
tests similar to the ones in this study and tow tank tests in the real world could assist in
this process of refining the hydrodynamic model used to calculate PD gains. Improving
the accuracy of the hydrodynamic model will reduce errors and speed up convergence
in practical applications and increase the value of SITL testing and improve the hybrid

Appl. Sci. 2024, 14, 7453 28 of 33

autopilot to better assist pilots. Some updates to the SITL model are unique to our particular
vehicle, but many fundamental errors were corrected in this work. Readers are encouraged
to adopt our methodologies and use our results as reference points for their own vehicles.
Moving forward, as our ArduSub SITL model of the BROV2 Heavy continually improves,
exploration of complicated topics like motor saturation, other nonlinear strategies, and fully
autonomous operations are more worthwhile to conduct in simulation and now have a way
to be implemented thanks to our updates to ArduSub that unlock quantitative control.

Author Contributions: Conceptualization, P.N. and M.K.; methodology, P.N. and M.K.; software, P.N.;
validation, P.N.; formal analysis, P.N. and M.K.; investigation, P.N.; resources, P.N.; data curation, P.N.;
writing—original draft preparation, P.N.; writing—review and editing, P.N. and M.K.; visualization,
P.N.; supervision, M.K.; project administration, M.K.; funding acquisition, M.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF) grant number 2128924.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: Thanks to University of Florida (UF) collaborators Pengxiang Xia and Eric Jing
Du for the test trajectories simulating an AR piloted dive, and for consultation on controller strategy.
ChatGPT and Github Copilot assisted with coding tasks associated with this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Angular Drag Coefficients

The simulation code uses a classic drag model for calculating the drag forces or torques
acting on the vehicle, which for any single degree of freedom is

τd = −1
2

V|V|CdSρ, (A1)

where τd is the drag force or torque, V is the signed linear or angular velocity to preserve
the direction of movement, Cd is the drag coefficient, S is the wetted area, and ρ is the
density of the surrounding fluid. The original code approximated the vehicle as a sphere to
determine S, chose arbitrary Cd, and applied Equation (A1) to calculate instances of linear
drag. However, for drag torque the value of τd was then multiplied by an approximate
equivalent sphere radius. Depending on if the drag being calculated is a force or torque,
Cd will be dimensionless for force or have units of meters for torque; in the case of angular
drag torques, by multiplying τd by a radius an additional length dimension multiplies the
torque, producing major errors.

To fix the erroneous implementation and improve accuracy, a different model with
values backed by the research literature is proposed to replace the Equation (A1) model.
Research conducted by Sandøy in [38] characterized a smaller version of the BlueROV
named uDrone. The uDrone had only five thrusters and could not be controlled in the
roll and pitch degrees of freedom, so only the yaw direction was analyzed. Researchers
had exerted constant moments at various torques and recorded the angular velocity of the
vehicle at those points; then, a least squares curve fit was used to find

ND = Nrr + Nr|r|r|r| (A2)

where ND is the viscous torque due to drag in the yaw direction, Nr is the linear damping
coefficient, Nr|r| is the quadratic damping coefficient, and r is the signed yaw velocity. The
yaw degree of freedom is also presented here because it is the focus of this study; later,
the testing and tuning of the yaw autopilot control shall be discussed. Before delving

Appl. Sci. 2024, 14, 7453 29 of 33

into the autopilot development, determination of the yaw hydrodynamic model through
experimental water tank tests shall be covered in the following section.

Appendix B. Calculating Control Gains for a Critically Damped System

A simple PD control law was carried out via a ROS layer. Given a generic state variable
γ containing pose and γd containing desired pose, the difference between the two

γ̃ = γd − γ, (A3)

is the proportional error. There is also an associated rate over time

˙̃γ =
dγ̃

dt
, (A4)

known as the derivative error. Using the error terms, a corrective force τ in the body-fixed
frame is calculated by applying proportional gain kp to γ̃ and derivative gain kd to ˙̃γ,

τ = kpγ̃ + γd ˙̃γ. (A5)

The full 6DOF hydrodynamic model relates the system inertia matrix M, added mass
matrix MA, and acceleration γ̈, as well as the damping matrix B and velocity γ̇, to produce
the net external force

τ = (M + MA)γ̈ + Bγ̇ + τB. (A6)

The additional term τB is forces/torques due to buoyancy that will not effect the PD
gain calculation, which is addressed in Section 4.

Simplified models for the vehicle parameters are used in which only diagonal elements
are nonzero. The system inertia matrix takes the form

M = diag(m, m, m, Ixx, Iyy, Izz) (A7)

where m is mass of the vehicle and Ijj is the moment of inertia about the j-axis. The added
mass matrix also takes a simplified diagonal form

MA = diag(Xu̇, Yv̇, Zẇ, K ṗ, Mq̇, Nṙ). (A8)

The damping matrix consists of

B = BL + BNL (A9)

where the linear terms are grouped in

BL = diag(Xu, Yv, Zw, Kp, Mq, Nr) (A10)

and the nonlinear terms are grouped in

BNL = diag(Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|). (A11)

The nonlinear terms present in Equation (A11) are functions of the absolute values of
the corresponding velocities. To proceed with calculating control gains, it is necessary to
linearize the terms in B; therefore, a new matrix

B̆ = diag(X̆u, Y̆v, Z̆w, K̆p, M̆q, N̆r), (A12)

consisting of characteristic drag terms linearized with respect to expected operating con-
ditions is introduced. In the following Section 5.1, the determination of the characteristic
linear yaw drag term N̆r used to calculate control gains is detailed, and the remaining
degrees of freedom are calculated with a similar process.

Appl. Sci. 2024, 14, 7453 30 of 33

A feed-forward term appended to Equation (A5) that cancels out the τB in Equation (A6)
shall be discussed in the immediately following subsection, for the yaw axis τB is non-existent.
Substituting Equations (A3) and (A4) into Equation (A5), setting this equal to Equation (A6),
and grouping like terms together the resulting equation is obtained

kpγd + kdγ̇d = kpγ + (kd + B̆)γ̇ + (M + MA)γ̈, (A13)

where the left-hand side is a particular function f (t) and the right-hand side is a second-
order system of the standard form f (t) = kx + dẋ + mẍ. This makes the parameters

k = kp; d = kd + B̆; m = M + MA. (A14)

The natural frequency of a second-order system is ωn =
√

k/m, which can be reinter-
preted to construct the diagonal matrix of closed-loop natural frequencies with

(ωn)ii =

√
(kp)ii

(M)ii + (MA)ii
. (A15)

In this paper, the notation (·)ii refers to the i-th element of a diagonal matrix. The
damping ratio of a second-order system in terms of its natural frequency is ζ = d/(2ωnm),
which shall be used for the expression of the diagonal matrix whose elements are defined as

(ζ)ii =
(kd)ii + (B̆)ii

2(ωn)ii(M + (MA)ii)
. (A16)

All of M, MA, B̆, ωd, ζ, kp and kd are diagonal matrices, which allows for the con-
venient notation and manipulations in Equations (A15) and (A16). By setting the natural
frequency ωn to a desired value ωd, we solve for proportional gain kp with

kp = ω2
d(M + MA), (A17)

and substituting this into Equation (A16) and setting ζ = diag(1) for a critically damped
system, kd becomes

kd = 2ωd(M + MA)− B̆. (A18)

To be clear, each of the six elements of the respective diagonal matrices kp and kd have
different values for each of the six degrees of freedom. Within Equations (A17) and (A18),
only the desired closed-loop natural frequency ωd is variable, with all other terms being
constant; therefore, ωd is the central parameter affecting the behavior of the control law
from Equation (A5).

Appendix C. Frequency Response Testing

After achieving effectively critically damped step responses, the next sequence of
testing for characterizing the performance of the yaw PD control law was closed-loop
frequency response testing with SITL. Observations were made of the vehicle’s ability to
follow a ±30◦ desired yaw heading sine wave. A set of desired frequency yaw trajectories
were generated from 0.05 Hz to 1.97 Hz in 0.04 Hz increments and saved as csv files. These
trajectories were fed into the ROS csv_reader node which read the csv line-by-line in sync
with the simulation such that the system had no knowledge of future headings (similar
to the AR pilot commands). A separate ROS control_law node monitored vehicle state
and calculated the force outputs according to the modified PD control law as described
in Section 4 with the addition of δkd, as discussed in the previous section. The resulting
headings were recorded to csv files with a ROS logger node. Three desired closed-loop
natural frequency settings were tested: ωd = {2.0, 3.0, 4.0} rad/s.

These simulation results map the nonlinear frequency response HNL using the tuned
yaw controller of Equation (24) with κ = 20.0. The ratio of the amplitude of the output

Appl. Sci. 2024, 14, 7453 31 of 33

(actual) to input (desired) is known as the gain |H| or amplitudes of the system. Amplitudes
were calculated by taking half the difference of the maximum and minimum heading from
respective output and input data, and the gain is shown on the Bode gain plot. The amount
that the output lags behind the control input is known as the phase shift. To quantify phase
shift, a peak finding function was used on the respective output and input data to store
the times of local maxima into vectors. This analysis was performed for the three ωd and
displayed in Figure A1, with the frequency presented in units of rad/s.

Figure A1. Bode plot gains and phase shifts of the closed-loop nonlinear frequency response simula-
tion results are plotted with points and responses predicted by the linear approximation are plotted
with lines. A solid line representing the −3 dB control bandwidth cutoff is drawn for reference on the
gain graph. At higher frequencies where phase shift exceeded −pi, data were unwrapped to prevent
discontinuities and for clarity.

The theoretical curves for the linear transfer function HL shown on the Bode plot were
calculated using the same transfer function as Equation (22), solving for the frequency
response by replacing s := jω, where j is an imaginary number and ω is frequency, which
can be expressed as

|HL| =
∣∣∣∣ Ψ(jω)

Ψd(jω)

∣∣∣∣. (A19)

The theoretical phase shift is the angle of Equation (22) in the complex plane, which can be
expressed as

∠HL = arctan
(

Im(HL)

Re(HL)

)
, (A20)

which is also a function of ω.
One common metric of assessing a closed-loop controller’s response is characterizing

attenuation of the frequency response with control bandwidth. The definition given by [32]
states that the −3 dB cutoff is

|H(jω)|ω=ωb =

√
2

2
(A21)

where |H(jω)| is the gain of the frequency response of the transfer function, ω is the
frequency of the desired heading, ωn is the closed-loop natural frequency which is inter-

Appl. Sci. 2024, 14, 7453 32 of 33

changeable with ωd as per Equation (A15), and ωb is the control bandwidth which marks
the highest frequency the system can keep up with before the gain falls below −3 dB. In
other words, the frequency ω where the gain falls to |H| =

√
2/2 ≈ 0.71 is the so-called

control bandwidth ωb. Looking at Figure A1, in the region spanning 0.71 ≤ |H| ≤ 1.0, the
slope is constant for all three tested ωd settings, causing an apparent linear relationship.
Furthermore, unity gains |H| = 1.0 are reached at frequencies ω = ωd, which could serve
as a custom definition of “bandwidths” for this particular nonlinear system, which could
assist pilots in understanding how the choice of ωd can be expected to facilitate BROV2
performance.

References
1. Hudson, I.; Jones, D.; Wigham, D. A review of the uses of work-class ROVs for the benefits of science: Lessons learned from the

SERPENT project. Underw. Technol. 2005, 26, 83–88. [CrossRef]
2. Macreadie, P.I.; McLean, D.L.; Thomson, P.G.; Partridge, J.C.; Jones, D.O.B.; Gates, A.R.; Benfield, M.C.; Collin, S.P.; Booth, D.J.;

Smith, L.L.; et al. Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs). Sci.
Total Environ. 2018, 634, 1077–1091. [CrossRef] [PubMed]

3. Nautilus LIVE Ocean Exploration Trust. ROV Pilot. Available online: https://nautiluslive.org/career/rov-pilot (accessed on 20 May 2024).
4. Woods Hole Oceanographic Institution. ROV Jason/Medea. Available online: https://www.whoi.edu/what-we-do/explore/

underwater-vehicles/ndsf-jason/ (accessed on 20 May 2024).
5. National Oceanic and Atmospheric Administration. Remotely Operated Vehicle SuBastian. Available online: https://

oceanexplorer.noaa.gov/technology/subs/subastian/subastian.html (accessed on 20 May 2024).
6. School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa. ROV Lu’ukai. Available online:

https://www.soest.hawaii.edu/UHMC/Luukai.php (accessed on 20 May 2024).
7. Teague, J.; Allen, M.J.; Scott, T.B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring.

Ocean. Eng. 2018, 147, 333–339. [CrossRef]
8. Raber, G.T.; Schill, S.R. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and

Monitoring Coral Reefs. Drones 2019, 3, 38. [CrossRef]
9. Wilby, A.; Lo, E. Low-Cost, Open-Source Hovering Autonomous Underwater Vehicle (HAUV) for Marine Robotics Research

based on the BlueROV2. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns,
NL, Canada, 30 September–2 October 2020; pp. 1–5. [CrossRef]

10. Zhou, M.; Gezer, E.C.; McConnell, W.; Yuan, C. Acrobatic Low-cost Portable Hybrid AUV (ALPHA): System Design and
Preliminary Results. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–5. [CrossRef]

11. Buscher, E.; Mathews, D.L.; Bryce, C.; Bryce, K.; Joseph, D.; Ban, N.C. Applying a Low Cost, Mini Remotely Operated Vehicle
(ROV) to Assess an Ecological Baseline of an Indigenous Seascape in Canada. Front. Mar. Sci. 2020, 7, 669. [CrossRef]

12. Constine, J. Ocean Drone Startup Merger Spawns Sofar, the DJI of the Sea. Available online: https://techcrunch.com/2019/03/
27/sofar-ocean-technologies/ (accessed on 20 May 2024).

13. Blue Robotics. BlueROV2 Heavy Configuration Retrofit Kit. Available online: https://bluerobotics.com/store/rov/bluerov2
-upgrade-kits/brov2-heavy-retrofit/ (accessed on 20 May 2024).

14. Bell, T.W.; Nidzieko, N.J.; Siegel, D.A.; Miller, R.J.; Cavanaugh, K.C.; Nelson, N.B.; Reed, D.C.; Fedorov, D.; Moran, C.; Snyder,
J.N.; et al. The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms:
A Case Study for Canopy Forming Kelps. Front. Mar. Sci. 2020, 7, 520223. [CrossRef]

15. Zhao, L.; Zhou, M.; Loose, B.; Cousens, V.; Turrisi, R. Modifying an Affordable ROV for Under-ice Sensing. In Proceedings of the
OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–5. [CrossRef]

16. Wu, C.J. 6-DoF Modelling and Control of a Remotely Operated Vehicle. Master’s Thesis, Flinders University, Adelaide, Australia, 2018.
17. Einarsson, E.M.; Lipenitis, A. MPC Control for the BlueROV2—Theory and Implementation. Master’s Thesis, Aalborg University,

Aalborg, Denmark, 2020.
18. Shepherd, T. Pilots “Fly” Using ROVs. Available online: https://oceanexplorer.noaa.gov/edu/materials/rov-pilots-exploration-

notes.pdf (accessed on 20 May 2024).
19. Xia, P.; McSweeney, K.; Wen, F.; Song, Z.; Krieg, M.; Li, S.; Yu, X.; Crippen, K.; Adams, J.; Du, E.J. Virtual telepresence for the

future of ROV teleoperations: Opportunities and challenges. In Proceedings of the SNAME Offshore Symposium. SNAME,
Houston, TX, USA, 22 February 2022; p. D011S001R001. [CrossRef]

20. Xia, P.; You, H.; Ye, Y.; Du, J. ROV teleoperation via human body motion mapping: Design and experiment. Comput. Ind. 2023,
150, 103959. [CrossRef]

21. Koubâa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro Air Vehicle Link (MAVlink) in a Nutshell:
A Survey. IEEE Access 2019, 7, 87658–87680. [CrossRef]

22. ArduPilot. Choosing an Autopilot. Available online: https://ardupilot.org/copter/docs/common-autopilots.html (accessed on
20 May 2024).

http://doi.org/10.3723/175605405784426637
http://dx.doi.org/10.1016/j.scitotenv.2018.04.049
http://www.ncbi.nlm.nih.gov/pubmed/29660864
https://nautiluslive.org/career/rov-pilot
https://www.whoi.edu/what-we-do/explore/underwater-vehicles/ndsf-jason/
https://www.whoi.edu/what-we-do/explore/underwater-vehicles/ndsf-jason/
https://oceanexplorer.noaa.gov/technology/subs/subastian/subastian.html
https://oceanexplorer.noaa.gov/technology/subs/subastian/subastian.html
https://www.soest.hawaii.edu/UHMC/Luukai.php
http://dx.doi.org/10.1016/j.oceaneng.2017.10.046
http://dx.doi.org/10.3390/drones3020038
http://dx.doi.org/10.1109/AUV50043.2020.9267913
http://dx.doi.org/10.1109/OCEANS47191.2022.9977113
http://dx.doi.org/10.3389/fmars.2020.00669
https://techcrunch.com/2019/03/27/sofar-ocean-technologies/
https://techcrunch.com/2019/03/27/sofar-ocean-technologies/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
http://dx.doi.org/10.3389/fmars.2020.520223
http://dx.doi.org/10.23919/OCEANS44145.2021.9705886
https://oceanexplorer.noaa.gov/edu/materials/rov-pilots-exploration-notes.pdf
https://oceanexplorer.noaa.gov/edu/materials/rov-pilots-exploration-notes.pdf
http://dx.doi.org/10.5957/TOS-2022-015
http://dx.doi.org/10.1016/j.compind.2023.103959
http://dx.doi.org/10.1109/ACCESS.2019.2924410
https://ardupilot.org/copter/docs/common-autopilots.html

Appl. Sci. 2024, 14, 7453 33 of 33

23. Zhang, M.M.; Choi, W.S.; Herman, J.; Davis, D.; Vogt, C.; McCarrin, M.; Vijay, Y.; Dutia, D.; Lew, W.; Peters, S.; et al. DAVE Aquatic
Virtual Environment: Toward a General Underwater Robotics Simulator. In Proceedings of the 2022 IEEE/OES Autonomous
Underwater Vehicles Symposium (AUV), Singapore, 19–21 September 2022; pp. 1–8. [CrossRef]

24. Cieślak, P. Stonefish: An Advanced Open-Source Simulation Tool Designed for Marine Robotics, with a ROS Interface. In
Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019. [CrossRef]

25. Gezer, E.C.; Zhou, M.; Zhao, L.; McConnell, W. Working toward the development of a generic marine vehicle framework:
ROS-MVP. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–5. [CrossRef]

26. Blue Robotics. BlueROV2 Assembly (R3 Version). Available online: https://bluerobotics.com/learn/bluerov2-assembly-r3
-version/ (accessed on 20 May 2024).

27. PX4. Pixhawk. Available online: https://docs.px4.io/main/en/flight_controller/pixhawk.html (accessed on 20 May 2024).
28. Foote, T.; Purvis, M. REP 103 Standard Units of Measure and Coordinate Conventions. Available online: https://www.ros.org/

reps/rep-0103.html (accessed on 20 May 2024).
29. Palmer, E.; Zhang, M. [REP-156] Define Coordinate Frame Conventions for Marine Robots #398. Available online: https:

//github.com/ros-infrastructure/rep/pull/398 (accessed on 9 August 2024).
30. Discourse, R. Maritime Robotics. Available online: https://discourse.ros.org/c/maritime/36 (accessed on 9 August 2024).
31. Blue Robotics. BlueROV2 Heavy Configuration Retrofit Kit Installation. Available online: https://bluerobotics.com/learn/

bluerov2-heavy-configuration-retrofit-kit-installation/ (accessed on 20 May 2024).
32. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2021.
33. APM:Sub Release Notes. Available online: https://github.com/ArduPilot/ardupilot/blob/master/ArduSub/ReleaseNotes.txt

(accessed on 14 August 2024).
34. Blue Robotics. T200 Thruster Polyfit. Available online: https://colab.research.google.com/drive/1CEDW9ONTJ8Aik-HVsqck8

Y_EcHYLg0zK#scrollTo=yXoOCK3CvxoY (accessed on 20 May 2024).
35. Poubel, L.; Hamilton, A.; Anderson, M. Fluid Added Mass Proposal. Available online: http://sdformat.org/tutorials?tut=

added_mass_proposal (accessed on 9 August 2024).
36. ArduSub. S.I.T.L. (Software in the Loop). Available online: http://www.ardusub.com/developers/sitl.html (accessed on 9

August 2024).
37. Orca4. Available online: https://github.com/clydemcqueen/orca4 (accessed on 15 August 2024).
38. Sandøy, S.S. System Identification and State Estimation for ROV Udrone. Master’s Thesis, Norwegian University of Science and

Technology (NTNU), Trondheim, Norway, 2016.
39. Singh, J.; Taddese, A.; Dutia, D. Proposal for Automatic Moments of Inertia Calculations. Available online: http://sdformat.org/

tutorials?tut=auto_inertial_params_proposal (accessed on 9 August 2024).
40. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems, 6th ed.; Pearson: London, UK, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/AUV53081.2022.9965808
http://dx.doi.org/10.1109/OCEANSE.2019.8867434
http://dx.doi.org/10.1109/OCEANS47191.2022.9977346
https://bluerobotics.com/learn/bluerov2-assembly-r3-version/
https://bluerobotics.com/learn/bluerov2-assembly-r3-version/
https://docs.px4.io/main/en/flight_controller/pixhawk.html
https://www.ros.org/reps/rep-0103.html
https://www.ros.org/reps/rep-0103.html
https://github.com/ros-infrastructure/rep/pull/398
https://github.com/ros-infrastructure/rep/pull/398
https://discourse.ros.org/c/maritime/36
https://bluerobotics.com/learn/bluerov2-heavy-configuration-retrofit-kit-installation/
https://bluerobotics.com/learn/bluerov2-heavy-configuration-retrofit-kit-installation/
https://github.com/ArduPilot/ardupilot/blob/master/ArduSub/ReleaseNotes.txt
https://colab.research.google.com/drive/1CEDW9ONTJ8Aik-HVsqck8Y_EcHYLg0zK#scrollTo=yXoOCK3CvxoY
https://colab.research.google.com/drive/1CEDW9ONTJ8Aik-HVsqck8Y_EcHYLg0zK#scrollTo=yXoOCK3CvxoY
http://sdformat.org/tutorials?tut=added_mass_proposal
http://sdformat.org/tutorials?tut=added_mass_proposal
http://www.ardusub.com/developers/sitl.html
https://github.com/clydemcqueen/orca4
http://sdformat.org/tutorials?tut=auto_inertial_params_proposal
http://sdformat.org/tutorials?tut=auto_inertial_params_proposal

	Introduction
	ArduSub Alterations
	Hardware and Software Limitations
	Changes to ArduSub and Motivation
	Thruster Allocation Matrix Overview
	Implementation
	Simulation Discussion
	Vehicle Simulation Model Update
	Simulation Control Allocation

	Open-Loop Experimental Testing and Hydrodynamic Characterization
	Viscous Drag Analysis
	Inertia Analysis

	Designing Autopilot Performance
	Controller Tuning Methodology
	Determining Trim Conditions
	Additional Damping Term to Correct for Nonlinear Behavior
	Simulated Pilot Testing

	Conclusions and Future Work
	Angular Drag Coefficients
	Calculating Control Gains for a Critically Damped System
	Frequency Response Testing
	References

