Genesis of Low-Resistivity Shale Reservoirs and Its Influence on Gas-Bearing Property: A Case Study of the Longmaxi Formation in Southern Sichuan Basin
Abstract
:1. Introduction
2. Geological Background and Experimental Methods
2.1. Geological Background
2.2. Experimental Methods
3. Boundary of Low-Resistivity Shale Reservoir
4. Characteristics of Low-Resistivity Shale Reservoirs
4.1. Macro Parameter Characteristics of Low-Resistivity Shale Reservoirs
4.2. Microscopic Pore Structure Characteristics of Low-Resistivity Shale Reservoirs
5. Genetic Mechanism of Low-Resistivity Shale Reservoir
5.1. Resistivity Response to Reservoir Macro Parameters
5.2. The Impact of Reservoir Microscopic Characteristics on Resistivity
5.3. A Preliminary Analysis of the Causes for High Water Content in Shale Reservoirs
6. The Impact of Low-Resistivity Shale Reservoir Characteristics on Gas-Bearing Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Wang, M.; Cai, H.; Li, T.; Wang, M.; Pan, L.; Chen, J.; Tian, H. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China. Pet. Sci. 2015, 26, 1433–1445. [Google Scholar] [CrossRef]
- Ma, X.; Xie, J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China. Petrol. Explor. Devel. 2018, 45, 161–169. [Google Scholar]
- Xie, X.; Hao, F.; Lu, Y.; He, S.; Shi, W.; Jiang, Z.; Xiong, Y.; Zhang, J. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Sci. 2017, 42, 1045–1056. [Google Scholar]
- Zhai, G.; Wang, Y.; Bao, S.; Guo, T.; Zhi, Z.; Chen, X.; Wang, J. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Sci. 2017, 42, 1057–1068. [Google Scholar]
- Nie, H.; Wang, H.; He, Z.; Wang, R. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir:a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery. Acta Pet. Sin. 2019, 40, 131–143+164. [Google Scholar]
- Sun, J.; Xiong, Z.; Luo, H.; Zhang, H.; Zhu, J. Mechanism analysis and logging evaluation of low resistivity in lower Paleozoic shale gas reservoirs of Yangtze region. J. China. Univ. Petrol. 2018, 42, 52–61. [Google Scholar]
- Wang, Y.; Li, X.; Chen, B.; Wu, W.; Jiang, S. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk. Petrol. Explo. Develo. 2018, 45, 385–395. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Zhang, Z.; Li, U. Logging interpretation and evaluation of low resistivity shale gas reservoirs. J. Chengdu Univ. Tech. 2015, 42, 692–700. [Google Scholar]
- Feng, C.; Gingras, M.; Sun, M.; Wang, B. Logging Characteristics and Identification Methods of Low Resistivity Oil Layer: Upper Cretaceous of the Third Member of Qingshankou Formation, Daqingzijing Area, Songliao Basin, China. Geofluids 2017, 2017, 2915646. [Google Scholar] [CrossRef]
- Su, H.; Wu, F.; Meng, F.; Wang, B.; Yao, C.; Xi, Y. Genesis of Low Resistivity of Gas Zone in Ziniquanzi Formation of the Southern Margin of Junggar Basin. Xinjiang Petrol. Geol. 2019, 40, 680–686. [Google Scholar]
- Hou, Y.; Zhang, K.; Wang, F.; He, S.; Dong, T.; Wang, C.; Qin, W.; Xiao, Y.; Tang, B.; Yu, R.; et al. Structural evolution of organic matter and implications for graphitization in over-mature marine shales, south China. Mar. Petrol. Geol. 2019, 109, 304–316. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, G.; Zhang, P. Formation mechanism and logging identification of low resistivity reservoirs. Spec. Oil Gas Reser. 2010, 17, 10–14+120. [Google Scholar]
- Wang, Y.; He, J.; Kou, Y.; Zhou, H. Causes of low resistivity of Longmaxi Formation shale reservoirs in Changning area. Petrol. Geol. Recov. Effic. 2021, 28, 53–61. [Google Scholar]
- Zhang, J.; Li, S.; Wang, L.; Cheng, F.; Geng, B. A new method for calculating gas saturation of low-resistivity shale gas reservoirs. Nat. Gas. Indus. 2017, 37, 34–41. [Google Scholar] [CrossRef]
- Ilugbo, S.O.; Edunjobih, O.; AlabI, T.O.; Ogabi, A.F.; Olomo, K.O.; Ojo, O.A. Evaluation of groundwater level using combined electrical resistivity log with gamma (Elgg) around lkeja, Lagos State, Southwestern Nigeria. Asian J. Geol. Res. 2019, 2, 143–155. [Google Scholar]
- Huang, T.; Yu, G.; Wang, X.; Zhang, B. Experiment research of the main influence factors of shale sample complex resistivity dispersion characteristics. Comput. Tech. Geophys. Geochem. Explor. 2016, 38, 167–174. [Google Scholar]
- Wang, R.; Leng, J.; Ding, W.; Cui, Z.; Wang, X.; Cheng, E.; Sun, Y.; Xiao, Z. Logging Identification of the Lower Cambrian Niutitang Shale Gas Reservoir in Upper Yangtze Region: A Case Study of the Cengong Block, Guizhou Province. J. Nat. Gas. Geo. 2015, 26, 2395–2407. [Google Scholar]
- Bakar, W.; Saaid, I.M.; Ahmad, M.R.; Amir, Z.; Mahat, S.Q. Derivation of formation factor in shaly sandstone with geometry and clay conductivity effects. J. Petrol. Sci. Eng. 2019, 182, 106359. [Google Scholar] [CrossRef]
- Kadkhodaie, A.; Rezaee, R. A new correlation for water saturation calculation in gas shale reservoirs based on compensation of kerogen-clay conductivity. J. Petrol. Sci. Eng. 2016, 146, 932–939. [Google Scholar] [CrossRef]
- Li, Y.; He, D. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas. Acta Petrolei Sinica 2014, 35, 219–232. [Google Scholar]
- Wang, Z.; Zou, C.; Tao, S.; Li, J. Analysis on tectonic evolution and exploration potential in Dabashan foreland basin. Acta Petrolei Sinica 2004, 25, 23–28. [Google Scholar]
- Hunt, J.M. Petroleum Geochemistry and Geology, 2nd ed.; W.H. Freeman: New York, NY, USA, 1996. [Google Scholar]
- Zhu, L.; Ma, Y.; Cai, C.; Zhang, C.; Wu, S.; Zhou, X.K. Key factors of marine shale conductivity in southern China—Part II: The influence of pore system and the development direction of shale gas saturation models. J. Petrol. Sci. Eng. 2022, 209, 109516. [Google Scholar] [CrossRef]
- Xie, J.; He, J.; Zhou, K.; Tang, Z.; Chen, M.; He, T.; Zou, M.; Luo, T.; Li, N.; Li, W. Mechanism of Forming Low Resistivity in Shale Reservoirs. Geofluids 2022, 2, 5175577. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Feng, X.; Liu, Y.; Li, B.; Xia, Z.; Zhang, C.; Cao, Z. Application of large field splicing scanning electron microscopy on quantitatively evaluation of shale pore structure: A case study of Longmaxi Formation reservoir in deep western Chongqing Block to southern Sichuan. Reser. Eval. Devel. 2021, 11, 569–576. [Google Scholar]
- Li, J.; Zhou, S.X.; Gaus, G.; Li, Y.; Ma, Y.; Chen, K.; Zhang, Y. Characterization of methane adsorption on shale and isolated kerogen from the Sichuan Basin under pressure up to 60 MPa: Experimental results and geological implications. Int. J. Coal. Geol. 2018, 189, 83–93. [Google Scholar] [CrossRef]
- Topór, T.; Derkowski, A.; Ziemiański, P.; Szczurowski, J.; McCarty, D. The effect of organic matter maturation and porosity evolution on methane storage potential in the Baltic Basin (Poland) shale-gas reservoir. Int. J. Coal. Geol. 2017, 180, 46–56. [Google Scholar] [CrossRef]
- Harpalani, S.; Dutta, P. Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration. Energy Fuels 2006, 20, 1591–1599. [Google Scholar] [CrossRef]
- Merkel, A.; Fink, R.; Littke, R. The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales. Inter. J. Coal. Geol. 2015, 147–148, 1–8. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, H.; Ning, Y.; Guo, W.; Zhang, Q. Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 2018, 211, 140–148. [Google Scholar] [CrossRef]
- Magara, K. Comparison of porosity/depth relationships of shale and sandstone. J. Petrol. Geol. 2001, 3, 175–185. [Google Scholar] [CrossRef]
- Gao, P.; Xiao, X.; Hu, D.; Lash, G.G.; Liu, R.; Cai, Y.; Wang, Z.; Zhang, B.; Yuan, T.; Liu, S. Effect of silica diagenesis on porosity evolution of deep gas shale reservoir of the Lower Paleozoic Wufeng-Longmaxi formations, Sichuan Basin. Mar. Petrol. Geol. 2022, 145, 105873. [Google Scholar] [CrossRef]
- Feng, D.; Li, X.F.; Wang, X.Z.; Li, J.; Sun, F.S.; Sun, Z.; Zhang, T.; Li, P.H.; Chen, Y.; Zhang, X. Water adsorption and its impact on the pore structure characteristics of shale clay. Appl. Clay Sci. 2018, 155, 126–138. [Google Scholar] [CrossRef]
Section | TOC (%) | Ro (%) | Quartz Content (%) | Clay Mineral Content (%) | Pyrite Content (%) | Porosity (%) | Water Saturation (%) | Gas Content (m3/t) | |
---|---|---|---|---|---|---|---|---|---|
Low Resistivity Reservoir | 1~3 sub layer | 4.14 | 3.21 | 56.32 | 30.24 | 4.85 | 4.04 | 66.49 | 2.93 |
4 sub layer | 2.23 | 3.10 | 45.88 | 40.15 | 1.61 | 4.85 | 52.38 | 2.08 | |
Normal-resistivity Reservoir | 1~3 sub layer | 4.23 | 3.17 | 59.57 | 19.68 | 2.64 | 4.90 | 22.78 | 6.12 |
4 sub layer | 2.20 | 3.15 | 44.90 | 34.01 | 2.10 | 4.93 | 43.25 | 3.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhou, A.; Li, Y.; Jiang, H.; Fu, Y.; Jiang, Y.; Gu, Y. Genesis of Low-Resistivity Shale Reservoirs and Its Influence on Gas-Bearing Property: A Case Study of the Longmaxi Formation in Southern Sichuan Basin. Appl. Sci. 2024, 14, 7515. https://doi.org/10.3390/app14177515
Hu X, Zhou A, Li Y, Jiang H, Fu Y, Jiang Y, Gu Y. Genesis of Low-Resistivity Shale Reservoirs and Its Influence on Gas-Bearing Property: A Case Study of the Longmaxi Formation in Southern Sichuan Basin. Applied Sciences. 2024; 14(17):7515. https://doi.org/10.3390/app14177515
Chicago/Turabian StyleHu, Xi, Anfu Zhou, Yading Li, Hongzong Jiang, Yonghong Fu, Yuqiang Jiang, and Yifan Gu. 2024. "Genesis of Low-Resistivity Shale Reservoirs and Its Influence on Gas-Bearing Property: A Case Study of the Longmaxi Formation in Southern Sichuan Basin" Applied Sciences 14, no. 17: 7515. https://doi.org/10.3390/app14177515
APA StyleHu, X., Zhou, A., Li, Y., Jiang, H., Fu, Y., Jiang, Y., & Gu, Y. (2024). Genesis of Low-Resistivity Shale Reservoirs and Its Influence on Gas-Bearing Property: A Case Study of the Longmaxi Formation in Southern Sichuan Basin. Applied Sciences, 14(17), 7515. https://doi.org/10.3390/app14177515