Mapping Gaps in Sugarcane Fields in Unmanned Aerial Vehicle Imagery Using YOLOv5 and ImageJ
Abstract
:1. Introduction
2. Literature Review
2.1. Computer Vision and Object Detection
2.2. YOLO and Object Detection Techniques
2.3. ImageJ for Image Processing
2.4. Related Works
3. Materials and Methods
- (1)
- The initial activity involves capturing fields images, and following image capture, generating orthomosaics from the acquired images.
- (2)
- The second activity involves segmenting samples from the orthomosaic to train the convolutional neural network and generate models for mapping field gaps.
- (3)
- In the third phase, the optimal model will be utilized to identify field gaps within the orthomosaics.
- (4)
- Lastly, the fourth activity entails producing the mapping of field gaps, accompanied by a comprehensive report detailing the location of these gaps.
3.1. Taking Field Images and Generating Orthomosaics
3.2. Training the YOLO Model
3.3. Applying the YOLO Best Model
3.4. Generate Gaps Mapping
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gap | Area | X | Y | XM | YM | BX | BY | Width | Length |
---|---|---|---|---|---|---|---|---|---|
1 | 4611 | 1793.58 | 33.80 | 1793.19 | 33.72 | 1754 | 4 | 80 | 60 |
2 | 17,469 | 3097.97 | 66.13 | 3098.33 | 65.82 | 3016 | 10 | 172 | 122 |
3 | 5539 | 530.54 | 81.40 | 530.73 | 81.33 | 488 | 45 | 87 | 69 |
4 | 6368 | 1934.46 | 90.46 | 1933.78 | 90.39 | 1886 | 56 | 96 | 68 |
5 | 4593 | 663.66 | 143.40 | 663.44 | 143.07 | 626 | 112 | 76 | 62 |
6 | 7087 | 2312.32 | 144.99 | 2311.71 | 144.84 | 2246 | 118 | 132 | 54 |
7 | 6603 | 2428.00 | 156.45 | 2427.84 | 156.38 | 2384 | 118 | 88 | 76 |
8 | 4655 | 2264.53 | 213.66 | 2263.92 | 213.71 | 2230 | 180 | 70 | 68 |
9 | 7393 | 3152.99 | 233.01 | 3152.43 | 232.96 | 3096 | 199 | 113 | 67 |
10 | 6435 | 2534.51 | 260.00 | 2534.23 | 260.04 | 2477 | 232 | 115 | 56 |
11 | 6335 | 1081.59 | 326.70 | 1081.61 | 326.61 | 1036 | 292 | 93 | 70 |
12 | 7760 | 1956.02 | 429.10 | 1956.01 | 429.10 | 1910 | 385 | 92 | 87 |
13 | 4328 | 2566.47 | 433.49 | 2566.26 | 433.50 | 2530 | 402 | 72 | 62 |
14 | 4889 | 65.96 | 436.14 | 65.36 | 436.17 | 24 | 407 | 84 | 61 |
15 | 5499 | 1733.49 | 466.01 | 1733.56 | 466.00 | 1693 | 432 | 81 | 68 |
16 | 5392 | 3113.41 | 780.12 | 3112.97 | 780.20 | 3072 | 746 | 82 | 68 |
17 | 4343 | 2744.47 | 1517.40 | 2743.89 | 1516.89 | 2707 | 1486 | 73 | 62 |
18 | 5180 | 3118.36 | 1552.08 | 3118.36 | 1552.02 | 3072 | 1519 | 88 | 65 |
19 | 5661 | 2825.38 | 1671.02 | 2825.16 | 1670.73 | 2778 | 1640 | 94 | 62 |
20 | 4330 | 139.07 | 1743.97 | 138.78 | 1743.60 | 102 | 1714 | 76 | 60 |
21 | 5358 | 485.54 | 1770.50 | 485.36 | 1770.43 | 443 | 1738 | 87 | 65 |
22 | 6701 | 3087.52 | 1775.46 | 3087.28 | 1775.21 | 3036 | 1742 | 104 | 66 |
23 | 4419 | 3068.49 | 1862.01 | 3068.16 | 1861.87 | 3029 | 1834 | 79 | 56 |
24 | 5024 | 1294.60 | 1897.34 | 1294.24 | 1897.01 | 1256 | 1864 | 78 | 66 |
25 | 7979 | 938.11 | 1930.96 | 937.77 | 1930.83 | 886 | 1866 | 99 | 118 |
26 | 4256 | 1064.58 | 2010.36 | 1064.34 | 2010.25 | 1026 | 1980 | 78 | 58 |
27 | 4910 | 2564.82 | 2010.42 | 2564.47 | 2010.22 | 2513 | 1982 | 100 | 54 |
28 | 5489 | 389.88 | 2085.57 | 389.96 | 2085.55 | 340 | 2058 | 100 | 56 |
29 | 4231 | 1345.08 | 2121.36 | 1344.33 | 2121.21 | 1308 | 2092 | 74 | 58 |
30 | 6105 | 2073.64 | 2200.35 | 2073.68 | 2199.93 | 2022 | 2170 | 104 | 60 |
31 | 4698 | 1454.52 | 2275.03 | 1454.32 | 2275.00 | 1410 | 2248 | 89 | 55 |
32 | 9487 | 2326.71 | 2311.40 | 2327.03 | 2311.14 | 2258 | 2276 | 138 | 70 |
33 | 7766 | 110.06 | 2326.41 | 109.82 | 2326.24 | 60 | 2286 | 100 | 80 |
34 | 5116 | 769.07 | 2356.35 | 768.57 | 2356.16 | 730 | 2322 | 78 | 68 |
35 | 5340 | 1274.15 | 2426.99 | 1273.80 | 2426.79 | 1231 | 2396 | 87 | 62 |
36 | 7767 | 216.53 | 2521.59 | 216.26 | 2521.62 | 154 | 2490 | 124 | 64 |
37 | 5928 | 2694.50 | 2559.42 | 2694.32 | 2559.25 | 2648 | 2526 | 92 | 66 |
38 | 8423 | 2828.43 | 2582.59 | 2828.38 | 2582.58 | 2770 | 2546 | 116 | 74 |
39 | 7344 | 1926.12 | 2591.37 | 1926.24 | 2591.22 | 1857 | 2564 | 139 | 54 |
40 | 4274 | 1770.94 | 2642.68 | 1771.06 | 2642.95 | 1730 | 2616 | 82 | 54 |
41 | 4400 | 728.02 | 2673.00 | 727.90 | 2672.91 | 690 | 2644 | 76 | 58 |
42 | 4673 | 2180.98 | 2682.01 | 2180.42 | 2681.92 | 2142 | 2652 | 78 | 60 |
43 | 7462 | 1030.02 | 2700.60 | 1029.78 | 2700.49 | 984 | 2660 | 92 | 83 |
44 | 5112 | 3131.53 | 2709.25 | 3131.07 | 2708.94 | 3087 | 2680 | 89 | 58 |
45 | 5026 | 1494.50 | 2764.45 | 1493.52 | 2764.19 | 1456 | 2730 | 76 | 68 |
46 | 7834 | 464.09 | 2796.32 | 464.00 | 2796.03 | 416 | 2754 | 96 | 84 |
47 | 7612 | 1611.04 | 2906.01 | 1610.91 | 2905.92 | 1560 | 2868 | 102 | 76 |
48 | 5505 | 3120.99 | 2918.00 | 3120.50 | 2917.95 | 3068 | 2892 | 106 | 52 |
49 | 4228 | 216.39 | 2929.32 | 216.25 | 2929.25 | 182 | 2895 | 71 | 65 |
50 | 6036 | 1229.49 | 2973.78 | 1229.23 | 2973.79 | 1182 | 2942 | 96 | 64 |
51 | 5122 | 1904.05 | 3027.44 | 1903.69 | 3027.16 | 1862 | 2996 | 84 | 62 |
52 | 4612 | 301.06 | 3059.96 | 300.84 | 3059.81 | 265 | 3027 | 73 | 65 |
53 | 5271 | 760.01 | 3146.02 | 759.95 | 3146.10 | 716 | 3116 | 88 | 60 |
Appendix B
Gap | Area | X | Y | XM | YM | BX | BY | Width | Length |
---|---|---|---|---|---|---|---|---|---|
1 | 3041 | 897.42 | 22.01 | 896.81 | 22.14 | 862 | 0 | 70 | 44 |
2 | 3113 | 1153.01 | 20.01 | 1152.90 | 19.83 | 1114 | 0 | 78 | 40 |
3 | 4611 | 1793.58 | 33.80 | 1793.19 | 33.72 | 1754 | 4 | 80 | 60 |
4 | 2984 | 1927.35 | 29.59 | 1927.09 | 29.73 | 1890 | 8 | 72 | 44 |
5 | 17,469 | 3097.97 | 66.13 | 3098.33 | 65.82 | 3016 | 10 | 172 | 122 |
6 | 3711 | 1489.00 | 40.06 | 1488.51 | 40.08 | 1452 | 14 | 74 | 53 |
7 | 3481 | 1570.53 | 70.02 | 1570.05 | 69.97 | 1537 | 44 | 69 | 52 |
8 | 5539 | 530.54 | 81.40 | 530.73 | 81.33 | 488 | 45 | 87 | 69 |
9 | 3236 | 2186.58 | 73.42 | 2186.36 | 72.99 | 2156 | 46 | 62 | 54 |
10 | 6368 | 1934.46 | 90.46 | 1933.78 | 90.39 | 1886 | 56 | 96 | 68 |
11 | 3665 | 809.57 | 110.03 | 809.33 | 109.99 | 778 | 80 | 64 | 61 |
12 | 2499 | 2058.49 | 134.44 | 2058.03 | 133.78 | 2034 | 108 | 50 | 52 |
13 | 2717 | 1755.45 | 135.97 | 1755.27 | 136.04 | 1726 | 111 | 59 | 49 |
14 | 4593 | 663.66 | 143.40 | 663.44 | 143.07 | 626 | 112 | 76 | 62 |
15 | 7087 | 2312.32 | 144.99 | 2311.71 | 144.84 | 2246 | 118 | 132 | 54 |
16 | 6603 | 2428.00 | 156.45 | 2427.84 | 156.38 | 2384 | 118 | 88 | 76 |
17 | 2604 | 2689.48 | 167.02 | 2689.26 | 167.20 | 2666 | 138 | 46 | 58 |
18 | 4655 | 2264.53 | 213.66 | 2263.92 | 213.71 | 2230 | 180 | 70 | 68 |
19 | 7393 | 3152.99 | 233.01 | 3152.43 | 232.96 | 3096 | 199 | 113 | 67 |
20 | 2814 | 2048.46 | 248.36 | 2048.20 | 248.28 | 2021 | 222 | 55 | 52 |
21 | 6435 | 2534.51 | 260.00 | 2534.23 | 260.04 | 2477 | 232 | 115 | 56 |
22 | 4046 | 1685.36 | 324.04 | 1685.05 | 323.71 | 1652 | 290 | 66 | 66 |
23 | 6335 | 1081.59 | 326.70 | 1081.61 | 326.61 | 1036 | 292 | 93 | 70 |
24 | 3421 | 2511.57 | 330.02 | 2511.40 | 330.05 | 2484 | 298 | 56 | 65 |
25 | 3527 | 2271.99 | 332.01 | 2271.81 | 331.95 | 2238 | 306 | 68 | 52 |
26 | 2970 | 2920.02 | 359.52 | 2919.58 | 359.70 | 2892 | 332 | 56 | 56 |
27 | 3131 | 1509.48 | 371.50 | 1509.42 | 371.84 | 1481 | 344 | 57 | 56 |
28 | 3182 | 1835.45 | 394.02 | 1835.16 | 394.01 | 1808 | 364 | 54 | 60 |
29 | 3308 | 2406.96 | 393.45 | 2406.97 | 393.31 | 2376 | 364 | 60 | 58 |
30 | 3482 | 2200.01 | 405.00 | 2199.74 | 405.02 | 2170 | 374 | 60 | 62 |
31 | 7760 | 1956.02 | 429.10 | 1956.01 | 429.10 | 1910 | 385 | 92 | 87 |
32 | 4328 | 2566.47 | 433.49 | 2566.26 | 433.50 | 2530 | 402 | 72 | 62 |
33 | 4889 | 65.96 | 436.14 | 65.36 | 436.17 | 24 | 407 | 84 | 61 |
34 | 5499 | 1733.49 | 466.01 | 1733.56 | 466.00 | 1693 | 432 | 81 | 68 |
35 | 3812 | 1543.11 | 503.93 | 1542.55 | 503.88 | 1509 | 476 | 70 | 56 |
36 | 3990 | 2763.02 | 533.01 | 2762.82 | 532.93 | 2726 | 506 | 74 | 54 |
37 | 2644 | 2940.99 | 606.45 | 2940.81 | 606.37 | 2920 | 574 | 42 | 64 |
38 | 2704 | 687.46 | 606.46 | 686.84 | 606.36 | 660 | 580 | 54 | 52 |
39 | 3697 | 1822.44 | 608.35 | 1821.94 | 608.20 | 1787 | 580 | 69 | 56 |
40 | 2376 | 1924.48 | 638.93 | 1924.43 | 638.75 | 1903 | 610 | 43 | 58 |
41 | 2438 | 661.52 | 698.02 | 661.18 | 697.74 | 638 | 672 | 48 | 52 |
42 | 2357 | 2518.91 | 769.40 | 2518.88 | 769.27 | 2495 | 742 | 47 | 54 |
43 | 5392 | 3113.41 | 780.12 | 3112.97 | 780.20 | 3072 | 746 | 82 | 68 |
44 | 3182 | 1126.50 | 892.98 | 1126.11 | 893.05 | 1099 | 864 | 55 | 58 |
45 | 2455 | 1373.51 | 892.55 | 1373.32 | 892.77 | 1352 | 864 | 44 | 58 |
46 | 3376 | 2564.88 | 901.16 | 2564.67 | 901.30 | 2534 | 872 | 61 | 68 |
47 | 2615 | 926.07 | 923.85 | 925.88 | 923.83 | 900 | 898 | 52 | 52 |
48 | 3248 | 1222.54 | 926.98 | 1222.48 | 927.17 | 1190 | 902 | 66 | 50 |
49 | 2691 | 2530.54 | 989.50 | 2530.30 | 989.43 | 2506 | 962 | 50 | 55 |
50 | 3842 | 453.43 | 1070.61 | 452.90 | 1070.49 | 422 | 1038 | 61 | 70 |
51 | 3352 | 1645.98 | 1098.00 | 1645.44 | 1097.58 | 1616 | 1070 | 60 | 56 |
52 | 3027 | 923.48 | 1161.55 | 923.15 | 1161.55 | 896 | 1134 | 55 | 56 |
53 | 2717 | 2406.00 | 1166.04 | 2406.00 | 1166.19 | 2378 | 1140 | 56 | 52 |
54 | 2862 | 3170.04 | 1354.42 | 3169.87 | 1354.54 | 3144 | 1326 | 52 | 56 |
55 | 3013 | 1762.07 | 1371.97 | 1761.49 | 1372.03 | 1733 | 1346 | 59 | 52 |
56 | 3199 | 3147.55 | 1450.12 | 3147.28 | 1450.00 | 3116 | 1422 | 63 | 57 |
57 | 2555 | 2846.43 | 1466.01 | 2846.23 | 1465.74 | 2822 | 1438 | 48 | 56 |
58 | 3064 | 2413.47 | 1497.95 | 2413.03 | 1498.02 | 2383 | 1470 | 60 | 54 |
59 | 2915 | 2132.45 | 1502.52 | 2131.98 | 1502.43 | 2104 | 1476 | 56 | 54 |
60 | 4343 | 2744.47 | 1517.40 | 2743.89 | 1516.89 | 2707 | 1486 | 73 | 62 |
61 | 5180 | 3118.36 | 1552.08 | 3118.36 | 1552.02 | 3072 | 1519 | 88 | 65 |
62 | 3831 | 1746.49 | 1564.99 | 1746.24 | 1565.04 | 1710 | 1538 | 73 | 54 |
63 | 3660 | 100.98 | 1597.57 | 100.80 | 1597.31 | 70 | 1568 | 62 | 60 |
64 | 2548 | 2646.46 | 1594.04 | 2646.48 | 1594.05 | 2621 | 1568 | 51 | 53 |
65 | 3021 | 2328.00 | 1596.01 | 2327.49 | 1595.96 | 2300 | 1569 | 56 | 55 |
66 | 3458 | 710.02 | 1650.00 | 709.84 | 1649.78 | 678 | 1622 | 64 | 56 |
67 | 2150 | 227.58 | 1664.96 | 227.29 | 1665.13 | 206 | 1640 | 44 | 50 |
68 | 5661 | 2825.38 | 1671.02 | 2825.16 | 1670.73 | 2778 | 1640 | 94 | 62 |
69 | 2307 | 19.49 | 1692.42 | 19.44 | 1692.62 | 0 | 1662 | 40 | 61 |
70 | 3031 | 369.55 | 1721.38 | 369.08 | 1721.32 | 340 | 1694 | 61 | 54 |
71 | 3486 | 890.46 | 1740.67 | 890.08 | 1740.38 | 862 | 1710 | 57 | 62 |
72 | 4330 | 139.07 | 1743.97 | 138.78 | 1743.60 | 102 | 1714 | 76 | 60 |
73 | 5358 | 485.54 | 1770.50 | 485.36 | 1770.43 | 443 | 1738 | 87 | 65 |
74 | 6701 | 3087.52 | 1775.46 | 3087.28 | 1775.21 | 3036 | 1742 | 104 | 66 |
75 | 2970 | 2841.46 | 1799.00 | 2841.44 | 1799.04 | 2815 | 1770 | 53 | 58 |
76 | 3773 | 1098.03 | 1828.46 | 1097.95 | 1828.29 | 1066 | 1798 | 64 | 60 |
77 | 3048 | 2657.08 | 1844.31 | 2656.91 | 1844.04 | 2632 | 1812 | 50 | 64 |
78 | 4419 | 3068.49 | 1862.01 | 3068.16 | 1861.87 | 3029 | 1834 | 79 | 56 |
79 | 5024 | 1294.60 | 1897.34 | 1294.24 | 1897.01 | 1256 | 1864 | 78 | 66 |
80 | 7979 | 938.11 | 1930.96 | 937.77 | 1930.83 | 886 | 1866 | 99 | 118 |
81 | 3082 | 2840.97 | 1901.55 | 2840.78 | 1901.55 | 2812 | 1874 | 58 | 56 |
82 | 3076 | 544.00 | 1914.48 | 543.72 | 1914.51 | 516 | 1886 | 56 | 56 |
83 | 3833 | 1065.55 | 1930.64 | 1065.46 | 1930.92 | 1032 | 1902 | 68 | 58 |
84 | 3294 | 2842.56 | 2007.64 | 2842.40 | 2007.64 | 2818 | 1974 | 50 | 69 |
85 | 4256 | 1064.58 | 2010.36 | 1064.34 | 2010.25 | 1026 | 1980 | 78 | 58 |
86 | 4910 | 2564.82 | 2010.42 | 2564.47 | 2010.22 | 2513 | 1982 | 100 | 54 |
87 | 2804 | 1355.51 | 2026.51 | 1355.38 | 2026.59 | 1329 | 2000 | 53 | 53 |
88 | 3972 | 122.45 | 2087.67 | 122.01 | 2087.74 | 88 | 2058 | 68 | 60 |
89 | 5489 | 389.88 | 2085.57 | 389.96 | 2085.55 | 340 | 2058 | 100 | 56 |
90 | 2648 | 714.96 | 2101.60 | 714.82 | 2101.75 | 690 | 2074 | 50 | 56 |
91 | 4231 | 1345.08 | 2121.36 | 1344.33 | 2121.21 | 1308 | 2092 | 74 | 58 |
92 | 3806 | 1698.52 | 2129.16 | 1698.47 | 2129.09 | 1667 | 2098 | 63 | 62 |
93 | 3847 | 241.50 | 2130.39 | 240.97 | 2130.53 | 208 | 2100 | 66 | 60 |
94 | 3450 | 857.51 | 2153.38 | 856.91 | 2153.32 | 825 | 2126 | 65 | 54 |
95 | 3020 | 352.54 | 2181.41 | 352.03 | 2181.39 | 326 | 2152 | 53 | 58 |
96 | 4035 | 640.95 | 2195.64 | 640.32 | 2195.63 | 610 | 2162 | 62 | 69 |
97 | 6105 | 2073.64 | 2200.35 | 2073.68 | 2199.93 | 2022 | 2170 | 104 | 60 |
98 | 3632 | 1884.97 | 2227.56 | 1884.91 | 2227.65 | 1852 | 2200 | 66 | 56 |
99 | 4698 | 1454.52 | 2275.03 | 1454.32 | 2275.00 | 1410 | 2248 | 89 | 55 |
100 | 9487 | 2326.71 | 2311.40 | 2327.03 | 2311.14 | 2258 | 2276 | 138 | 70 |
101 | 3525 | 660.97 | 2310.49 | 660.88 | 2310.57 | 628 | 2282 | 65 | 56 |
102 | 7766 | 110.06 | 2326.41 | 109.82 | 2326.24 | 60 | 2286 | 100 | 80 |
103 | 4157 | 1558.17 | 2313.96 | 1557.94 | 2313.73 | 1521 | 2286 | 75 | 56 |
104 | 5116 | 769.07 | 2356.35 | 768.57 | 2356.16 | 730 | 2322 | 78 | 68 |
105 | 3613 | 1937.10 | 2363.45 | 1937.15 | 2363.34 | 1903 | 2336 | 70 | 54 |
106 | 3776 | 1143.98 | 2383.53 | 1143.52 | 2383.76 | 1112 | 2354 | 64 | 61 |
107 | 5340 | 1274.15 | 2426.99 | 1273.80 | 2426.79 | 1231 | 2396 | 87 | 62 |
108 | 2650 | 811.01 | 2480.48 | 810.54 | 2480.49 | 785 | 2454 | 53 | 52 |
109 | 3601 | 28.49 | 2517.60 | 28.10 | 2517.77 | 0 | 2486 | 58 | 64 |
110 | 7767 | 216.53 | 2521.59 | 216.26 | 2521.62 | 154 | 2490 | 124 | 64 |
111 | 4087 | 2080.01 | 2532.39 | 2079.82 | 2532.30 | 2042 | 2504 | 76 | 56 |
112 | 3131 | 1485.50 | 2533.48 | 1485.24 | 2533.37 | 1458 | 2505 | 56 | 57 |
113 | 3472 | 3033.02 | 2549.50 | 3032.37 | 2549.23 | 2998 | 2524 | 70 | 52 |
114 | 5928 | 2694.50 | 2559.42 | 2694.32 | 2559.25 | 2648 | 2526 | 92 | 66 |
115 | 3306 | 2491.95 | 2572.41 | 2491.65 | 2572.32 | 2462 | 2539 | 60 | 61 |
116 | 8423 | 2828.43 | 2582.59 | 2828.38 | 2582.58 | 2770 | 2546 | 116 | 74 |
117 | 4069 | 232.69 | 2589.20 | 232.89 | 2589.25 | 194 | 2562 | 80 | 57 |
118 | 7344 | 1926.12 | 2591.37 | 1926.24 | 2591.22 | 1857 | 2564 | 139 | 54 |
119 | 3955 | 574.99 | 2624.00 | 574.71 | 2624.12 | 536 | 2598 | 78 | 52 |
120 | 4274 | 1770.94 | 2642.68 | 1771.06 | 2642.95 | 1730 | 2616 | 82 | 54 |
121 | 4400 | 728.02 | 2673.00 | 727.90 | 2672.91 | 690 | 2644 | 76 | 58 |
122 | 2658 | 1854.98 | 2673.53 | 1854.82 | 2673.64 | 1828 | 2648 | 54 | 54 |
123 | 4673 | 2180.98 | 2682.01 | 2180.42 | 2681.92 | 2142 | 2652 | 78 | 60 |
124 | 7462 | 1030.02 | 2700.60 | 1029.78 | 2700.49 | 984 | 2660 | 92 | 83 |
125 | 3236 | 2479.45 | 2688.58 | 2479.11 | 2688.67 | 2449 | 2662 | 61 | 54 |
126 | 5112 | 3131.53 | 2709.25 | 3131.07 | 2708.94 | 3087 | 2680 | 89 | 58 |
127 | 5026 | 1494.50 | 2764.45 | 1493.52 | 2764.19 | 1456 | 2730 | 76 | 68 |
128 | 7834 | 464.09 | 2796.32 | 464.00 | 2796.03 | 416 | 2754 | 96 | 84 |
129 | 3413 | 1754.54 | 2847.98 | 1754.12 | 2847.88 | 1726 | 2818 | 58 | 60 |
130 | 3015 | 349.03 | 2862.97 | 348.82 | 2862.94 | 322 | 2834 | 54 | 58 |
131 | 2355 | 2387.57 | 2869.96 | 2387.36 | 2869.52 | 2364 | 2844 | 48 | 52 |
132 | 2489 | 2721.54 | 2885.48 | 2721.30 | 2885.37 | 2698 | 2858 | 48 | 54 |
133 | 7612 | 1611.04 | 2906.01 | 1610.91 | 2905.92 | 1560 | 2868 | 102 | 76 |
134 | 3281 | 1366.50 | 2915.48 | 1366.13 | 2915.30 | 1332 | 2890 | 68 | 50 |
135 | 5505 | 3120.99 | 2918.00 | 3120.50 | 2917.95 | 3068 | 2892 | 106 | 52 |
136 | 4228 | 216.39 | 2929.32 | 216.25 | 2929.25 | 182 | 2895 | 71 | 65 |
137 | 3107 | 2545.00 | 2934.01 | 2544.88 | 2934.18 | 2514 | 2908 | 62 | 52 |
138 | 3077 | 2616.55 | 2952.97 | 2616.45 | 2952.96 | 2588 | 2926 | 58 | 54 |
139 | 6036 | 1229.49 | 2973.78 | 1229.23 | 2973.79 | 1182 | 2942 | 96 | 64 |
140 | 3676 | 2725.50 | 3007.13 | 2725.44 | 3007.20 | 2694 | 2976 | 62 | 64 |
141 | 3751 | 176.23 | 3020.24 | 176.21 | 3020.35 | 143 | 2990 | 68 | 64 |
142 | 2846 | 2798.51 | 3020.00 | 2798.19 | 3020.03 | 2770 | 2994 | 57 | 51 |
143 | 5122 | 1904.05 | 3027.44 | 1903.69 | 3027.16 | 1862 | 2996 | 84 | 62 |
144 | 2644 | 2508.46 | 3024.00 | 2508.39 | 3024.04 | 2483 | 2998 | 51 | 52 |
145 | 4612 | 301.06 | 3059.96 | 300.84 | 3059.81 | 265 | 3027 | 73 | 65 |
146 | 2742 | 789.01 | 3067.12 | 788.95 | 3067.12 | 765 | 3037 | 49 | 59 |
147 | 2588 | 579.55 | 3070.01 | 579.33 | 3070.04 | 554 | 3042 | 52 | 54 |
148 | 3704 | 1472.13 | 3077.96 | 1471.79 | 3077.59 | 1438 | 3050 | 70 | 56 |
149 | 5271 | 760.01 | 3146.02 | 759.95 | 3146.10 | 716 | 3116 | 88 | 60 |
150 | 3972 | 554.44 | 3149.65 | 554.11 | 3149.72 | 520 | 3120 | 68 | 60 |
151 | 3892 | 1096.00 | 3155.35 | 1096.08 | 3155.36 | 1062 | 3126 | 68 | 58 |
152 | 2697 | 3186.94 | 3168.42 | 3186.70 | 3168.64 | 3162 | 3135 | 47 | 65 |
153 | 3911 | 1470.39 | 3170.93 | 1469.95 | 3170.58 | 1434 | 3140 | 68 | 62 |
154 | 2408 | 3008.06 | 3186.51 | 3008.03 | 3186.49 | 2980 | 3164 | 58 | 45 |
- Annex A—Command used for YOLOv5 Training [15]:
- The command:
- !python/content/yolov5/train.py --img 416 --batch 16 --epochs 300 --data falha.yaml --weights yolov5s.pt –cache
- where:
- --img 416:
- Sets the input image size during training to 416 × 416 pixels. Larger image sizes can lead to a better accuracy, but they require more GPU memory and training time. Smaller image sizes may result in faster training but could sacrifice some detection performance.
- --batch 16:
- Defines the batch size used during training. The batch size defines how many images are processed in one forward and backward pass. A larger batch size may speed up training but requires more GPU memory. Smaller batch sizes might be slower but can be beneficial if there is limited GPU memory.
- --epochs 300:
- Sets the number of training epochs, i.e., the number of times the model goes through the entire training dataset. Training for more epochs might lead to better convergence and accuracy, but there is a risk of overfitting if the model is trained for too long.
- --data falha.yaml:
- Specifies the path to the data configuration file (falha.yaml in this case), which contains information about the dataset, including the paths to image and label files, the number of classes, etc.
- content of falha.yaml:
- path: ../. # dataset root dir
- train: ./train_data35/images/train # train images (relative to ‘path’)
- val: ./train_data35/images/val # val images (relative to ‘path’)
- test: # test images (optional)
- # Classes
- names:
- 0: gap
- 1: plant
- # Download script/URL (optional)
- --weights yolov5s.pt:
- Specifies the path to the initial weights file to initialize the YOLOv5 model before training. In this case, it starts with the yolov5s.pt weights, which represent the “small” version of the YOLOv5 model.
- --cache:
- This parameter enables caching during data loading. Caching can speed up the training process, especially when using large datasets. Cached data are stored on the disk for faster retrieval during subsequent epochs.
- Annex B—Command used for YOLOv5 Detect [15]:
- The command:
- !python/content/yolov5/detect.py --weights/content/best.pt --img 1309 --conf 0.25 --source/content/tambau_1309.jpg --hide-conf --hide-labels --class 0 --iou 0
- Where:
- --weights/content/best.pt:
- This parameter indicates the path to the model weights file to be used for detection. In this case, the model loaded is best.pt, located in the “/content” directory.
- --img 1309:
- Set the size of the input image during detection. In this case, the input images will have dimensions of 1309 × 1309 pixels.
- --conf 0.25:
- This parameter sets the confidence threshold to filter detections during inferencing. Only detections with a confidence score above 0.25 will be considered, which is the default score.
- --source/content/tambau_1309.jpg:
- Specifies the path to the source image that will be used for detection. In this case, the file “tambau_1309.jpg” located in the directory “/content” will be used as input.
- --hide-conf:
- With this parameter, the confidence score of the detections will not be displayed in the output.
- --hide-labels:
- This parameter causes the labels (class names) of detections not to be displayed in the output.
- --class 0:
- Specifies the index of the class you want to detect. In this case, the value “0” indicates that only the class with index 0 will be detected. The index of classes is based on the order in which they were defined during training.
- --iou 0:
- Defines the value of the IoU (Intersection over Union) overlap threshold for suppressing non-maximums. A value of 0 disables non maximum suppression.
References
- Marin, F.R.; Martha, G.B., Jr.; Cassman, K.G.; Grassini, P. Prospects for increasing sugarcane and bioethanol production on existing crop area in Brazil. BioScience 2016, 66, 307–316. [Google Scholar] [CrossRef] [PubMed]
- de Souza Assaiante, B.A.; Cavichioli, F.A. A utilização de veículos aéreos não tripulados (VANT) na cultura da cana-de-açúcar. Rev. Interface Tecnológica 2020, 17, 444–455. [Google Scholar] [CrossRef]
- Molin, J.P.; Veiga, J.P.S. Spatial variability of sugarcane row gaps: Measurement and mapping. Ciência Agrotecnologia 2016, 40, 347–355. [Google Scholar] [CrossRef]
- Maciel, L.L.L. Biomassa: Uma fonte renovável para geração de energia elétrica no Brasil. Rev. Trab. Acadêmicos-Universo Campos Goytacazes 2020, 1, 13. [Google Scholar]
- Molin, J.P.; Veiga, J.P.S.; Cavalcante, D.S. Measuring and Mapping Sugarcane Gaps; University of São Paulo: São Paulo, Brazil, 2014. [Google Scholar]
- Oliveira, M.P.D. VANT-RTK: Uma Tecnologia Precisa e Acurada Para Mapeamento de Falhas em Cana-de-açúcar; Universidade Estadual Paulista (Unesp): São Paulo, Brazil, 2023. [Google Scholar]
- Shukla, S.K.; Sharma, L.; Jaiswal, V.P.; Pathak, A.D.; Awasthi, S.K.; Zubair, A.; Yadav, S.K. Identification of appropriate agri-technologies minimizing yield gaps in different sugarcane-growing states of India. Sugar Tech 2021, 23, 580–595. [Google Scholar] [CrossRef]
- Montibeller, M.; da Silveira, H.L.F.; Sanches, I.D.A.; Körting, T.S.; Fonseca, L.M.G.; Aragão, L.E.O.e.C.e.; Picoli, M.C.A.; Duft, D.G. Identification of gaps in sugarcane plantations using UAV images. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, Santos, Brazil, 28–31 May 2017. [Google Scholar]
- Singh, S.N.; Yadav, D.V.; Singh, T.; Singh, G.K. Optimizing plant population density for enhancing yield of ratoon sugarcane (Saccharum spp) in sub-tropical climatic conditions. Indian J. Agric. Sci. 2011, 81, 571. [Google Scholar]
- Stolf, R. Metodologia de avaliação de falhas nas linhas de cana-de-açúcar. Stab Piracicaba 1986, 4, 22–36. [Google Scholar]
- Barbosa Júnior, M.R. Mapeamento de falhas em cana-de-açúcar por imagens de veículo aéreo não tripulado. Master’s Dissertation, Universidade Estadual Paulista (Unesp), São Paulo, Brazil, 2021. [Google Scholar]
- Barbosa Júnior, M.R.; Tedesco, D.; Corrêa, R.D.G.; Moreira, B.R.D.A.; Silva, R.P.D.; Zerbato, C. Mapping gaps in sugarcane by UAV RGB imagery: The lower and earlier the flight, the more accurate. Agronomy 2021, 11, 2578. [Google Scholar] [CrossRef]
- Rocha, B.M.; Vieira, G.S.; Fonseca, A.U.; Sousa, N.M.; Pedrini, H.; Soares, F. Detection of Curved Rows and Gaps in Aerial Images of Sugarcane Field Using Image Processing Techniques. IEEE Can. J. Electr. Comput. Eng. 2022, 45, 303–310. [Google Scholar] [CrossRef]
- Luna, I.; Lobo, A. Mapping crop planting quality in sugarcane from UAV imagery: A pilot study in Nicaragua. Remote Sens. 2016, 8, 500. [Google Scholar] [CrossRef]
- Ultralytics. YOLOv5. GitHub. 2021. Available online: https://github.com/ultralytics/yolov5 (accessed on 3 July 2024).
- Karn, A. Artificial intelligence in computer vision. Int. J. Eng. Appl. Sci. Technol. 2021, 6, 249–254. [Google Scholar] [CrossRef]
- Gupta, A.K.; Seal, A.; Prasad, M.; Khanna, P. Salient object detection techniques in computer vision—A survey. Entropy 2020, 22, 1174. [Google Scholar] [CrossRef] [PubMed]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Joiya, F. Object detection: Yolo vs Faster R-CNN. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 9, 1911–1915. [Google Scholar]
- Rane, N. YOLO and Faster R-CNN object detection for smart Industry 4.0 and Industry 5.0: Applications, challenges, and opportunities. 2023. Available online: https://ssrn.com/abstract=4624206 (accessed on 28 June 2024).
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Rasband, W. ImageJ User Guide; National Institutes of Health: Bethesda, MD, USA, 2011. [Google Scholar]
- Santos, T.T.; Koenigkan, L.V. Produção de ortomapas com VANTs e OpenDroneMap; Embrapa São Paulo: Campinas, SP, Brazil, 2018. [Google Scholar]
- Kameyama, S.; Sugiura, K. Effects of differences in structure from motion software on image processing of unmanned aerial vehicle photography and estimation of crown area and tree height in forests. Remote Sens. 2021, 13, 626. [Google Scholar] [CrossRef]
- Aishwarya, N.; Prabhakaran, K.M.; Debebe, F.T.; Reddy, M.S.S.A.; Pranavee, P. Skin cancer diagnosis with YOLO deep neural network. Procedia Comput. Sci. 2023, 220, 651–658. [Google Scholar] [CrossRef]
- Montalbo, F.J.P. A computer-aided diagnosis of brain tumors using a fine-tuned YOLO-based model with transfer learning. KSII Trans. Internet Inf. Syst. (TIIS) 2020, 14, 4816–4834. [Google Scholar]
- Ranjan, A.; Machavaram, R. Detection and localisation of farm mangoes using YOLOv5 deep learning technique. In Proceedings of the 2022 IEEE 7th International conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2022; pp. 1–5. [Google Scholar]
- Alnajjar, M. Image-based detection using deep learning and Google Colab. Int. J. Acad. Inf. Syst. Res. (IJAISR) 2021, 5, 30–35. [Google Scholar]
- Yang, W.; Zhang, X.; Ma, B.; Wang, Y.; Wu, Y.; Yan, J.; Liu, Y.; Zhang, C.; Wan, J.; Wang, Y.; et al. An open dataset for intelligent recognition and classification of abnormal condition in longwall mining. Sci. Data 2023, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Tzutalin. Tzutalin/Labelimg. 2018. Available online: https://github.com/tzutalin/labelImg (accessed on 29 July 2023).
- Rishi, K.; Rana, N. Particle size and shape analysis using Imagej with customized tools for segmentation of particles. Int. J. Comput. Sci. Commun. Netw 2015, 4, 23–28. [Google Scholar]
- Ramadhani, D.; Rahardjo, T.; Nurhayati, S. Automated Measurement of Haemozoin (Malarial Pigment) Area in Liver Histology Using ImageJ 1.6. In Proceedings of the 6th Electrical Power, Electronics Communication, Control and Informatics Seminar (EECCIS), Malang, Indonesia, 30–31 May 2012. [Google Scholar]
- Haeri, M.; Haeri, M. ImageJ plugin for analysis of porous scaffolds used in tissue engineering. J. Open Res. Softw. 2015, 3, e1. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Peng, C. Automated quantification and analysis of cell counting procedures using ImageJ plugins. J. Vis. Exp. (JoVE) 2016, 117, 54719. [Google Scholar] [CrossRef]
- Mirabet, V.; Dubrulle, N.; Rambaud, L.; Beauzamy, L.; Dumond, M.; Long, Y.; Milani, P.; Boudaoud, A. NanoIndentation, an ImageJ Plugin for the Quantification of Cell Mechanics. In Plant Systems Biology: Methods and Protocols; Springer: New York, NY, USA, 2021; pp. 97–106. [Google Scholar]
- Broeke, J.; Pérez, J.M.M.; Pascau, J. Image Processing with ImageJ; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Gallagher, S.R. Digital image processing and analysis with ImageJ. Curr. Protoc. Essent. Lab. Tech. 2014, 9, A.3C.1–A.3C.29. [Google Scholar] [CrossRef]
Color | X | Y | Length Pixels | Area Pixels2 | Length cm |
---|---|---|---|---|---|
Red | 329.00 | 213.00 | 114.54 | 150.00 | |
Orange | 215.50 | 103.00 | 54.08 | 2595.84 | 70.82 |
Brown | 190.00 | 73.00 | 48.00 | 62.86 | |
Orange | 154.50 | 191.50 | 61.01 | 4209.69 | 79.90 |
Blue | 116.50 | 218.00 | 69.00 | 90.36 | |
Orange | 249.00 | 218.00 | 52.15 | 2816.10 | 68.29 |
Green | 222.00 | 240.00 | 54.00 | 70.72 | |
Orange | 404.00 | 295.50 | 53.04 | 2917.73 | 69.46 |
Pink | 377.50 | 321.50 | 55.01 | 72.04 |
Area | X | Y | XM | YM | BX | BY | Width | Length | |
---|---|---|---|---|---|---|---|---|---|
1 | 5670 | 533.72 | 21.60 | 533.53 | 21.72 | 468 | 0 | 132 | 45 |
2 | 5188 | 654.63 | 133.92 | 654.34 | 133.81 | 609 | 104 | 91 | 60 |
3 | 4255 | 117.99 | 192.41 | 117.77 | 192.16 | 81 | 161 | 73 | 61 |
4 | 5189 | 1053.96 | 379.69 | 1053.62 | 379.81 | 1013 | 348 | 82 | 64 |
5 | 4938 | 788.24 | 397.10 | 788.13 | 397.13 | 741 | 368 | 94 | 60 |
6 | 13590 | 752.44 | 661.61 | 751.91 | 661.73 | 642 | 608 | 218 | 123 |
7 | 4710 | 173.57 | 727.64 | 173.62 | 727.65 | 130 | 695 | 85 | 66 |
8 | 4781 | 1184.46 | 755.00 | 1184.29 | 754.98 | 1144 | 724 | 81 | 62 |
9 | 6976 | 51.97 | 803.14 | 51.43 | 802.98 | 4 | 766 | 97 | 74 |
10 | 4686 | 527.03 | 881.00 | 526.98 | 880.94 | 488 | 850 | 78 | 62 |
11 | 7368 | 646.00 | 905.74 | 646.18 | 905.66 | 584 | 876 | 124 | 60 |
12 | 4906 | 46.46 | 933.42 | 46.17 | 933.40 | 12 | 896 | 68 | 74 |
13 | 4946 | 392.00 | 935.42 | 391.36 | 935.03 | 353 | 901 | 77 | 67 |
14 | 5235 | 164.97 | 960.40 | 164.50 | 960.14 | 126 | 926 | 78 | 68 |
15 | 13881 | 568.30 | 1001.60 | 568.03 | 1001.53 | 488 | 958 | 160 | 88 |
16 | 9342 | 1006.56 | 1024.18 | 1006.84 | 1023.92 | 950 | 982 | 115 | 84 |
17 | 4435 | 35.58 | 1038.10 | 35.42 | 1037.84 | 0 | 1006 | 74 | 64 |
18 | 4580 | 586.93 | 1107.25 | 586.55 | 1107.28 | 550 | 1073 | 72 | 67 |
19 | 5792 | 122.02 | 1174.49 | 122.09 | 1174.15 | 76 | 1142 | 92 | 64 |
20 | 5598 | 228.96 | 1201.99 | 228.83 | 1201.77 | 184 | 1170 | 90 | 65 |
21 | 4410 | 806.00 | 1278.01 | 806.00 | 1277.93 | 760 | 1254 | 92 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, I.H.; de Lima, J.P.N.; Speranza, E.A.; da Silva, F.C. Mapping Gaps in Sugarcane Fields in Unmanned Aerial Vehicle Imagery Using YOLOv5 and ImageJ. Appl. Sci. 2024, 14, 7454. https://doi.org/10.3390/app14177454
Yano IH, de Lima JPN, Speranza EA, da Silva FC. Mapping Gaps in Sugarcane Fields in Unmanned Aerial Vehicle Imagery Using YOLOv5 and ImageJ. Applied Sciences. 2024; 14(17):7454. https://doi.org/10.3390/app14177454
Chicago/Turabian StyleYano, Inacio Henrique, João Pedro Nascimento de Lima, Eduardo Antônio Speranza, and Fábio Cesar da Silva. 2024. "Mapping Gaps in Sugarcane Fields in Unmanned Aerial Vehicle Imagery Using YOLOv5 and ImageJ" Applied Sciences 14, no. 17: 7454. https://doi.org/10.3390/app14177454
APA StyleYano, I. H., de Lima, J. P. N., Speranza, E. A., & da Silva, F. C. (2024). Mapping Gaps in Sugarcane Fields in Unmanned Aerial Vehicle Imagery Using YOLOv5 and ImageJ. Applied Sciences, 14(17), 7454. https://doi.org/10.3390/app14177454