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Abstract: Neural network models, such as BP, LSTM, etc., support only numerical inputs, so data
preprocessing needs to be carried out on the categorical variables to convert them into numerical data.
For unordered multi-categorical variables, existing encoding methods may produce dimensional
catastrophes and may also introduce additional order misrepresentation and distance bias in neural
network computation. To solve the above problems, this paper proposes an unordered multi-
categorical variable encoding method O-AE using orthogonal matrix for encoding and encoding
representation learning and dimensionality reduction via an autoencoder. Bayesian optimization is
used for hyperparameter optimization of the autoencoder. Finally, seven experiments were designed
with the basic O-AE, Bayesian optimization of the hyperparameters of the autoencoder for O-AE, and
other encoding methods to encode unordered multi-categorical variables in five datasets, and they
were input into a BP neural network to carry out target prediction experiments. The results show
that the experiments using O-AE and O-AE-b have better prediction results, proving that the method
proposed in this paper is highly feasible and applicable and can be an optional method for the data
processing of unordered multi-categorical variables.

Keywords: unordered multi-categorical variables; orthogonal matrix; autoencoder; encoding method;
dimensionality reduction; Bayesian optimization; BP neural network; target prediction

1. Introduction

Target prediction is the prediction of a target associated with an input based on
existing data by some method. Target prediction is increasingly important in finance [1,2],
healthcare [3], manufacturing [4], power [5,6], weather [7], transportation [8], etc. Excellent
prediction results can identify potential risks, provide credible prediction data, and improve
users’ risk management ability; it can develop executable future plans and provide decision-
making support for enterprises.

Neural networks, decision trees, linear regression, polynomial regression, etc., are
methods to achieve target prediction. Kim [9] used multiple target prediction methods,
conducted experiments under different numbers of features, feature types, and numbers
of samples and concluded that the performance of artificial neural networks with target
prediction is better under multi-categorical variable input conditions.

Overall, neural networks are the dominant model for solving target prediction prob-
lems at this stage. It is important to note that neural network models, such as BP, LSTM,
etc., support only numerical data inputs; however, a large portion of the dataset contains
non-numerical variables, i.e., categorical variables. For example, the binary categorical

Appl. Sci. 2024, 14, 7466. https://doi.org/10.3390/app14177466 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177466
https://doi.org/10.3390/app14177466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4806-6183
https://doi.org/10.3390/app14177466
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177466?type=check_update&version=2


Appl. Sci. 2024, 14, 7466 2 of 28

variable “drug reaction” includes two categories of “positive” and “negative”, and the
“assessment result” is also a binary categorical variable, including “pass” and “fail”; another
example is the multi-categorical variable “occupation”, which includes “teacher, firefighter,
construction worker, doctor. . .” and other categories. Numerical variables are easier to
interpret, but when categorical variables dominate the dataset, it is not easy to view data
trends and make predictions [10]. Therefore, a method must be taken to map categorical
variables to numerical values before inputting them into the neural network [11].

Categorical variable coding methods include one-hot encoding, label encoding, target
encoding, embedding, etc. In this, one-hot encoding is applicable to unordered categorical
variables, which generates N-dimensional binary vectors using 0, 1 for N categories. Label
encoding applies to ordered categorical variables, and it maps each category to an integer
starting from 0. Target encoding uses the target mean corresponding to the category
variables instead of the categorical variables. Embedding, on the other hand, randomly
generates weight vectors according to the specified embedding dimensions and maps the
text into word vectors according to the indexes of the categorical variables.

Unordered multi-categorical variables are categorical variables that contain several (usu-
ally more than three) categories with no differences in order or distance between categories.

Some existing encoding methods are not entirely suitable for unordered multi-categorical
variables; for example, when the number of categories is large, applying one-hot encoding
or applying embedding with a large embedding dimension creates the risk of dimensional-
ity explosion, and the data are too sparse after one-hot encoding. Embedding and label
encoding also introduce additional order and distance to an originally unordered categori-
cal variable. Target encoding, on the other hand, affects the ability of the neural network
model to extract information with the risk of overfitting.

In the current research on the target prediction problem, scholars are more concerned
about how to design a better model structure to make better prediction results, and when
carrying out the input data processing, the data either do not include the categorical vari-
ables [12–14] or use other traditional coding methods. For example, Bu et al. [15] used label
encoding for both ordered and unordered categorical variables for data preprocessing when
adopting selective integrated learning for ship painting man-hour prediction. Hur et al. [16]
predicted ship construction man-hours using deployable data at different times during the
manufacturing process and converted the categorical variables into dummy variables when
processing them. Sasan et al. [17] converted binary categorical variables into 1 and 2 labeled
coding. Wang et al. [18] set working time and non-working time as 0 and 1 coding, respec-
tively. Carrizosa et al. [19] processed all the categorical variables using one-hot encoding
in a binary categorical problem in the presence of categorical variables. All of the above
studies adopted the existing conventional encoding methods to carry out the codes for
unordered multi-categorical variables but ignored the fact that the encoded values did not
maintain the characteristics of unordered multi-categorical variables and also additionally
introduced the misleading order and distance bias.

In his research on encoding methods for categorical variables, Sebastian [20] ap-
plied five encoding methods to three regression models in his experiments and proved
that the regression results varied according to the encoding methods of categorical vari-
ables; Hien et al. [21] also verified that the three encoding methods of categorical variables,
namely label encoding, one-hot encoding, and embedding, had different effects on the per-
formance of a deep dense neural network and long- and short-term memory neural network
models. Li et al. [22] proposed an ordered log-linear model for ordered categorical variables
that can convert ordered categorical data into model-describable multi-categorical lists;
Meulemeester et al. [23] used unsupervised embedding to convert categorical variables into
word vectors. Dahouda et al. [24] extended the word-embedding approach by proposing a
deep learning method to codify categorical variables. All of the above methods are more
suitable for ordered categorical variables or for categorical variables with dependencies.
Namgil et al. [25] devised a Bayesian network based method for converting categorical
variables into data variables, and Jung et al. [26] proposed a method for updating data
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points in the kernel space of a continuous variable by using SVMs to reflect the effect of
each categorical variable; all of the above methods are only suitable for the target value of a
binary categorical variable.

In general, there is no encoding method for transforming unordered multi-categorical
variables into numerical codes with the characteristics of unordered variables and small
dimensions. Based on this need, this paper carries out a research on encoding methods for
unordered multi-categorical variables. This paper also extends the problem of predicting
the working hours of cruise ship production design tasks by analyzing the relationship
between task workload and task working hours through the previous working hours data
and the design attribute data in the ship area, such as the task type, the number of model
structures, the planned working hours, the feedback working hours, etc., so as to provide
credible and standards-based working hours solutions for the planning and scheduling
of the design tasks when designing and constructing a new ship in the future, which is
also the key link to promote the standardization of ship design and construction. In the
ship production design task working hour prediction problem, ship area and task type
are categorical variables containing dozens of unordered categories, so the unordered
multi-categorical variables cannot be ignored.

Autoencoder, as a classical tool for feature extraction and data dimensionality re-
duction, has continued to show its unique value in the field of data processing in recent
years. For example, the research of Yang et al. [27] is a profound exploration, in which they
cleverly integrate a deep autoencoder network into the Orthogonal Nonnegative Matrix
Factorization (ONMF) framework, which achieves an accurate capture and hierarchical
parsing of the intrinsic structure of complex data. This innovation not only highlights
the ability of the autoencoder to automatically extract high-level features from data in an
unsupervised learning environment but also effectively reduces the data dimensionality
while preserving key information through its unique network structure.

Based on this core feature of autoencoder, this paper proposes a new encoding method,
O-AE, for unordered multi-categorical variables, which first uses an orthogonal matrix
to numerically encode the unordered multi-categorical variables, ensuring that the codes
are independent of each other in terms of position, are equal distance, and are the same
size; second, it uses autoencoder to carry out representation learning on the numerical
codes and then performs the dimensionality reduction to ensure that the data inputted
to the neural network has learned the relevant characteristics of the orthogonal matrix
at the same time low dimensionality. This paper is structured as follows. Section 2
introduces four traditional methods for encoding multi-categorical variables; Section 3
describes the encoding mechanism of O-AE proposed in this paper; Section 4 introduces
the Bayesian optimization of the hyperparameters of autoencoder for O-AE; Section 5
designs seven encoding experiments for six encoding methods (including O-AE), designs
the Bayesian optimization of the hyperparameters of the autoencoder for O-AE, designs
seven encoding experiments, introduces the specific information of five datasets, and
proposes the validation metrics; and Section 6 carries out the example validation and
demonstrates and discusses the experimental results.

2. Encoding of Categorical Variables

This section presents the theory of several types of encoding methods that are used
frequently. First, the parametric representation of unordered multi-categorical variables is
presented along with the parametric representation after encoding.

Definition 1. Unordered multi-categorical variables are non-numerical variables with no size or
positional differences between categories.
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Definition 2. The sample size of unordered multi-categorical variables CV is set as
∼
N, and the

variable contains N categories ci, i = 1, 2, · · · N, N ≥ 3, N ≤
∼
N. There are multiple data points of

the same category in CV, among which there are m data points in category ci, ci1, ci2, · · · cim, m ≥ 1.

CV =



c1
c2
· · ·
ci1
ci2
· · ·
cN


∼
N×1

→ CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

, ci = (ci1, ci2, · · · cim), m ≥ 1 (1)

Using the encoding method f , the category ci is mapped to the numerical value
ni such that the unordered multi-categorical variables CV are mapped to the numerical
variables NV.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

f→ NV :



n1
n2
· · ·
ni
· · ·
nN


N×1

(2)

The categorical data of the same category have the same numerical data under the
same encoding method mapping.

The m identical categories ci in CV, under f mapping, ci1, ci2, · · · cim, are transformed
into numerical values ni1, ni2, · · · nim, respectively, and ni1 = ni2 = · · · = nim.{

CV : [ci]
f→ NV : [ni]

ci = (ci1, ci2, · · · cim), ni = (ni1, ni2, · · · nim), m ≥ 1, ni1 = ni2 = · · · = nim
(3)

2.1. Label Encoding

The label encoding fL maps the category ci to integers from 0 to N − 1.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

fL→ NV :



0
1
· · ·

i − 1
· · ·

N − 1


N×1

(4)

2.2. Target Encoding

The target encoding fT maps the category ci to the mean of the target value corre-
sponding to that category.

Assuming that the predicted target is y, the target value corresponding to category
ci is yi. When ci contains multiple similar data ci1, ci2, · · · cim within ci, the corresponding
target values are yi1, yi2, · · · yim.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

fT→ NV :



n1
n2
· · ·
ni
· · ·
nN


N×1

, ni =
m

∑
j=1

yij/m (5)
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2.3. One-Hot Encoding

One-hot encoding fO maps the N categories ci into N binary row vectors with N-
dimensional size, where each binary vector has only one valid digit 1 and the rest of the
positions are 0, and the positions of the valid digits are different between different vectors.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

fO→ NV :



n1
n2
· · ·
ni
· · ·
nN


N×N

=



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0

· · ·
0 0 · · · 1 · · · 0

· · ·
0 0 · · · 0 · · · 1


N×N

(6)

For example, the categorical variable “Occupation” contains three categories “Teacher,
Firefighter, Construction Worker”, which are mapped to binary vectors [1,0,0], [0,1,0], [0,0,1]
using one-hot encoding fO.

From this encoding method, it is easy to see that each vector is a unit vector and
the vectors are orthogonal to each other, i.e., the vectors are equal in distance and in-
dependent of each other, which is fully consistent with the characteristics of unordered
categorical variables.

However, one-hot encoding also has some problems: the vectors are only composed
of 0 and 1, and when the categorical variables are of large categories, the encoding ob-
tained from the mapping will be sparse and of huge dimensions, which will make the
computational cost large.

2.4. Embedding

The embedding encoding fE maps each category to a point in a vector space, and
vectors with similar categories are closer together in the vector space.

Setting embedding converts the categorical variable CV into a numerical variable
NV with a specified embedding dimension dE. The embedding dimension dE denotes the

dimension of the mapped ni, i.e., ci
fE→ ni =

[
n1

i n2
i · · · ndE

i

]
.

Embedding is roughly divided into four steps.
(1) Predefine the vector space, determine the number N of categories ci contained

within the categorical variables, specify the embedding dimension dE, and construct a
weight matrix W of N rows and dE columns. The weight matrix is randomly generated by
default from a standard normal distribution with mean 0 and standard deviation 1. That is,
W ∼ N(0, 1).

(2) Assign an integer index starting from 0 to each category in the categorical variables.
(3) Map the integer indexes into a predefined vector space by means of a lookup

table (this table is the weight matrix W), where each index is associated with a vector
corresponding to the number of the weight matrix.

(4) Return the mapped numeric variables for the categorical variables.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

fE→ NV :



n1
n2
· · ·
ni
· · ·
nN


N×dE

→ W =



n1
1 n2

1 · · · ndE
1

n1
2 n2

2 · · · ndE
2

· · ·
n1

i n2
i · · · ndE

i
· · ·

n1
N n2

N · · · ndE
N


(7)

3. Orthogonal Matrix-Autoencoder-Based Encoding Method for Unordered
Multi-Categorical Variables

Among the existing methods for encoding categorical variables, part of the methods
is not applicable to unordered multi-categorical variables with no size, order, or distance
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requirements between categories, and the other part of the methods have large dimension-
ality after encoding. Therefore, this paper proposes the method O-AE based on orthogonal
matrix-autoencoder for encoding and dimension reduction of unordered multi-categorical
variables. O-AE for unordered multi-categorical variables encoding and dimensionality
reduction process is shown in Figure 1.

CV : [ci]
fO−AE→ Z ∈ Z ⇔ ⟨CV → A

QR→ Q → X ∈ X, X ∈ X encoder→ Z ∈ Z decoder→ X̂ ∈ X⟩ (8)

The model is mainly divided into two parts, the original code generation part and the
code reduction part.

The original code generation part is CV → A
QR→ Q → X ∈ X . The code dimensional-

ity reduction part is X ∈ X encoder→ Z ∈ Z decoder→ X̂ ∈ X.
First, according to the number of categories N in the unordered multi-categorical

variables, the N-order orthogonal matrix Q is constructed, and the orthogonal matrix is
mapped one by one with the original unordered multi-categorical variables according to
the positional indexes into an orthogonal numerical coding matrix X with the same data
size, independent positions, and equal distances.

Second, the orthogonal matrix of numerical code matrix X is input to the autoencoder,
and the autoencoder is trained step by step by compressed reconstruction coding through
the encoder and decoder in the autoencoder; finally, the learned feature Z is obtained.
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3.1. Code Generation

The N-order square matrix is set as A ∈ RN×N , A = [a1, a2, · · · , ai, · · · , aN], where ai

is the column vector of A and ai =
[
a1

i , a2
i , · · · , aN

i
]T .

There exists a series of transformations that decompose A into an orthogonal matrix Q
and an upper triangular matrix R, i.e., A = QR. These transformations are also called QR
decomposition of A.
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The orthogonal matrix Q is set to consist of N column vectors, Q = [q1, q2, · · · , qi, · · · , qN],

where qi =
[
q1

i , q2
i , · · · , qN

i
]T.

The row and column vectors of an orthogonal matrix are two-by-two orthogonal
unit vectors.

QQT = QTQ = E (9)

qi
Tqj =

{
0, i ̸=j
1, i = j

(10)

∥qi∥2 = 1 (11)

Therefore, mapping unordered multi-categorical variables into orthogonal numerical
codes can ensure that the different categories are independent of each other in terms of
location, are equal distances, and are the same size, and at the same time increase the
data richness to avoid underfitting in the subsequent prediction process brought about by
data impoverishment.

The steps for encoding unordered multi-categorical variables using an orthogonal
matrix are as follows.

(1) Construct N-order square matrix A ∈ RN×N based on the number of categories N
in the unordered multi-categorical variables.

(2) Perform the QR decomposition of A using the Gram–Schmidt orthogonal transfor-
mation to obtain the orthogonal matrix Q ∈ RN×N .

The Gram–Schmidt orthogonal transformation is able to convert non-orthogonal
bases into orthogonal bases by first orthogonalizing the non-orthogonal bases and, second,
unitizing them.

∼
q1 = a1

∼
q2 = a2 −

〈
a2,

∼
q1

〉
〈∼

q1,
∼
q1

〉∼
q1

· · ·
∼
qN = aN −

〈
aN,

∼
q1

〉
〈∼

q1,
∼
q1

〉∼
q1 −

〈
aN,

∼
q2

〉
〈∼

q2,
∼
q2

〉∼
q2 · · · −

〈
aN,

∼
qN−1

〉
〈∼

qN−1,
∼
qN−1

〉∼
qN−1

(12)



q1 =
∼
q1∥∥∥∼q1

∥∥∥
q2 =

∼
q2∥∥∥∼q2

∥∥∥
· · ·
qN =

∼
qN∥∥∥∼qN

∥∥∥

(13)

Q = [q1, q2, · · · , qi, · · · , qN] (14)

(3) Construct the N-order identity matrix E. Using matrix multiplication, map the or-
thogonal matrix to the original unordered multi-categorical variables one by one according
to the position indexes to obtain the orthogonal numerical code matrix X ∈ RN×N , which
consists of row vectors.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

→ X :



x1
x2
· · ·
xi
· · ·
xN


N×N

= EN×NQT
N×N =



q1
T

q2
T

· · ·
qi

T

· · ·
qN

T


N×N

=



q1
1 q2

1 · · · qN
1

q1
2 q2

2 · · · qN
2

· · ·
q1

i q2
i · · · qN

i
· · ·

q1
N q2

N · · · qN
N


N×N

(15)

where xi = qi
T and xi is the row vector of X.
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After the encoding of unordered multi-categorical variables, input the orthogonal matrix
of numerical codes X into the autoencoder for representation learning and dimension reduction.

3.2. Code Dimensionality Reduction

An autoencoder (AE) [28] is an unsupervised neural network model, which mainly
consists of two parts, an encoder and decoder, and has a symmetric structure. Through
neural network training, an autoencoder can achieve the tasks of data denoising, feature
learning, or data dimensionality reduction [29].

An example of the structure of the autoencoder and the working principle of the
autoencoder is shown in Figure 2. The autoencoder includes an input layer, a hidden layer,
latent space, and an output layer, each with a different number of nodes. In this case, the
structure from the input layer to the latent space is referred to as the encoder, and the
structure from the latent space to the output layer is referred to as the decoder. The number
of nodes in the input layer is the size of the original dimension of the data, the number
of nodes in the latent space is the dimension in which the data needs to be compressed,
and the number of nodes in the hidden layer is in between the original dimension and the
compressed dimension.
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The working principle of the autoencoder is as follows: the encoder compresses the
input data into a predefined low-dimensional encoding through a series of transformations
f , and the decoder tries to reconstruct the low-dimensional encoding into the original input
data through a series of transformations g. Iterative training of the autoencoder is carried out
by minimizing the reconstruction error between the input and the output, and ultimately, it is
hoped that the autoencoder learns the abstract feature representation of the samples z.

The working principle of the autoencoder to carry out data dimensionality reduction
is shown in Equation (16).

f : R → Z
g : Z → R
z = f (W1x + b1)
x̂ = g(W2z + b2)
f , g = arg min

f ,g
∥x − g( f (x))∥2

(16)
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In this paper, multiple symmetric fully connected layers are designed in the encoder
and decoder of the autoencoder to increase the complexity of the model and feature
extraction capability by stacking multiple connected layers.

ReLU is used as the activation function; ReLU is simpler to compute and has relatively
stable performance. ReLU can avoid the gradient disappearing during model training,
increase the nonlinear fitting ability of the model, and have good performance on multi-
class tasks and datasets. The ReLU formula is f (x) = max(0, x).

Taking the autoencoder model containing four hidden layers and one-dimensional
data compression dimension as an example in Figure 3, XN×N denotes the orthogonal
numerical code matrix, and X̂N×N denotes the numerical matrix after the reconstruction
of the autoencoder. Let X(1) ∈ RN×a, X(2) ∈ RN×b, a, b < N denote the process data

compressed by the encoding layer. Let X̂(2) ∈ RN×b, X̂(1) ∈ RN×a, a, b < N denote the
process data that has been reconstructed by the decoding layer, and let Z ∈ ZN×1 denote
the coded data that has undergone dimensionality reduction.
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X, X(1), X(2), X̂(2), X̂(1), X̂ all consist of row vectors.
The change in data dimensions during the encoding and decoding of the orthogonal

numerical code matrix by AE is shown in Equation (17).

XN×N =



x1
x2
· · ·
xi
· · ·
xN


N×N

encoder→ X(1)
N×a =



x(1)1

x(1)2
· · ·
x(1)i
· · ·
x(1)N


N×a

encoder→ X(2)
N×b =



x(2)1

x(2)2
· · ·
x(2)i
· · ·
x(2)N


N×b

encoder→ ZN×1

=



z1
z2
· · ·
zi
· · ·
zN


N×1

decoder→ X̂(2)
N×b =



x̂(2)1

x̂(2)2
· · ·
x̂(2)i
· · ·
x̂(2)N


N×b

decoder→ X̂(1)
N×a =



x̂(1)1

x̂(1)2
· · ·
x̂(1)i
· · ·
x̂(1)N


N×a

decoder→ X̂N×N =



x̂1
x̂2
· · ·
x̂i
· · ·
x̂N


N×N

(17)

More specifically, the steps for the dimensionality reduction of the orthogonal vector
xi in the orthogonal numerical coding matrix are as follows.

(1) By means of the encoder, the orthogonal vector xi is mapped from a high-dimensional
space to a low-dimensional space to achieve data dimensionality reduction.

x(1)i = max
(

0, W(1)
1 xi + b(1)1

)
x(2)i = max

(
0, W(2)

1 x(1)i + b(2)1

) (18)
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The coded data zi after feature extraction of the model is obtained by linearly transform-
ing the output of the previous layer to avoid introducing additional nonlinear relationships
to enhance the complexity of the coded data, as in Equation (19).

zi = W(3)
1 x(2)i + b(3)1 (19)

(2) The original data xi is reconstructed by mapping the low-dimensional space back
to the high-dimensional space through the decoder.

x̂(2)i = max
(

0, W(1)
2 zi + b(1)2

)
x̂(1)i = max

(
0, W(2)

2 x̂(2)i + b(2)2

) (20)

The final output of the decoding layer, X̂, is obtained by linearly transforming the
output of the previous layer to satisfy the purpose of output data reconstruction, as in
Equation (21).

x̂i = W(3)
2 x̂(1)i + b(3)2 (21)

(3) The error is calculated between the reconstructed data X̂N×N and the original data
XN×N , generally using the mean-square error as a loss function L.

L = ∥xi − x̂i∥2 (22)

(4) With the goal of minimizing the reconstruction error, the weights W and bias b in
the encoder and decoder are optimised by error back propagation using a gradient-based
method for the purpose of training the autoencoder.

f , g(W,b) = arg min
f ,g

L(xi, x̂i) (23)

(5) After autoencoder training, the autoencoder learns the feature zi of the data.

xi
fO−AE−−−→ zi (24)

The same is true for the other orthogonal vectors, which ultimately results in the
reduced dimensionality of the orthogonal numerical code matrix with numerical code
Z ∈ RN×1.

XN×N
fO−AE−−−→ ZN×1 =



z1
z2
· · ·
zi
· · ·
zN


N×1

(25)

From Equation (3), the values are the same after encoding in the same category. There-
fore, the coded values after dimensionality reduction are expanded to the original sample

size Z ∈ R
∼
N×1 to obtain the coded expressions for all unordered multi-categorical variables.

CV :



c1
c2
· · ·
ci
· · ·
cN


N×1

→ CV =



c1
c2
· · ·
ci1
ci2
· · ·
cN


∼
N×1

fO−AE→ Z∼
N×1

=



z1
z2
· · ·
zi1
zi2
· · ·
zN


∼
N×1

(26)
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4. Bayesian Optimization of Autoencoder Hyperparameters

The structure of the autoencoder model is not fixed. Since a dataset may include
multiple unordered multi-categorical variables with varying numbers of categories, the
number of hidden layers and nodes in the autoencoder adapts according to the dataset’s size
and the required level of data compression. Therefore, parameters such as the number of
layers and nodes in the hidden layer of the autoencoder are the key influencing factors that
affect the performance of the autoencoder and the effect of data dimensionality reduction.

Bayesian optimization is suitable for black-box optimization problems where the target
function is complex and has no analytical expression and the computational cost is high.
The core idea is to use a probabilistic agent model (e.g., Gaussian process or random forest)
to approximate the objective function and use this model to select the next evaluation
point so that the objective function can converge to the optimal value as soon as possible,
which is a kind of optimization method based on a priori information. There are two core
components in this process: the probabilistic model and the acquisition strategy.

Bayes’ theorem is shown in Equation (27).

p(y|x) = p(x|y)p(y)
p(x)

(27)

This paper uses the TPE (Tree-structured Parzen Estimator) algorithm in the Optuna
framework to specify the implementation of the Bayesian optimization technique. The TPE
is a tree-structured Bayesian optimization method. In the TPE, two density functions are
used to define p(x|y).

p(x|y) =
{

l(x), y < y∗

g(x), y ≥ y∗
(28)

The TPE uses Kernel Density Estimation (KDE) to model the probability distribution of
objective function values. Specifically, the TPE divides the objective function value into two
components: a probability distribution l(x) for the better objective value and a probability
distribution g(x) for the worse objective value.

The TPE uses Expected Improvement (EI) as a collection function.

EIy∗(x) =
∫ +∞

−∞
max(y∗ − y, 0)pM(y|x)dy =

∫ y∗
−∞ (y∗ − y, 0)p(y)dy

γ + (1 − γ)
g(x)
l(x)

(29)

This leads to Equation (30).

EIy∗(x) ∝
(

γ + (1 − γ)
g(x)
l(x)

)−1
(30)

The value of EI is proportional to
(

γ + (1 − γ)
g(x)
l(x)

)−1
and depends on the ratio of

the two probabilities, so it is necessary to find the x that makes the ratio l(x)
g(x) maximal and,

in each iteration, return the maximum EI.

5. Experimental Design
5.1. Dataset

In order to validate the feasibility and effectiveness of the proposed method, this
section carried out example validation on five datasets and compared the results with those
of one-hot encoding, embedding, label encoding, and target encoding.

In this paper, the working-hour dataset of two typical majors in the cruise ship pro-
duction design process, namely piping majors and hull structure majors, were selected
from the major cruise shipbuilding yards in domestic market, and three public datasets
containing unordered multi-categorical variables from UCI and Kaggle were also selected.
The sample sizes of the five datasets as well as the number of categories in the unordered
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multi-categorical variables differed from each other, which made the method of this paper
feasible to validate the universality of the method.

In particular, the sample size in the Gait dataset was so large that we randomly selected
1000 pieces of data to form a new dataset for the experiment.

The sample size of the data set, the number of variables, the number of categorical
variables, the number of categories in the categorical variables, and the targets used for
prediction are shown in the following table, Table 1.

Table 1. Specific information on the dataset.

Dataset
Sample Size

(
∼
N)

Total Number
of Variables

Number of
Continuous

Variables

Categorical Variable

Target
Number of
Categorical
Variables

Name Number of
Categories (N)

Piping 163 8 6 2
area 16 Feedback

working hourstask type 19

Hull structure 144 4 2 2
area 67 Feedback

working hourstask type 4

Gait [30] 1000 6 2 4

subject 10

anglecondition 3
joint 3
leg 2

Restaurant [31] 1000 7 5 2
Cuisine_Type 4 Monthly_Revenue
Promotions 2

Fish [32] 159 6 5 1 Species 7 Weight

5.2. Detailed Experimental Design

The dimension of the values obtained by different encoding methods is not the same.
In this paper, we set the dimension of autoencoder compression to be one-dimensional.

Therefore, O-AE, label encoding, and target encoding received one-dimensional codes,
one-hot encoding received the same dimensionality as the number of categories in the
categorical variables, and embedding methods were free to set the dimensionality size.

We were concerned with the effect of different encoding methods on the input dimen-
sions of the dataset as well as on the target prediction results of the neural network, so
we designed 2 experiments with different embedding dimensions for embedding and for
O-AE, one-hot encoding, embedding, label encoding, target encoding, and Bayesian opti-
mization of the hyperparameters of the autoencoder for the O-AE-b method, respectively,
in 1 experiment.

The encoded dataset was input to BP neural network to carry out target prediction.
In this paper, only the multi-categorical variables “subject” in the Gait dataset were

encoded; the categorical variables “condition” and “joint” in the Gait dataset contained a
small number of categories, and “leg” was a binary categorical variable, so the experiments
were conducted using the labeled data that came with the original dataset.

The multi-categorical variables “Cuisine_Type” in the Restaurant dataset were en-
coded and the binary categorical variables “Promotions” were experimented with using
the labeled data that came with the original data.

Continuous variables in the dataset were mapped to a standard normal distribution
with a mean of 0 and standard deviation of 1 by Z-Score standardization.

The specific methods of the seven experiments and the total dimensions of the five
datasets input to the BP neural network under each of the seven experimental codes are
shown in Table 2.
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Table 2. The experimental design and the total input dimensions after encoding.

No. Encoding Method
Code

Dimension

Total Input Dimensions
Experiments
AbbreviationPiping Hull

Structure Gait Restaurant Fish

1
Orthogonal matrix-
autoencoder-based
encoding method

1 8 4 6 7 6 O-AE

2 Embedding 1 8 4 6 7 6 1-EE
3 5 16 12 10 11 10 5-EE

4 One-hot encoding Number of
categories (N) 31 73 15 10 12 OHE

5 Label encoding 1 8 4 6 7 6 LE

6 Target encoding 1 8 4 6 7 6 TE

7
Bayesian optimization of
the hyperparameters of

the autoencoder for O-AE
1 8 4 6 7 6 O-AE-b

5.3. Evaluation Metrics

In this paper, three classical evaluation metrics were used to assess the performance
of different encoding methods in the BP neural network target prediction task, includ-
ing Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and coefficient of
determination (R2).

MAE =
1
n∑n

i=1|yi − yi|, MAE ∈ [0, +∞] (31)

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2, RMSE ∈ [0,+∞] (32)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , y =

1
n∑n

i=1 yi, R2 ∈ [0, 1] (33)

where n is the number of samples, yi is the actual value, ŷi is the predicted value, and y is
the mean of the actual value.

MAE is the mean of the absolute errors, and RMSE is the square root of the mean of
the sum of squares of the errors. MAE and RMSE are both measurements of the deviation
of the predicted values from the actual values, with smaller values indicating better final
predictions. R2 is used to assess the linear relationship between the actual values and the
predicted values, with values closer to 1 indicating a better fit of the model.

6. Example Validation

In this section, we analyze the performance of seven experiments. We implemented
all the algorithms in Python and conducted all the experiments on a computer with an
i7-11390H processor, 3.40 GHz CPU, and 16.0 GB RAM.

6.1. Parameter Setting

The relevant parameters of the autoencoder when carrying out Experiment 1 and
Experiment 7 are shown in Table 3 below. The batch size is set as the sample size of the
dataset due to the small sample size of the dataset for the experimental design.
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Table 3. The parameter setting of the autoencoder in O-AE and O-AE-b.

Experiment Loss
Function

Activation
Function Optimizer Learning

Rate Epoch Batch Size Patience

O-AE MSE Relu Adam 0.001 2000 Sample size (
∼
N) -

O-AE-b MSE Relu Adam 0.001 2000 Sample size (
∼
N) 100

In particular, in Experiment 7, the unordered multi-categorical variables are divided
into training and validation sets according to 7:3. The early-stopping strategy is introduced,
and the patience parameter for early stopping is set to 100. The number of AE hidden
layers and the number of nodes per layer are obtained with Bayesian optimization. The
number of encoder hidden layers is set to be no more than five, and the decoder and
encoder structures are symmetric.

The number of hidden layers of the autoencoder and the number of nodes in each layer
in Experiment 1 are manually and dynamically adjusted according to different datasets.
The epoch of Experiment 1 was kept the same as Experiment 7. Also, since there is no
additional autoencoder hyperparameter optimization procedure for Experiment 1 and in
order to compare with other experiments to demonstrate the applicability of Experiment 1,
the early-stopping strategy is not used.

To carry out target prediction using a BP neural network, the dataset is divided into a
training set, validation set, and test set in the ratio of 7:2:1.

The relevant parameters are shown in Table 4. The batch size is set as the sample size of
the dataset due to the small sample size of the dataset for the experimental design. In order
to quickly conduct experiments and obtain a better prediction result, the hyperparameter
optimization method of a 5-fold cross-validation grid search is used, and the number of
nodes in each hidden layer is set to be the same; the number of optional hidden layers
and the number of optional nodes are shown in Table 4. In order to improve the model
performance and avoid overfitting, we introduce L2 Regularization and early-stopping
strategy and set the patience parameter of early stopping to 100.

Table 4. The parameter setting of the BP neural network.

Loss Function Activation Function Optimizer Learning Rate Epoch

MSE Relu Adam 0.001 1000

L2 Regularization Batch size Patience Optional hidden layers Optional nodes

0.0001 Sample size (
∼
N) 100 10, 20, 30 1, 2, 3

Meanwhile, the original code generation step randomly generates N-order square
matrix A ∈ RN×N based on the number of categories N in the unordered multi-categorical
variables and fixes the random seed to ensure that the experimental data are the same.

6.2. Target Prediction Results

Under the above parameter settings, several calculations are carried out to obtain the
results of the evaluation metrics for the five datasets in seven experiments. The number of
nodes per layer of the encoding layer of the autoencoder (the decoding layer is symmetrical
to the structure of the encoding layer, so the description is omitted) and the number of layers
and nodes in the hidden layer of the BP neural network after hyperparameter optimization
are shown in Table 5.
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Table 5. Optimal hyperparameter results for autoencoder and BP neural network.

Dataset Hyperparameter O-AE 1-EE 5-EE OHE LE TE O-AE-b

Piping
AE

area 16-6-1 - 16-13-11-9-5-1
task type 19-6-1 19-18-16-13-12-1

BP
layers 3 3 3 3 3 3 3
nodes 30 10 20 30 30 20 30

Hull
structure

AE
area 67-30-6-1 - 67-26-17-1

task type 4-2-1 4-2-1

BP
layers 3 3 3 3 3 3 3
nodes 30 20 30 30 20 30 30

Gait
AE subject 10-4-1 - 10-9-8-5-1

BP
layers 3 3 3 3 3 3 3
nodes 30 30 30 30 30 30 30

Restaurant
AE Cuisine_Type 4-3-1 - 4-2-1

BP
layers 3 3 3 3 3 3 3
nodes 30 30 10 20 30 20 30

Fish
AE Species 7-3-1 - 7-6-5-1

BP
layers 3 3 3 3 3 3 3
nodes 30 30 30 30 30 30 30

In this paper, we denote the model structure of the autoencoder by unordered multi-
categorical variables’ original dimension − intermediate compression dimension − 1.

The results of the evaluation metrics for the five datasets in seven experiments are
shown in Table 6.

Table 6. The results of the evaluation metrics.

O-AE 1-EE 5-EE OHE LE TE O-AE-b

Piping
MAE 4.3681 6.8860 6.1809 4.8380 5.6480 8.1285 4.5841
RMSE 5.8296 9.8875 9.9672 7.9449 9.2587 11.1007 5.7244

R2 0.9718 0.9189 0.9175 0.9476 0.9288 0.8977 0.9728

Hull
structure

MAE 8.4987 12.3219 10.6569 6.4534 9.9077 14.3765 5.8390
RMSE 10.2222 17.5980 15.5944 12.5951 15.5421 19.2587 7.6556

R2 0.9628 0.8896 0.9133 0.9435 0.9139 0.8678 0.9791

Gait
MAE 3.4295 3.4297 3.1289 3.6434 3.8893 4.2187 3.3678
RMSE 4.5314 4.7570 4.6198 5.1868 5.1943 5.7029 4.2098

R2 0.9319 0.9250 0.9292 0.9108 0.9105 0.8921 0.9412

Restaurant
MAE 40.8338 42.3132 42.3016 41.4832 41.1913 41.6640 40.9350
RMSE 52.6461 54.2528 53.0498 52.8340 53.3646 52.6894 51.9348

R2 0.7559 0.7407 0.7521 0.7541 0.7492 0.7555 0.7624

Fish
MAE 21.7449 24.5180 22.9351 20.7503 23.8476 56.8344 20.8339
RMSE 32.1668 34.4302 34.8801 33.4807 33.7599 72.4618 31.8064

R2 0.9867 0.9848 0.9844 0.9856 0.9854 0.9327 0.9870

Bold indicates the best and worst values of the evaluation metrics.

This paper plots the results of the target prediction experiments for each dataset,
including the fitted regression plots between the predicted and actual values in the test set,
as shown in Figures 4–8, and the line charts between the predicted and actual values in the
test set, as shown in Figures 9–13.
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Figure 4. Piping dataset–fitted regression plots. Figure 4. Piping dataset–fitted regression plots.
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Figure 11. Gait dataset–line charts. Figure 11. Gait dataset–line charts.
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6.3. Analysis of Results

In this paper, MAE, RMSE and R2 are chosen as the evaluation metrics of target
prediction results, and the smaller MAE and RMSE, and the closer R2 is to 1 means the
target prediction quality is better.

(1) Comparing the metrics results of target prediction.
In the Piping dataset, the MAE results obtained by O-AE are the best, the RMSE and

R2 results obtained by O-AE-b are the best, and the MAE results of O-AE-b are the best
among the seven experiments except for O-AE. The RMSE and R2 results of O-AE are also
the best among the seven experiments except for O-AE-b. The results of all three metrics
for TE are worse in the other experiments.

In the Hull structure dataset, the MAE, RMSE, and R2 results obtained by O-AE-b
are the best, and the RMSE and R2 results obtained by O-AE are also the best among the
seven experiments except for O-AE-b. The results of all three metrics for TE are worse in
the other experiments.

In the Gait dataset, the MAE results obtained by 5-EE are the best, the RMSE and R2

results obtained by O-AE-b are the best, and the MAE results of O-AE-b are the best among
the seven experiments except for 5-EE. The RMSE and R2 results of O-AE are also the best
among the seven experiments except for O-AE-b. The results of all three metrics for TE are
worse in the other experiments.

In the Fish dataset, the MAE results obtained by OHE are the best, the RMSE and R2

results obtained by O-AE-b are the best, and the MAE results of O-AE-b are the best among
the seven experiments except for OHE. The RMSE and R2 results of O-AE are also the best
among the seven experiments except for O-AE-b. The results of all three metrics for TE are
worse in the other experiments.

In particular, the prediction results of the seven experiments on the Restaurant dataset
are not very satisfactory, with the highest R2 of only 0.7624, which is analyzed in this paper
as a possible reason for the fact that the chosen BP neural network model is not applicable
to the Restaurant dataset. However, in the Restaurant dataset, the MAE results obtained by
O-AE are the best, the RMSE and R2 results obtained by O-AE-b are the best, and the MAE
results of O-AE-b are the best among the seven experiments except for O-AE. The RMSE
and R2 results of O-AE are also the best among the seven experiments except for O-AE-b.
The results of all three metrics for 1-EE are worse in the other experiments.

Overall, the Bayesian optimization of the hyperparameters of the autoencoder for
O-AE as well as the basic O-AE have consistently excellent target prediction results when
experiments are carried out on different datasets. Analyzing the metric results, the basic
O-AE can then meet the encoding needs of unordered multi-categorical variables, while
the MAE results of O-AE are better than the MAE results of O-AE-b in some datasets.

(2) Comparing the experimental performance of different methods.
In other experiments, 1-EE and 5-EE are embedding methods with one and five

embedding dimensions, respectively, and the metric results of 1-EE and 5-EE are in the
middle of the range on the five datasets, with little difference in experimental performance.
The metric results of OHE on the five datasets are also more stable, and the experimental
performance is a little bit poorer than that of O-AE and O-AE-b, but OHE has the problems
of unordered multi-categorical variables with larger dimensions and sparse data after
encoding. The experimental performance of LE and TE on the five datasets is general
mainly because the use of LE introduces additional order misclassification and distance
bias in addition to the originally unordered features, and TE affects the fitting ability of the
neural network model.

Overall, the experimental results of O-AE-b and O-AE are superior compared to other
classical encoding methods. The unordered multi-categorical variables processed by O-
AE-b and O-AE were able to satisfy the data input requirements of the subsequent neural
network model and facilitated the ability of neural network data learning to improve the
neural network target prediction results.
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7. Conclusions

The objective of this paper is to find an encoding method for unordered multi-
categorical variables that results in the lower dimensionality of the encoded data and
better target prediction results when fed into a neural network.

After analyzing the characteristics of unordered multi-categorical variables and com-
paring them with other encoding methods, this paper proposes a method for the encoding
and dimensionality reduction of unordered multi-categorical variables using an orthogonal
matrix-autoencoder. Seven experiments are designed for validation using the basic O-AE,
the Bayesian optimization of the hyperparameters of the autoencoder for O-AE, and several
other classical encoding methods. The experimental results show that O-AE and O-AE-b
have more stable and excellent evaluate metrics, indicating that the method proposed
in this paper is highly feasible and applicable and can be an optional method for data
processing of unordered multi-categorical variables.

Through the experimental analysis, the basic O-AE can meet the encoding require-
ments of unordered multi-categorical variables, but O-AE manually adjusts the number of
layers and nodes in the hidden layer of the autoencoder and needs to adjust the param-
eters several times to achieve the optimal results of the metrics. O-AE-b uses Bayesian
optimization to find the optimal number of layers and nodes in the hidden layer, but the
Bayesian optimization of hyperparameters consumes more time than that of the basic
O-AE. Therefore, the encoding method can be selected according to the characteristics of
the problem and the demand of experimental resources in the specific use.

Although the research in this paper has achieved preliminary results, it still contains
vast room for deepening. Future work will focus on optimizing the model performance
and try to introduce activation functions such as PReLU or other regularization strategies
such as L1-L2 with a view to further improve the model performance. Meanwhile, we will
also work on improving the efficiency of Bayesian optimization in the O-AE-b model and
exploring more new ways to efficiently optimize the hyperparameters of the autoencoder
in order to promote the continuous progress of research in this area.
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