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Abstract: Power transmission lines frequently face threats from lightning strikes, severe storms, and
chemical corrosion, which can lead to damage in steel-aluminum-stranded wires, thereby seriously
affecting the stability of the power system. Currently, manual inspections are relatively inefficient
and high risk, while drone inspections are often limited by complex environments and obstacles.
Existing detection algorithms still face difficulties in identifying broken strands. To address these
issues, this paper proposes a new method called SL-YOLOvS. This method incorporates an improved
You Only Look Once version 8 (YOLOVS) algorithm, specifically designed for online intelligent
inspection robots to detect broken strands in transmission lines. Transmission lines are susceptible
to lightning strikes, storms, and chemical corrosion, which is leading to the potential failure of
steel- and aluminum-stranded lines, and significantly impacting the stability of the power system.
Currently, manual inspections come with relatively low efficiency and high risk, and Unmanned
Aerial Vehicle (UAV) inspections are hindered by complex situations and obstacles, with current
algorithms making it difficult to detect the broken strand lines. This paper proposes SL-YOLOVS,
which is a broken transmission line strand detection method for an online intelligent inspection
robot combined with an improved You Only Look Once version 8 (YOLOVS). By incorporating the
Squeeze-and-Excitation Network version 2 (SENet_v2) into the feature fusion network, the method
effectively enhances adaptive feature representation by focusing on and amplifying key information,
thereby improving the network’s capability to detect small objects. Additionally, the introduction of
the LSKblockAttention module, which combines Large Selective Kernels (LSKs) and the attention
mechanism, allows the model to dynamically select and enhance critical features, significantly
enhancing detection accuracy and robustness while maintaining model precision. Compared with the
original YOLOvVS algorithm, SL-YOLOvVS8 demonstrates improved precision recognition accuracy in
Break-ID-1632 and cable damage datasets. The precision is increased by 3.9% and 2.7%, and the recall
is increased by 12.2% and 2.3%, respectively, for the two datasets. The mean average precision (mAP)
at the Intersection over Union (IoU) threshold of 0.5 is also increased by 4.9% and 1.2%, showing the
SL-YOLOv8&’s effectiveness in accurately identifying small objects in complex situations.

Keywords: broken strand detection; YOLOVS; accurate recognition; SENet v2; attention module

1. Introduction

As the core component of power grid equipment, transmission and distribution
lines are essential in connecting all kinds of equipment. To ensure the safe and reliable
operation of transmission and distribution lines, equipment maintenance should be carried
out regularly to eliminate potential equipment defects and safety hazards [1]. Manual
inspection has been mainly used in power grid equipment operation and maintenance.
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However, due to the wide distribution of transmission and distribution line equipment and
the harsh operating environment, various failures occur occasionally. In recent years, the
use of inspection robots, drones, Unmanned Aerial Vehicles (UAVs), and helicopters has
been increasing [2]. However, the cost of helicopter inspection is too high, and safety cannot
be guaranteed. UAVs can effectively reduce the workforce and eliminate the interference
of human factors, but the detection of broken parts in transmission lines is vulnerable
to complex backgrounds and obstacles. With its safety characteristics, high efficiency,
accuracy, and reliability, a line patrol robot provides an effective solution for maintaining
transmission and distribution line equipment [3]. The inspection robot is equipped with
sensors and cameras to locate the transmission line; identify the shock-proof hammer,
spacer rod, suspended wire clamp, and other tools on the line; and then execute the
corresponding crossing procedure to carry out online inspection, discover obstacles, and
collect data [4].

With the continuous deepening and optimization of Convolutional Neural Networks
(CNNSs) on the convolutional layer, deep learning algorithms based on classification and
object detection have also been widely used in hardware detection [5]. Deep learning
algorithms mainly extract and learn the features of the obstacle target through evolving deep
neural networks, meaning the extracted feature information is independently analyzed,
which is not restricted by humans but rather explores various details of interest in the object
obstacle [6]. Object detection algorithms based on deep learning can be roughly divided
into one-stage and two-stage algorithms. In the two-stage detection process, features are
extracted from the image to generate some candidate regions, and then the candidate
regions are classified and positioned to output the location and category information of
the target [7]. Examples of typical two-stage detection algorithms include Region-CNN
(R-CNN) [8], Fast R-CNN [9], and Faster R-CNN [10]. In one-stage detection, CNN is used
to extract image features. The extracted features are transmitted to multiple fully connected
layers for target detection, and then the position and category information of the target are
directly output. Zheng et al. proposed a live power transmission detection method based
on R-CNN, which uses the CNN to extract visual features from the aerial images. This
method can accurately detect insulators in different environments and accurately detect
the faulty insulators in the image [11]. Li et al. applied the Fast R-CNN to an automatic fish
identification system to help marine biologists estimate fish existence and quantity, and
effectively understand oceanic geographical and biological environments [12]. Moreover,
deep learning was investigated to intelligently detect road cracks, and Faster R-CNN
and Mask R-CNN were compared and analyzed. The results show that the joint training
strategy was very effective, and that both Faster R-CNN and Mask R-CNN completed the
crack detection task when trained with only about 130 images [13]. Common one-stage
algorithms are the Single Shot Multibox Detector (SSD) and the You Only Look Once
(YOLO,) series [14-21]. Various one-stage algorithm models have been utilized for fault
detection in transmission and distribution lines. Iyke Maduako et al. studied fault location,
detection, and classification in transmission lines based on the SSD model [22]. Wang et al.
introduced an enhanced YOLOVS5 algorithm, replacing the C3 module in the backbone
network with the C2f module and optimizing the loss function. This modification allows for
the accurate and effective identification and localization of damage in X-ray images of steel
cord conveyor belts [23]. Liu et al. utilized the YOLOv3 algorithm to integrate candidate
box extraction, feature extraction, target classification, and target location into a neural
network. This integrated approach allows for the automatic detection and identification
of defects and faults in insulators, bird’s nests, dampers, conductors, towers, and other
critical components [24].

In 2022, the Ultralytics team published the source code of the YOLOv8 model [25,26],
offering five models with varying scales and channel numbers based on scaling coefficients
-n,s,m, 1, and x. These models are designed to cater to diverse scenarios, ensuring a balance
between real-time performance and accuracy. Since 2023, the YOLOvVS has been extensively
utilized across various categories of target detection fields [27].
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Nie et al. introduced a lightweight enhanced model derived from YOLOvVS [28]. They
incorporated a specialized small target detection layer into the feature fusion network and
introduced a Scale Sequence Feature Fusion (SSFF) module to enhance multi-scale feature
fusion, enabling the model to capture more gradient paths. These enhancements led to im-
proved accuracy while simultaneously reducing model parameters. Zhang et al. integrated
anovel dual self-focusing mechanism into the backbone of YOLOvS8. They implemented In-
nerShape Intersection over Union (IS-IoU) as the boundary box regression loss and refined
the feature fusion component. This approach significantly enhanced the detection capa-
bility of small targets [29]. The existing YOLO algorithm encounters several challenges in
practical applications, primarily including inadequate positional accuracy, limited feature
representation capability, and difficulty in handling long-tail distributed data. Due to the
constraints of its framework, the YOLO algorithm exhibits low positional accuracy when
dealing with small and dense targets, resulting in suboptimal detection performance in
complex scenarios. Moreover, YOLO'’s feature extraction network often struggles to extract
crucial information from images in the presence of intricate backgrounds and multi-scale
targets, consequently impacting overall detection effectiveness. In real-world scenarios,
target categories frequently exhibit long-tail distribution characteristics, wherein a few
categories have abundant samples while most categories have limited samples. This char-
acteristic makes it easy for the YOLO to overlook categories with fewer examples when
processing long-tail distribution data. To address these challenges, some researchers have
enhanced the YOLO algorithm by refining the loss function and introducing a new feature
extraction module to enhance its detection accuracy and robustness.

To solve the above problems, this paper proposes an improved SL-YOLOvVS algorithm
based on YOLOVS, which adds SENet_v2 and LSK modules to the feature detection head
of the YOLOv8 model. SENet_v2 augments the YOLO algorithm’s feature representation
capabilities by incorporating an attention mechanism. Specifically, SENet_v2 enhances
detection performance for small targets and intricate backgrounds by adaptively recalibrat-
ing channel relationships, directing the network to prioritize important features. The LSK
module elevates YOLO'’s ability to detect objects of varying scales through the utilization of
a large convolutional kernel in feature extraction. Large convolutional kernels can capture
a broader context range, significantly enhancing target detection accuracy, especially in
scenarios involving multi-scale targets. With these enhancements, SL-YOLOvS outperforms
the original YOLO model across multiple benchmark datasets, particularly excelling in
small target detection and complex scenes, showing higher precision and robustness.

2. Methods and Data
2.1. YOLOwv8 Network Models

YOLOVS is a deep neural network based on a one-stage object detection algorithm
proposed by Ultralytics. It is partially improved on the previous successful YOLO version,
and its performance has shown significant advantages in accuracy, ease of use, hardware
support, and versatility. It is the first choice for many tasks, such as attitude estimation,
instance segmentation, multi-target tracking, and feature extraction.

YOLOVS provides a new state-of-the-art (SOTA) model, which includes P6 640 and P6
1280 resolution target detection network and Yolact-based instance segmentation models,
and provides different n, s, m, I, and x scale models according to different scaling coefficients,
to meet the needs of different scenarios.

YOLOVS is mainly composed of three parts: a backbone network, neck network, and
task head, as shown in Figure 1. The backbone network of YOLOVS still adopts the idea
of a Cross Stage Partial Network (CSP), but the C3 module used in YOLOVS5 is replaced
by the C2f module. The C2f module is based on the C3 module. In addition to ensuring a
lightweight design, the model can obtain more abundant gradient flow information. This
improvement helps the model to transfer the gradient more effectively during the training
process, and reduces the calculation and the number of parameters, thus speeding up
the training process and improving the performance of the model. The Path Aggregation
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Network (PANet) is used to fuse the feature maps of different layers from top to bottom,
which makes feature fusion more efficient. The decoupling head structure is used to
separate the detection and classification tasks and accelerate the convergence of the model.

Figure 1. Architecture diagram of the YOLOVS.

YOLOV8 uses Binary Cross-Entropy (BCE) as a classification loss function:

y—
Liotal = =15 221 Vi - 10g(py) + (1 - ;) - log(1 —py)] 1)

where Ly, represents the total loss, N represents the total number of samples, n represents
the number of samples used to calculate the loss, y; represents the actual label of the ith
sample, and p; represents the probability that the ith sample is predicted to be class 1.

The BCE is a loss function commonly used in machine learning to deal with binary
classification problems, such as whether there is an animal in the photo, or whether the
animal in the picture is a cat or a dog. In YOLOWVS, this function is used to evaluate the
difference between the probability of target existence predicted by the model and the real
label, thereby helping to optimize the model parameters and improve target detection
accuracy. In a binary classification problem, y; is usually either 0 or 1, where 0 represents
a negative class (or “not” the target class) and 1 represents a positive class (or “yes” the
target class). log(p;) and log(1 — p;) are the logarithms of the probabilities predicted by
the model. p; is the probability (usually between 0 and 1) that the model predicts that the
ith sample will be positive. 1 — p; is the probability that the model predicts that the sample
is of a negative class. By taking the logarithm of these probabilities, we can measure the
uncertainty of the model’s predictions.

Compared to previous versions, YOLOvS8 uses a deeper and more complex network
structure and improved training techniques to significantly improve detection accuracy
while maintaining high speeds. It uses a more advanced feature extraction network, which
helps to extract richer and more distinguished features from images. At the same time, the
improved multi-scale prediction technology is introduced, which can better detect objects
of different sizes, and the adaptive adjustment of the anchor frame is also optimized, which
can predict the position and size of the object more accurately. So, we chose the YOLOVS
network as the basic model.

2.2. New Algorithmic Ateps
2.2.1. SENet_v2 Module

As shown in Figure 2, SENet is an innovative architecture designed to enhance the
model representation capabilities of CNNS. By explicitly modeling the dependencies
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between channels [30], SENet introduces the concept of an “attention mechanism”, which
achieves significant results in tasks such as image classification and target detection. The
core idea of SENet is to enhance the relationship between channels represented by features
in CNN through “SE blocks”. The SE block includes two key operations: Firstly, the squeeze
operation is used to conduct global pooling on the feature map in the spatial dimension to
generate a global feature description, assuming that the size of the input feature map is
(H x W x C) and the length of the feature vector obtained after pooling is ©. The formula
is as follows:

g _ i Y X 5

< H-W @
where Z. represents the global average pooled value of channel ¢, x;; c represents the pixel
value of the position (i,j) on channel ¢, H represents the height of the feature map, and
W represents the width of the feature map. The excitation operation is used to perform
a nonlinear transformation of the global feature vector generated by squeeze. Usually,
two fully connected layers and a sigmoid activation function are used. The generated
weight vector is used to reweight each channel of the original feature map. Through these
two operations, SENet can dynamically adjust the weight of each channel according to
the global information of the input image, thereby improving the feature representation
capability of the network.

Figure 2. Architecture diagram of SENet_v2.

SENet_v2 is an improved version of the original SENet that further optimizes the
effectiveness and efficiency of the attention mechanism. In terms of a more efficient
attention mechanism, SENet_v2 introduces a new computational method that makes the
reweighting of channels more efficient, improving the model’s efficiency by reducing
computational complexity and memory usage. For the excitation operation, SENet_v2
optimizes the nonlinear transformation by adding more diverse activation functions and a
deeper full-connection layer network to capture the more complex channel dependencies.
The activation function in the SE block is Rectified Linear Unit (ReLU). The full-connection
layer calculation is as follows:

S=0(Wz-8(W;-2)) ©)

where 6 represents the ReLU activation function, o represents the sigmoid activation func-
tion, and W1 and W, are the weights of the fully connected layer and the global eigenvector.

In addition, the SENet_v2 features a lightweight design, primarily for use in resource-
constrained mobile devices and embedded systems, employing quantization and pruning
techniques that enable the model to significantly reduce compute and storage costs while
maintaining performance. In the architectural design, the SENet_v2 is designed to be
similar to the original SENet, but with improvements in details. The core of the SE block
is still squeeze and excitation operations, but the implementation of the various stages
is optimized. For example, in the squeeze operation, to reduce information loss in spa-
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tial dimensions, SENet v2 introduces Global Adaptive Pooling (GAP), which is better at
capturing multi-scale features than fixed global average pooling.

In the excitation phase, SENet_v2 introduces a more complex nonlinear transforma-
tion, including multiple fully connected layers and different activation functions (e.g.,
ReLU, Gaussian Error Linear Unit, etc.) to better adapt to different mission requirements.
In addition, during the excitation phase, SENet_v2 incorporates regularization techniques,
such as dropout and batch normalization, to prevent overfitting to improve model gen-
eralization. In terms of application and performance, SENet_v2 performs well in several
computer vision tasks, including image classification, object detection, image segmentation,
and more.

In addition, its lightweight design makes it ideal for deployment in mobile devices and
embedded systems. By optimizing computing and storage requirements while ensuring
high performance, SENet_v2 can effectively operate under limited resources, so it has a
wide range of applications in edge computing, real-time image processing, etc. SENet_v2
proposes a more efficient and powerful attention mechanism by improving the original
SENet. While maintaining the advantages of the original model, SENet_v2 further improves
the modeling efficiency of inter-channel relationships, increases the expressive power of
the network, and significantly improves the computational efficiency through lightweight
design. SENet_v2 provides a more efficient solution for a variety of computer vision tasks
and has a wide range of academic research and practical application value.

2.2.2. LSK Module

In remote sensing image processing, most target detectors often result in classification
errors due to the limited context information. Moreover, there may be significant differ-
ences in the amount of context information required to detect different remote sensing
objects, which may decrease the model’s accuracy. Although the CNNS has achieved great
success in computer vision tasks such as image classification, object detection, and semantic
segmentation, traditional convolutional layers struggle to adequately capture objects of
different scales and shapes due to their fixed-size receptive fields. Although large nuclear
convolution can extend the receptive field, it is computationally expensive and ineffective
when dealing with small targets.

To better adapt to the needs of multi-scale target feature extraction and improve
the precision of the resulting model, we use an LSK module [31], which has a flexible
receptive field, enhanced spatial selectivity, rich feature expression, and computational
efficiency. Through multi-scale feature fusion, the receptive field size can be dynamically
adjusted, which makes the model more flexible when dealing with various scale targets.
The generated spatial selection mask enables the model to focus on the most important
features at specific spatial locations, thus improving the accuracy of target detection. The
information interaction and fusion of multi-scale features improve the richness of feature
expression and enhance the discriminant ability of the network. In addition, the LSK
module achieves higher computational efficiency by splitting the convolutional kernel and
the attention mechanism compared to the direct use of the large convolutional kernel. The
LSK module is a new structure for CNN, as shown in Figure 3. It aims to significantly
improve the feature extraction and target detection capability of the model in complex
scenes through multi-scale feature fusion and selective spatial attention mechanisms.

The LSK module enhances the flexibility and discriminative ability of feature expres-
sion through the multiscale convolutional kernel and selective spatial attention mechanism.
First, the LSK module extracts multi-scale features through convolution kerns of different
sizes (e.g., 3 X 3,5 x 5,7 x 7), which capture contextual information of different scales to
form preliminary multi-scale feature maps. This process can be expressed as:

Fs = {f3x3(X), f5x5(X), f7x7(X) } 4)

where Fs represents a preliminary set of multi-scale feature graphs, and fi i (x) represents
the convolution operation of a convolution kernel of size k x k on input x.
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Figure 3. Architecture diagram of LSK. The part framed by the dotted line represents the large
convolution kernel.

Channel average pooling and maximum pooling operations are applied on each feature
map to obtain the average and maximum response of the channel, respectively. These
two pooling operations can effectively summarize and highlight the spatial relationship in
the feature map, and the process can be expressed as follows:

Favg = AvgPool(Fs), Fmax = MaxPool(Fs) 5)

where FaVg and Fnax represent the feature maps after channel average pooling and Max
pooling, respectively.

Then, pooling features at different scales are fused through a convolutional layer to
generate multiple spatial attention maps. This process can be regarded as the integration of
information at different scales to obtain a more comprehensive feature representation. This
fusion process can be expressed as follows:

Fawr =0 <W (Favg @ 1:"rnax)) (6)

where F, represents the generated spatial attention map, W represents the weights of the
convolutional layer, and o represents the number of sigmoid activation functions.

A sigmoid activation function is used on each spatial attention map to generate a
corresponding selection mask. Each mask is used to selectively enhance or suppress the
feature response at a specific spatial location. The multi-scale features are weighted by
the spatial selection mask, and then fused again by the convolutional layer to generate
the final attention features. This step allows the model to further strengthen the most
important feature information based on the input features. This weighting process can be
expressed as:

Fweighted =F ® Fatt @)

where Fueighted Tepresents weight features, Fs represents spatial features, and Fay represents
attention features.

Finally, the output of the LSK module is the element-wise product of the input features
and the attention features, which ensures that the final output features contain both the
original input information and the multi-scale selective attention information. The final
output can be expressed as follows:

Foutput =X ® Fweighted 8)
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where Foutput represents the output feature, X represents the input feature, and Fueighted
represents the weight feature.

In this way, the LSK module achieves effective fusion and selective enhancement of
multi-scale features, thus improving the flexibility and accuracy of the model when dealing
with objects of different scales.

2.2.3. SL-YOLOv8

As shown in Figure 4, SL-YOLOvS (SENet_v2-LSK-YOLOvS) draws into the SENet_v2
and LSK modules in the feature detection head of the YOLOv8 model. After the output of
each feature layer (P3, P4, P5), the SENet_v2 and LSK modules are embedded successively.
The SENet_v2 enhances the extraction of key features by adaptively recalibrating the
importance of feature channels; The LSK module improves the multi-scale adaptability of
the network by dynamically adjusting the size of the receptive field. The synergy of these
two modules enables SL-YOLOVS to more effectively fuse the high-dimensional semantic
information of deep feature maps with the detailed information of shallow feature maps,
enhancing the detection ability of targets for different scales.

Figure 4. Architecture diagram of the SL-YOLOVS.

When analyzing the computational complexity of the original YOLOvVS, we divide
it into two parts: the backbone network and the detection head. The backbone network
mainly consists of convolutional and downsampling layers, and the computational com-
plexity of each layer is dominated by convolution operations, assuming that the input
image size is N x N, The complexity is O(K; - Cj;, - Cout - N2), K is the convolution size,
and C;,, and Cyy¢ are the number of input and output channels, respectively. The detection
head is mainly composed of multi-scale feature layers, convolutional layers, and fully
connected layers, and its computational complexity is mainly determined by the generation
of multi-scale features and the final prediction. In the optimized SL-YOLOvVS8 network
structure, SENet v2 and LSK modules are added, and its computational complexity also
increases accordingly. The SENet v2 module mainly involves the global pooling and fully
connected layer, and the complexity is O(Copy2). The LSK module uses separable con-
volutions to increase the receptive field with a complexity of O(K - Cj;, - Cour - N2). By
comprehensively analyzing the computational complexity of the backbone network and
the detection head part, the added complexity of the backbone network can be considered
0] ((Nz <Ky - Ciyy - Cout) original T Cout2)/ and the added complexity of the detection header can
be expressed as O((K - Ciy, - Cout - Na - |[HeadComplexity|) + (LSK - Ciy, - Cout) + (SENetv2 - Coupn)).
Despite the additional computational complexity introduced by the new module, LSK re-
duces standard convolution calculations, partially offsetting the complexity of SENet v2. The
overall complexity is expected to increase, but through feature enhancement and cross-layer feature
aggregation, the overall feature expression and detection capabilities are improved, and the complex-
ity is about O((K - Cyy; - Cout - Np - |[MainBackboneComplexity|) 4+ Couro + LSKComplexity). With
the introduction of the new module, the expected increase in inference time is about 10-20%
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(d)

of the original YOLOvV8 model, and the performance improvement is about 2-5%, possibly
higher for specific tasks. In summary, by introducing the SENet v2 and LSK modules,
SL-YOLOVS greatly improves computational efficiency and detection performance through
lightweight design and efficient feature expression, despite the additional computational
complexity, especially in small targets and complex background tasks (8).

2.3. Data and Experimental Environment
2.3.1. Dataset

In this work, two datasets are used for the evaluation and verification of the improved
model: namely, the Break-ID-1632 image dataset (Figure 5) and the cable damage dataset
(Figure 6). The Break-ID-1632 image dataset is obtained by installing a high-definition cam-
era on an intelligent patrol robot to capture real-time photos on high-voltage transmission
lines. There are 1814 photos, with 1632 training photos and 182 test photos. The pixel size
is 800 x 600, and it includes nine categories: normal, damaged, one broken strand, two
broken strands, three broken strands, four broken strands, five broken strands, six broken
strands, and seven broken strands, covering a wide range of categories, including location,
environment, object, etc. The uniqueness of this dataset lies in the following aspects: (1) The
dataset contains a wealth of real-world images, covering grasslands, forests, and snowy
environments, effectively simulating real-world target detection and tracking scenarios,
and (2) the annotation information is exceptionally detailed, meticulously recording the
location, size, and shape of the target, providing precise reference standards for algorithm
research. It is also worth mentioning that the Break-ID-1632 dataset covers images under
different weather and lighting conditions, as well as various angles and height perspectives,
which helps the algorithm to be applied and evaluated in various complex backgrounds.
The Break-ID-1632 image dataset is a self-made dataset that can be widely used in fields
such as target detection, tracking, and remote sensing. It can be used to verify and optimize
algorithms, and it can also be compared with other algorithms. Meanwhile, these data
provide important reference resources for high-voltage power transmission line inspec-
tion. Other datasets include the cable damage dataset, which has 1318 photos, along with
training sets and test sets consisting of 1187 and 131 photos, respectively, including burned
and broken categories. Figures 5 and 6 show partial images of the Break-ID-1632 and cable
damage datasets, respectively.

(b) (©)

(e) (®)

Figure 5. The Break-ID-1632 image dataset. (a) Outdoor-normal; (b) snow-normal; (c) grassland-
normal; (d) outdoor-broken strand; (e) snow-broken strand; (f) grassland-broken strand.
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Figure 6. The cable damage image dataset. (a) Broken strand; (b) burning wires.

2.3.2. Experimental Environment

The study of this experiment uses the PyTorch deep learning framework and relies on
a separate NVIDIA GeForce RTX 3050 graphics card when training the model. The specific
configuration of the experimental environment is shown in Table 1.

Table 1. Experimental environment configuration.

Item Name

Operating system Windows 11
CPU 11th Gen Intel® Core™ i7-11800H
GPU NVIDIA GeForce RTX 3050
RAM 16.0 GB

Deep learning framework PyTorch (2.1.0)
Interpreter Python 3.9
CUDA version Cuda (11.8)

3. Experiment and Analysis
3.1. Evaluation Index

In object detection, precision (P), recall (R), mean average precision (mAP), and bal-
anced F score (F1 score) are the key metrics to evaluate the performance of an algorithm.
The precision measures the fraction of samples that the model predicts to be positive
and represents the accuracy and reliability of the model on samples classified as positive.
The recall measures the proportion of all true positive instances successfully detected
by the model that are correctly labeled as positive and represents the recognition ability
and coverage of the model for positive instances. The specific formulas for P and R are
as follows:

TP

P= TP + FP ©)
TP

R= TP + FN (10)

where true positive (TP) refers to the number of positive samples that were correctly
classified as positive by the model, that is, the number of positive instances that were
correctly detected by the model. False positive (FP) refers to the number of negative
instances that are misclassified as positives by the model, i.e., the number of negative
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instances that the model misclassifies as positive. False negative (FN) is the number of
positives that the model misclassifies as negative, i.e., the number of positive instances that
the model fails to detect. Average precision (AP) measures the model’s performance on a
single class. It is the area under the precision-recall (P-R) curve, which reflects the average
precision of the model at different recall rates. AP is expressed as follows:

1
AP = / PRDR (11)
0

The mAP is a commonly used evaluation metric in object detection, which comprehen-
sively considers the performance of multiple categories. First, for each class, we compute
the area under the P-R curve, called AP, which reflects the tradeoff between the model’s
accuracy and recall on a single class. Then, the AP of all categories is averaged to obtain
the mAP so that the model’s performance can be evaluated. The formula is as follows:

(12)

The F1 score is another important evaluation metric, which combines information
from precision and recall. The F1 score is the harmonic mean of precision and recall and
provides a balance between these two metrics, making it particularly useful for evaluating
model performance on imbalanced datasets. The F1 score ranges from 0 to 1, with values
closer to 1 indicating better model performance. The F1 score is calculated as follows:

F1 = 2 x (Precision x Recall)/ (Precision x Recall) (13)

3.2. Ablation Experiment

To verify the effectiveness of the three improvement points proposed in this paper,
YOLOVS is selected as the baseline model for comparison, and the Break-ID-1632 and
cable damage datasets are trained and tested in the same experimental environment. In
the training process, a total number of training rounds of 120 epochs is set, and the input
image size is uniformly set to 600 x 600 pixels. In the experiments, the performance of each
improved module is evaluated, including their impact on object detection accuracy, such as
mAP, training stability, and convergence speed.

Table 2 lists the experimental results of training and testing on the Break-ID-1632
dataset, where “/” is used to indicate that the module is added to YOLOvVS, and “x”
indicates that it is not added. The test data of each module are compared to analyze their
contribution to the model performance. These data include mAP values under different
improvement modules, precision, recall for each category, and possible training time and
resource consumption. Through these detailed experiments and results analysis, the impact
of each improvement module on the overall object detection model’s performance can
be comprehensively evaluated to verify whether the proposed improvement points can
effectively improve the accuracy and efficiency of the model.

Table 2. Results of ablation experiments on the Break-ID-1632 dataset.

YOLOvS LSK SENet_v2  Precision% Recall% mAP@0.5% F1%
Vv X X 80.7 82.4 89.9 81.48
Vv Vv X 83.5 90.8 90.5 86.98
v X v 81.9 92.7 93.5 87.08
Vv Vv Vv 84.6 94.6 94.1 89.28

Figure 7 shows the precision, recall, and mAP@0.5 curve of the YOLOv8 model after
adding SENet_v2 and LSK modules in detail. Comparison with the basic YOLOv8 model
clearly shows the effectiveness of the three improvements on the performance of the model.
These curves and metrics provide an intuitive understanding of the performance of the
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improved modules under different conditions, thus validating their substantial contribution
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Figure 7. Visual comparison of the Break-ID-1632 dataset.

Table 3 shows an overview of the training and testing experiments conducted on the
cable damage dataset, where “y/” indicates that a module has been integrated into the
YOLOv8 model, and “x” indicates that the module has not been adopted. The performance
of each module is evaluated by comparing its performance on the test set. These evaluation
metrics include the average precision under different improvement schemes, the precision
and recall of each class, as well as the estimated training time and computing resource
consumption. Through this series of detailed experiments and analysis, it is possible to com-
prehensively evaluate the contribution of each improvement module to the performance
of the object detection model to verify whether the improvement measures successfully
improve the accuracy and efficiency of the model.

Table 3. Results of ablation experiments on the cable damage dataset.

YOLOvVS LSK SENet_v2  Precision% Recall% mAP@0.5% F1%
Vv X X 91.1 88.4 91.1 81.55
v v X 91.6 89.3 91.8 86.76
Vv X v 92.7 89.2 91.5 86.73
Vv Vv Vv 93.8 90.7 92.3 89.30

Figure 8 shows the precision, recall, and mAP@0.5 curve after introducing the SENet_v2
and LSK modules into the YOLOv8 model in detail. Compared with the original YOLOv8
model, it clearly shows the improvement effect of these two improvements on the per-
formance of the model. These curves and metrics provide an intuitive understanding of
the performance of the improved modules under different conditions, thus validating the
substantial contribution they bring to the object detection task.
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Figure 8. Visual comparison of the cable damage dataset.
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Experimental verification shows that the method proposed in this paper significantly
improves the detection accuracy of small targets in complex backgrounds. For the Break-
ID-1632 dataset, when SENet_v2 is introduced into YOLOv8n alone, compared with the
original algorithm, the precision is improved by 1.2%, and the recall is improved by 10.3%.
That is an increase of 3.6 percent mAP@0.5. When the LSK module is introduced alone, the
precision accuracy is improved by 2.8%, the recall accuracy is improved by 8.4%, and the
mAP@0.5 accuracy is improved by 0.6%. After introducing the SENet_v2 and LSK module
at the same time, the precision is 3.9% higher than the original algorithm, the recall is
12.2% higher than the original algorithm, and the mAP@0.5 is 4.2% higher than the original
algorithm. The detection accuracy of various small targets is improved.

For the cable damage dataset, introducing SENet_v2 alone into YOLOv8n improves
the accuracy by 1.6%, the recall accuracy by 0.8%, and the mAP@0.5 accuracy by 0.4%. In-
troducing the LSK module alone improves precision by 0.5%, recall by 0.9%, and mAP@0.5
by 0.7% compared to the original algorithm. After introducing the SENet_v2 and LSK
module at the same time, the precision is increased by 2.7%, the recall is increased by 2.3%,
and the mAP@0.5 is increased by 1.2%.

These research results show that the introduced SENet_v2 and LSK modules effectively
enhance the model’s ability to extract fine-grained features from remote sensing images,
thereby improving the overall detection accuracy of the model. The SENet_v2 module can
capture the important feature information in the image more accurately through its channel
attention mechanism. The experimental results show that the mAP of the model is increased
by 3.6% after adding SENet_v2. This indicates that SENet_v2 is essential in enhancing
the feature representation ability and detection performance. The LSK module effectively
expands the receptive field of the model and enhances the recognition ability of complex
patterns in images through its large convolution kernel structure. The experimental data
show that the introduction of the LSK module improves the average detection accuracy of
the model by 0.6%. This improvement significantly optimizes the model’s performance
when dealing with high-resolution remote sensing images. These improvements do not
significantly increase the number of parameters and storage requirements of the model,
and maintain the lightweight characteristics of the model.

The introduction of the SENet_v2 and LSK module significantly improves the feature
extraction ability and detection accuracy of the model, which verifies the effectiveness
of these improvements in remote sensing image analysis. The comparison curves of
the experimental results between the original algorithm and the improved algorithm on
the Break-ID-1632 and cable damage datasets are shown in Figure 9. As the training
epoch increases, mAP@Q.5 of the SL-YOLOVS algorithm gradually increases relative to the
YOLOVS algorithm.

Figure 10 shows the comparison of the visual results of YOLOvVS8 and the SL-YOLOvV8
in this paper on the Break-ID-1632 dataset and cable damage dataset. The results show that
the proposed model significantly reduces the false detection and missed detection, and
has higher recognition accuracy. Through comparison, it can be found that the improved
model not only performs well in fine-grained feature extraction but also has a significant
improvement in overall detection performance.

In the case of low false alarm rate (e.g., 0.00059), the recall of the model is low, only
0.01778, indicating that the model can detect very limited positive class samples at extremely
low false alarm rates. This is usually because the model makes positive predictions when it
is extremely certain, which reduces false alarms, but also leaves many positive examples
unrecognized. For example, when the false alarm rate is 0.22616, the recall rate increases
t0 0.22616. When the false alarm rate is 0.65669, the recall rate increases to 0.24671, which
indicates that the sensitivity of the model improves with the increase in the false alarm
rate and more positive samples can be detected, but more false positives are introduced at
the same time. However, the performance of the model is more challenging at very low
false alarm rates and the recall decreases rapidly, indicating that in practice, the model’s
ability to detect the positive class will be significantly limited if the system needs to operate
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at very low false alarm rates. Therefore, at low and very low false alarm rates, the model
exhibits low recall and has difficulty with effectively detecting positive class samples. This
performance characteristic is suitable for application scenarios where the cost of false alarms
is high and highly accurate detection is required. To improve model performance under
these conditions, we may need to incorporate other techniques, such as additional training
data, multi-model ensembles, or post-processing steps, to increase recall at very low false
alarm rates while maintaining a low false alarm rate.
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Figure 9. Comparison of mAP@0.5 before and after improvement.

This study deeply explores the impact of the sample imbalance problem on the classi-
fication performance of machine learning models, especially when it comes to small object
detection or dealing with scarce class data. The results show that the sample imbalance
significantly reduces the classification accuracy of the model; especially in the case of insuffi-
cient samples in a few categories, the classification error rate is significantly increased. This
phenomenon is mainly due to the fact that the model is more inclined to learn the majority
category, resulting in insufficient ability to effectively classify the minority category.

To alleviate the above problems, increasing the number and diversity of training sam-
ples has been proven to be effective. However, this study further analyzes the relationship
between the increase in sample size and the improvement of classification performance
and finds that the decrease in error rate gradually flattens out as the number of samples
increases [32]. This indicates that although expanding the size of the training set is one of
the effective means to improve the performance of the model, simply relying on increasing
the sample size may not be enough to fully solve the sample imbalance problem. Combin-
ing strategies such as data augmentation, resampling techniques, and adjusting the loss
function can more effectively improve the classification performance for minority classes.

In summary, when dealing with the problem of sample imbalance, especially in small
object detection or minority class classification applications that require high accuracy,
researchers and practitioners should comprehensively consider the number of samples,
class distribution, and the model training strategy to improve the overall performance
and generalization ability of the model. Future research should further explore how to
optimize the classification performance of the model for each category while maintaining
the sample balance so as to promote the development of machine learning techniques in
practical applications.
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Figure 10. Dataset visualization results. (a) Visualization of YOLOVS8 detection on the Break-ID-1632
dataset. (b) The detection visualization results of the SL-YOLOvVS on the Break-ID-1632 dataset.
(c) Visualization of YOLOVS detection on the cable damage dataset.

3.3. Comparative Experiment

To further verify the effectiveness of the SL-YOLOVS on the Break-ID-1632 and cable
damage datasets, a variety of the most advanced models are selected for comparison,
including the classic YOLO series network, the two-stage algorithm Fast-R-CNN, and other
algorithms. The performance of the improved algorithm is evaluated according to the mAP
of each class and the mAP value of the overall algorithm.
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The specific experimental results of the Break-ID-1632 dataset are shown in Table 4. In
terms of detection accuracy, the SL-YOLOVS8 performs well, exceeding the current popular
SOTA model. Compared with YOLOv7, YOLOv5, and YOLOv6 models, the overall mAP
value of the SL-YOLOVS is increased by 4.6%, 5.6%, and 6.7%, respectively. In addition,
the accuracy of the SL-YOLOVS on each category is significantly higher than that of other
models in the same category, and the overall model reaches 94.1% on mAP@0.5. Through
these results, the significant improvement of the SL-YOLOVS in the object detection task
is verified, and its superiority in multiple categories and overall detection accuracy is
demonstrated. Figure 11 is a visual bar chart of each algorithm mAP@0.5 in Table 4.

Table 4. Results of contrast experiments on the Break-ID-1632 dataset.

Model Normal Damage Breakl Break2 Break3 Break4 Break5 Break6 Break7 mAP@0.5(%)
Faster R-CNN 0.602 0.741 0.841 0.870 0.900 0.880 0.901 0.838 0.874 83.9
SSD 0.552 0.695 0.818 0.826 0.851 0.826 0.844 0.792 0.824 80.3
RetinaNet 0.626 0.774 0.866 0.914 0.933 0.901 0.923 0.865 0.894 84.6
EfficientDet 0.582 0.735 0.859 0.902 0.926 0.894 0.883 0.823 0.877 82.5
CenterNet 0.505 0.685 0.784 0.824 0.852 0.835 0.817 0.766 0.804 75.5
Deformable DETR 0.621 0.767 0.875 0.915 0.921 0.893 0.888 0.847 0.853 83.2
YOLOv5 0.694 0.826 0.914 0.958 0.972 0.936 0.955 0.916 0.945 87.4
YOLOv6 0.709 0.832 0.923 0.963 0.987 0.944 0.969 0.924 0.955 88.5
YOLOV7 0.715 0.849 0.934 0.971 0.942 0.957 0.972 0.933 0.965 89.5
YOLOv8s 0.721 0.857 0.946 0.986 0.926 0.968 0.988 0.945 0.975 90.5
YOLOvVS8n 0.732 0.865 0.954 0.974 0.944 0.979 0.946 0.956 0.985 91.5
SL-YOLOvVS 0.742 0.881 0.971 0.995 0.995 0.991 0.971 0.926 0.995 94.1
mAP@0.5(%)
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Figure 11. Visualized bar plots of mAP@0.5 corresponding to Table 4.

Table 5 shows the detailed experimental results of the cable damage dataset. In
terms of detection accuracy, the SL-YOLOVS also performs well, exceeding the current
mainstream SOTA model. Compared with the YOLOv7, YOLOV5, and YOLOv6 models,
the overall mAP value of the SL-YOLOVS is increased by 3.9%, 4.8%, and 5.6%, respectively.
The parameters (para) refer to the parameter quantity, and FLOPs are the floating point
operations. In addition, the accuracy of the SL-YOLOVS in each category is also significantly
better than that of other models in the corresponding category, and the overall model
reaches 92.3% on mAP@0.5. These results verify the significant improvement of the SL-
YOLOVS in the object detection task, demonstrating its superiority in multiple categories
and overall detection accuracy. Figure 12 presents the visual bar plots of each algorithm in
Table 5 on the mAP@0.5 metric.
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Table 5. Results of contrast experiments on the cable damage dataset.
Model Break Thunderbolt mAP@0.5(%) Para(M) FLOPs (G)

Faster R-CNN 0.75 0.883 82.5 50.0 200.0

SSD 0.70 0.865 80.5 25.0 100.0

RetinaNet 0.77 0.907 84.3 55.0 210.0

EfficientDet-D1 0.75 0.825 83.2 6.6 6.2

CenterNet-DLA 0.73 0.745 78.7 22.5 102.2

Deformable DETR 0.71 0.725 73.0 34.0 188.0

YOLOvV5 0.79 0.926 86.7 15.0 30.0

YOLOv6 0.81 0.934 87.8 12.0 28.0

YOLOV? 0.82 0.942 88.4 11.0 27.0

YOLOv8s 0.83 0.955 89.6 10.5 26.5

YOLOvV8n 0.84 0.979 90.2 10.2 25.5

SL-YOLOv8 0.85 0.983 92.3 10.0 25.0

mAP@0.5(%)
100.00% 92.30%
90.00%
82.50% g0.50% @ S4% 83.20% 28.70%
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Figure 12. Visualized bar plots of mAP@0.5 corresponding to Table 5.

The above results verify the significant improvement of the SL-YOLOVS in the object
detection task, and its superiority in multiple categories and overall detection accuracy
is demonstrated.

Figures 13 and 14 show the detailed evaluation results of the improved model on the
Break-ID-1632 and cable damage datasets, covering the analysis of multiple important
indicators, including precision, recall, P-R curve, and harmonic mean. It can be observed
from the figure that the SL-YOLOVS has superior performance on all the indicators, espe-
cially achieving extremely high detection accuracy while maintaining high recall. Further
comparative analysis shows that compared with the basic model, the SL-YOLOVS8 has
a significant improvement in the accuracy of prediction results; especially in the target
detection task under a complex background, the performance is particularly prominent.
This result verifies the effectiveness and practicability of the proposed SL-YOLOvS and
provides strong support for subsequent research and practical application.
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Figure 13. Visualization of the evaluation parameters for the Break-ID-1632 dataset.
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Based on ablation experimental results and comparative analysis of multiple datasets,
the SL-YOLOvV8 model shows significant performance improvement in object detection
tasks. On the Break-ID-1632 dataset, the mAP@0.5 of SL-YOLOvS8 reaches 94.1%, which is
4.2 percentage points higher than that of the baseline YOLOv8 model (p < 0.01, paired ¢-test).
The contribution of each improved module is statistically significant (p < 0.05, analysis of
variance multiple comparisons). Especially in precision and recall, SL-YOLOVS reaches
84.6% and 94.6%, respectively, which is significantly better than other comparison models
(the effect size index of the t-test > 0.8). In the generalization evaluation across datasets,
SL-YOLOVS also performs well on the cable damage dataset, confirming the robustness of
the model improvement. It is worth noting that despite the limited sample size (n < 1000),
the 95% confidence intervals [92.3%, 95.9%] estimated by the bootstrap method indicate
the high reliability of the results.

To evaluate the stability and variability of the model performance, we conduct a series
of Monte Carlo experiments on the SL-YOLOvS8 model, randomly varying the training
and testing datasets. On the Break-ID-1632 dataset, after 10 independent experiments, the
average mAP@0.5 of SL-YOLOVS reaches 93.8% =+ 0.4% (mean =+ standard deviation). This
result is not only significantly higher than the baseline YOLOv8 model (89.9% =+ 0.6%,
p < 0.001, paired t-test) but also has a small standard deviation, indicating good stability of
the model performance.

In each category, SL-YOLOVS also performs well. For example, for the “damage”
class, the average precision is 94.6% =+ 0.5%, which is significantly better than the other
comparison models (p < 0.01, analysis of variance analysis). It is worth noting that the
model also maintains stable high performance in difficult categories such as “break1” to
“break?”, with an average accuracy of more than 92% and a standard deviation of less than
0.7%. These results show that SL-YOLOVS8 not only significantly improves the average
performance but also has strong stability and generalization ability under different data
partitions. A small standard deviation means that the model can provide consistent and
reliable detection results in practice. Future research can further expand the experimental
scale and explore the performance of the model on more complex scenes and larger datasets.

4. Conclusions

In this paper, by simultaneously incorporating the LSK and SENet_v2 modules into
the YOLOvV8 model, the overall performance of the SL-YOLOVS is significantly enhanced.
The LSK module improves the ability to capture multi-scale features of the model, while
the SENet_v2 module effectively integrates semantic and spatial information and optimizes
the feature fusion strategy. Particularly in the identification of faults in transmission
lines, the application of the LSK module allows the model to capture small and subtly
defined targets more effectively, such as faults in transmission lines. The SENet_v2 module
further enhances the sensitivity for fault features of the model. This combination not
only improves the accuracy of fault detection but also significantly reduces false alarms,
especially in complex situations and varying lighting conditions. Furthermore, the SL-
YOLOvVS8 demonstrates enhanced real-time performance and scalability when handling
large-scale transmission line images, providing more reliable technical support for the
routine inspection and maintenance of power systems. Experiments conducted on the
Break-ID-1632 and cable damage datasets demonstrate that the SL-YOLOVS outperforms
basic YOLOvVS8 and other typical algorithms in terms of accuracy, robustness, and versatility,
effectively coping with data variations and noise. The SL-YOLOvS8 extends the accuracy,
speed, and model size. This enhancement validates the effectiveness of the synergistic
action of the two modules in enhancing the model adaptability and performance, offering
a new direction for further optimizing object detection algorithms.
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