On Beamforming with the Single-Sideband Transform
Abstract
:1. Introduction
2. Frequency and Time–Frequency Transforms
2.1. Convolution
2.2. Relative Frequency Responses
2.3. Discrete Time–Frequency Transforms
2.4. RFR Estimation for Time–Frequency Transforms
3. Signal Model and Beamforming
3.1. Filtering and the MPDR Beamformer
3.2. Conjugate-Frequency Filtering with the SSBT
3.3. Theoretical Disadvantages
4. Comparisons and Simulations
4.1. Metrics of Interest
4.2. Comparison for Different Observed Frames
4.3. Comparison for Different Numbers of Samples per Frame
4.4. Comparison for Different iSERs
4.5. General Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CTF | Convolutive Transfer Function |
DI | Directivity Index |
DSRF | Desired Signal Reduction Factor |
FT | Fourier Transform |
MPDR | Minimum-Power Distortionless-Response |
MTF | Multiplicative Transfer Function |
RFR | Relative Frequency Response |
RFT | Real Fourier Transform |
SER | Signal-to-Echo Ratio |
SNR | Signal-to-Noise Ratio |
SSBT | Single-Sideband Transform |
STFT | Short-Time Fourier Transform |
Appendix A. Properties of the Real Fourier Transform
References
- Chen, J.; Yao, K.; Hudson, R. Source localization and beamforming. IEEE Signal Process. Mag. 2002, 19, 30–39. [Google Scholar] [CrossRef]
- Lobato, W.; Costa, M.H. Worst-Case-Optimization Robust-MVDR Beamformer for Stereo Noise Reduction in Hearing Aids. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2224–2237. [Google Scholar] [CrossRef]
- Lu, J.Y.; Zou, H.; Greenleaf, J.F. Biomedical ultrasound beam forming. Ultrasound Med. Biol. 1994, 20, 403–428. [Google Scholar] [CrossRef]
- Nguyen, N.Q.; Prager, R.W. Minimum Variance Approaches to Ultrasound Pixel-Based Beamforming. IEEE Trans. Med. Imaging 2017, 36, 374–384. [Google Scholar] [CrossRef]
- Han, Y.; Luo, M.; Zhao, X.; Guerrero, J.M.; Xu, L. Comparative Performance Evaluation of Orthogonal-Signal-Generators-Based Single-Phase PLL Algorithms—A Survey. IEEE Trans. Power Electron. 2016, 31, 3932–3944. [Google Scholar] [CrossRef]
- Hägglund, T. Signal Filtering in PID Control. IFAC Proc. Vol. 2012, 45, 1–10. [Google Scholar] [CrossRef]
- Hathcock, D.; Sheehy, J.; Weisenberger, C.; Ilker, E.; Hinczewski, M. Noise Filtering and Prediction in Biological Signaling Networks. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2016, 2, 16–30. [Google Scholar] [CrossRef]
- Lee, J.; Shin, S.Y. General construction of time-domain filters for orientation data. IEEE Trans. Vis. Comput. Graph. 2002, 8, 119–128. [Google Scholar] [CrossRef]
- Shi, Z.; Butt, G. New enhancement filters for geological mapping. ASEG Ext. Abstr. 2004, 2004, 1–4. [Google Scholar] [CrossRef]
- Benesty, J.; Cohen, I.; Chen, J. Fundamentals of Signal Enhancement and Array Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kıymık, M.; Güler, İ.; Dizibüyük, A.; Akın, M. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 2005, 35, 603–616. [Google Scholar] [CrossRef]
- Pan, C.; Chen, J.; Shi, G.; Benesty, J. On microphone array beamforming and insights into the underlying signal models in the short-time-Fourier-transform domain. J. Acoust. Soc. Am. 2021, 149, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Huang, X. Wavelet-Based Beamforming for High-Speed Rotating Acoustic Source. IEEE Access 2018, 6, 10231–10239. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.K.; Dong, X.J.; Zhang, W.M.; Meng, G. General Parameterized Time-Frequency Transform. IEEE Trans. Signal Process. 2014, 62, 2751–2764. [Google Scholar] [CrossRef]
- Almeida, L. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091. [Google Scholar] [CrossRef]
- Crochiere, R.E.; Rabiner, L.R. Multirate Digital Signal Processing; Prentice-Hall Signal Processing Series; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Wackersreuther, G. Some new aspects of filters for filter banks. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1182–1200. [Google Scholar] [CrossRef]
- Harteneck, M.; Weiss, S.; Stewart, R. Design of near perfect reconstruction oversampled filter banks for subband adaptive filters. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1999, 46, 1081–1085. [Google Scholar] [CrossRef]
- Chin, W.; Farhang-Boroujeny, B. Subband adaptive filtering with real-valued subband signals for acoustic echo cancellation. IEE Proc. Vis. Image Signal Process. 2001, 148, 283. [Google Scholar] [CrossRef]
- Oyzerman, A.; Cohen, I. System identification and dereverberation of speech signals in the Single-Side-Band transform domain. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), Bucharest, Romania, 27–31 August 2012; pp. 360–364. [Google Scholar]
- Okamoto, T.; Tachibana, K.; Toda, T.; Shiga, Y.; Kawai, H. Subband wavenet with overlapped single-sideband filterbanks. In Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Okinawa, Japan, 16–20 December 2017; pp. 698–704. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.Q.; Wang, D. Two-Stage Deep Learning for Noisy-Reverberant Speech Enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Girin, L.; Gannot, S.; Horaud, R. Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 645–659. [Google Scholar] [CrossRef]
- Britanak, V.; Rao, K.R. Cosine-/Sine-Modulated Filter Banks: General Properties, Fast Algorithms and Integer Approximations; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Talmon, R.; Cohen, I.; Gannot, S. Relative Transfer Function Identification Using Convolutive Transfer Function Approximation. IEEE Trans. Audio Speech Lang. Process. 2009, 17, 546–555. [Google Scholar] [CrossRef]
- Jayakumar, E.; Sathidevi, P. An integrated acoustic echo and noise cancellation system using cross-band adaptive filters and wavelet thresholding of multitaper spectrum. Appl. Acoust. 2018, 141, 9–18. [Google Scholar] [CrossRef]
- Lee, C.M.; Shin, J.W.; Jin, Y.G.; Kim, J.H.; Kim, N.S. Crossband filtering for stereophonic acoustic echo suppression. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1345–1349. [Google Scholar] [CrossRef]
- Li, D.; Yin, Q.; Mu, P.; Guo, W. Robust MVDR beamforming using the DOA matrix decomposition. In Proceedings of the 2011 1st International Symposium on Access Spaces (ISAS), Yokohama, Japan, 17–19 June 2011; pp. 105–110. [Google Scholar] [CrossRef]
- Habets, E. RIR Generator. Available online: https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator (accessed on 11 March 2024).
- Nielsen, J.K.; Jensen, J.R.; Jensen, S.H.; Christensen, M.G. The Single- and Multichannel Audio Recordings Database (SMARD). In Proceedings of the International Workshop Acoustic Signal Enhancement, Juan les Pins, France, 8–11 September 2014. [Google Scholar]
- Habets, E.A.P.; Gannot, S. Generating sensor signals in isotropic noise fields. J. Acoust. Soc. Am. 2007, 122, 3464–3470. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.S.; Juang, B.-H. Enhancement of Residual Echo for Robust Acoustic Echo Cancellation. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 175–189. [Google Scholar] [CrossRef]
Source | Position | Signal |
---|---|---|
50_male_speech_english_ch8_OmniPower4296.flac | ||
69_abba_ch8_OmniPower4296.flac | ||
∼ | wgn_48kHz_ch8_OmniPower4296.flac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtarelli, V.P.; Cohen, I. On Beamforming with the Single-Sideband Transform. Appl. Sci. 2024, 14, 7514. https://doi.org/10.3390/app14177514
Curtarelli VP, Cohen I. On Beamforming with the Single-Sideband Transform. Applied Sciences. 2024; 14(17):7514. https://doi.org/10.3390/app14177514
Chicago/Turabian StyleCurtarelli, Vitor Probst, and Israel Cohen. 2024. "On Beamforming with the Single-Sideband Transform" Applied Sciences 14, no. 17: 7514. https://doi.org/10.3390/app14177514
APA StyleCurtarelli, V. P., & Cohen, I. (2024). On Beamforming with the Single-Sideband Transform. Applied Sciences, 14(17), 7514. https://doi.org/10.3390/app14177514