
Citation: Peng, J.; Chen, K.; Gong, Y.;

Zhang, T.; Su, B. Cyclic Consistent

Image Style Transformation: From

Model to System. Appl. Sci. 2024, 14,

7637. https://doi.org/10.3390/

app14177637

Academic Editor: Byung-Gyu Kim

Received: 29 July 2024

Revised: 26 August 2024

Accepted: 27 August 2024

Published: 29 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Cyclic Consistent Image Style Transformation: From Model
to System
Jun Peng 1,† , Kaiyi Chen 2,†, Yuqing Gong 3, Tianxiang Zhang 3 and Baohua Su 2,*

1 School of Education, City University of Macau, Macao 999078, China; junpeng@cityu.edu.mo
2 College of Chinese Language and Culture, Jinan University, Guangzhou 510610, China
3 School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China;

gongyuqing1975@zcst.edu.cn
* Correspondence: subaohua@hwy.jnu.edu.cn
† These authors contributed equally to this work.

Abstract: Generative Adversarial Networks (GANs) have achieved remarkable success in various
tasks, including image generation, editing, and reconstruction, as well as in unsupervised and
representation learning. Despite their impressive capabilities, GANs are often plagued by challenges
such as unstable training dynamics and limitations in generating complex patterns. To address
these challenges, we propose a novel image style transfer method, named C3GAN, which leverages
CycleGAN architecture to achieve consistent and stable transformation of image style. In this
context, “image style” refers to the distinct visual characteristics or artistic elements, such as the
color schemes, textures, and brushstrokes that define the overall appearance of an image. Our
method incorporates cyclic consistency, ensuring that the style transformation remains coherent and
visually appealing, thus enhancing the training stability and overcoming the generative limitations of
traditional GAN models. Additionally, we have developed a robust and efficient image style transfer
system by integrating Flask for web development and MySQL for database management. Our system
demonstrates superior performance in transferring complex styles compared to existing model-based
approaches. This paper presents the development of a comprehensive image style transfer system
based on our advanced C3GAN model, effectively addressing the challenges of GANs and expanding
application potential in domains such as artistic creation and cinematic special effects.

Keywords: CycleGAN; image style; deep learning; unsupervised learning

1. Introduction

Image style transfer is a powerful technique in the field of computer vision that
involves modifying the visual style of an image while preserving its original content.
Image style refers to the distinctive visual characteristics or artistic elements of an image,
such as color schemes, textures, and brushstroke patterns, which collectively define its
overall appearance.

This research focuses on image style transfer specifically in domains such as artistic
creation [1] and cinematic special effects [2], where the ability to creatively manipulate
visual styles is essential for innovation and expressive power. In artistic creation, style
transfer can be used to apply the aesthetic of famous artworks to new images, enhancing
creativity and providing novel visual experiences. In cinematic special effects, it enables
the transformation of visual elements to achieve desired artistic effects or mood, thereby
enhancing the visual storytelling of films and media.

Generative Adversarial Networks (GANs) have become a pivotal class of deep learning
models, particularly noted for their prowess in unsupervised learning tasks. A typical GAN
architecture comprises two adversarial components: a generator and a discriminator [3].
The generator is tasked with creating data samples that mimic real-world data, while the
discriminator’s role is to distinguish between genuine samples and those produced by the

Appl. Sci. 2024, 14, 7637. https://doi.org/10.3390/app14177637 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177637
https://doi.org/10.3390/app14177637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1802-7300
https://orcid.org/0009-0000-3793-9933
https://doi.org/10.3390/app14177637
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177637?type=check_update&version=2

Appl. Sci. 2024, 14, 7637 2 of 18

generator. This adversarial interplay forms the core of GAN training, where both models
are iteratively optimized by learning from each other’s outputs. Through this process,
GANs have demonstrated remarkable ability in generating high-quality and diverse data
samples across various domains, including images, videos, audio, and text [4].

Despite their promising potential, GANs are often beset by challenges such as unstable
training dynamics [5,6] and limited diversity in the generated outputs [7]. The instability
typically stems from the delicate balance required between the generator and discriminator
during training. Should one model significantly outperform the other, the entire training
process may destabilize, potentially leading to suboptimal models or even complete training
failure. Additionally, GANs frequently struggle with producing a wide variety of samples, a
limitation often manifested as mode collapse [8,9], where the generator repeatedly generates
a narrow range of similar outputs, thus reducing the diversity of the generated data.

To address these challenges, we propose a novel GAN model, referred to as C3GAN.
The C3GAN model introduces cyclic consistency as a mechanism to stabilize the training
process and enhance the diversity of generated samples. Cyclic consistency ensures that the
transformation between the input and output of the generator remains coherent, facilitating
more stable learning and significantly reducing the risk of mode collapse.

In addition to the novel model, we have developed an image style transfer system
based on C3GAN. Our system is implemented using the Python programming language,
the Flask web development framework, and MySQL database technology.

Generally, our contribution includes the following:

1. Introduction of C3GAN: We propose the C3GAN model, which incorporates cyclic
consistency to address the challenges of unstable training dynamics and limited
diversity in generated samples. This novel approach ensures more reliable learning
and reduces the occurrence of mode collapse.

2. Development of an Image Style Transfer System: We have implemented an efficient
and robust image style transfer system based on the C3GAN model. This system is
designed to perform superior style transfer tasks, enhancing both the stability and
diversity of the results.

3. Technological Integration: Our system leverages modern web development (Flask)
and database technologies (MySQL) to create a comprehensive and scalable image
style transfer platform, broadening its applicability in various creative domains.

4. Application in Creative Industries: By utilizing the C3GAN-based system, we expand
the potential applications of GANs in fields such as artistic creation and special effects
in film and television, offering a new tool for creative professionals.

2. Related Work
2.1. Background of GAN Research

Generative Adversarial Networks (GANs) are a type of deep learning model based on
game theory, where data generation is achieved through the adversarial interplay between
a generator G and a discriminator D. The generator G aims to create realistic data samples
to deceive the discriminator D, while the discriminator D tries to distinguish between
generated samples and real ones.

The training process involves adversarial optimization, where both models continu-
ously adjust their strategies to optimize their respective objective functions. The generator
G attempts to maximize the probability of the discriminator D making a mistake, while the
discriminator D tries to minimize this probability. The objective functions for these models
are defined as follows:

For the discriminator D:

LD = −Ex∼pdata(x)[log D(x)]−Ez∼pz(z)[log(1 − D(G(z)))]

For the generator G:

LG = −Ez∼pz(z)[log(D(G(z)))]

Appl. Sci. 2024, 14, 7637 3 of 18

In these equations, pdata(x) represents the distribution of real data, pz(z) is the distri-
bution of the latent variables, D(x) is the discriminator’s probability that x is real, and G(z)
is the generator’s output when given a latent vector z. The generator G aims to minimize
the loss function LG by producing data that are increasingly similar to real data, while the
discriminator DDD aims to maximize LD by accurately distinguishing between real and
generated data.

This adversarial training process continues until Nash Equilibrium is reached. At
this equilibrium, the generator produces samples that are nearly indistinguishable from
real data, indicating that the generator and discriminator are in balance. GANs have been
widely applied in various domains, including image generation [10–12], video genera-
tion [13,14], and natural language processing [15,16]. For instance, Conditional GANs
(cGANs) [17] have been used for posture-guided character image generation and facial
expression animation [18]. GANs also demonstrate exceptional capabilities in image editing
and reconstruction tasks, such as super-resolution [19,20]. However, GANs often encounter
issues such as mode collapse and training instability, which limit their application in more
complex tasks. These challenges have prompted researchers to explore various optimiza-
tion techniques and improvements to enhance GAN performance and applicability [21,22].
The development and evolution route of GANs is shown in Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 18

ℒ஽ = −𝔼௫∼௣೏ೌ೟ೌ(௫)ሾlog 𝐷(𝑥)ሿ − 𝔼௭∼௣೥(௭) ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ
For the generator 𝐺: ℒீ = −𝔼௭∼௣೥(௭) ቂlog ቀ𝐷൫𝐺(𝑧)൯ቁቃ
In these equations, 𝑝ௗ௔௧௔(𝑥) represents the distribution of real data, 𝑝௭(𝑧) is the dis-

tribution of the latent variables, 𝐷(𝑥) is the discriminator’s probability that 𝑥 is real, and 𝐺(𝑧) is the generator’s output when given a latent vector 𝑧. The generator 𝐺 aims to
minimize the loss function ℒீ by producing data that are increasingly similar to real data,
while the discriminator DDD aims to maximize ℒ஽ by accurately distinguishing between
real and generated data.

This adversarial training process continues until Nash Equilibrium is reached. At this
equilibrium, the generator produces samples that are nearly indistinguishable from real
data, indicating that the generator and discriminator are in balance. GANs have been
widely applied in various domains, including image generation [10–12], video generation
[13,14], and natural language processing [15,16]. For instance, Conditional GANs (cGANs)
[17] have been used for posture-guided character image generation and facial expression
animation [18]. GANs also demonstrate exceptional capabilities in image editing and re-
construction tasks, such as super-resolution [19,20]. However, GANs often encounter is-
sues such as mode collapse and training instability, which limit their application in more
complex tasks. These challenges have prompted researchers to explore various optimiza-
tion techniques and improvements to enhance GAN performance and applicability [21,22].
The development and evolution route of GANs is shown in Figure 1.

Figure 1. Evolution of GAN technology.

2.2. Unstable Training Dynamics
The instability in GAN training primarily arises from the adversarial game between

the generator and the discriminator. During training, both models continuously adjust
their strategies, making it difficult to maintain a stable training process. Specifically, issues
such as gradient vanishing or exploding occur due to the adversarial relationship between
the generator and discriminator. Gradient vanishing happens when the discriminator is
too powerful, causing the generator’s gradient signals to become very weak and impeding
its learning. Conversely, if the generator is too powerful, it can lead to gradient explosion
in the discriminator, resulting in training instability [5,6]. Mode collapse is another com-
mon issue, where the generator tends to produce a limited number of sample variations,

GAN

DCGAN
（Added deep

convolutional networks）

Progressive
GAN

（Progressively
increase model depth）

cGAN
（Added conditional

information as input）

AC-GAN
（Reconstructs the

class label）

SRGAN
（Unpaired training）

pix2pix
（Added images as
conditional input）

CycleGAN
（Unpaired training）

StackGAN
（Text and image

conditional input）

InfoGAN
（Adds semantic
information to the

latent space）

WGAN
（Updates the

discriminator more
than disrimninator）

Figure 1. Evolution of GAN technology.

2.2. Unstable Training Dynamics

The instability in GAN training primarily arises from the adversarial game between
the generator and the discriminator. During training, both models continuously adjust
their strategies, making it difficult to maintain a stable training process. Specifically, issues
such as gradient vanishing or exploding occur due to the adversarial relationship between
the generator and discriminator. Gradient vanishing happens when the discriminator is too
powerful, causing the generator’s gradient signals to become very weak and impeding its
learning. Conversely, if the generator is too powerful, it can lead to gradient explosion in
the discriminator, resulting in training instability [5,6]. Mode collapse is another common
issue, where the generator tends to produce a limited number of sample variations, lacking
diversity [7–9]. To address these problems, several improvements have been proposed.
Wasserstein GAN (WGAN) [23,24] replaces the traditional JS divergence with Wasserstein
distance, improving training stability. Additionally, spectral normalization [25] normalizes
the weights of the discriminator to control the network’s Lipschitz constant, thus enhancing
training stability. Gradient penalty, introduced in WGAN-GP [26], helps avoid gradient
explosion and vanishing issues. Moreover, techniques such as progressive training and
dynamic learning rate adjustments have been employed to improve training stability.

Appl. Sci. 2024, 14, 7637 4 of 18

2.3. Generation of Sample Diversity

The issue of insufficient sample diversity is another significant challenge faced by
GANs. Mode collapse results in the generator producing samples with limited variability,
lacking sufficient diversity [7]. This problem arises primarily because traditional GAN
objective functions focus too much on generating realistic samples without encouraging
diversity [8,9]. Additionally, the adversarial nature of the game between the generator
and discriminator can lead to mode collapse, particularly when the discriminator is exces-
sively powerful. To improve sample diversity, researchers have proposed several effective
strategies. One approach is to introduce diversity rewards, which maximize the mutual
information between samples to encourage the generator to produce more diverse outputs.
Conditional GANs [17] guide the generator by incorporating conditional information dur-
ing training, resulting in samples with higher diversity and relevance. Models combining
Variational Autoencoders (VAEs) with GANs (e.g., VAE-GANs) [27] utilize the latent space
modeling capabilities of VAEs along with the generative capabilities of GANs to enhance
both sample diversity and quality. Furthermore, gradient penalty and other regulariza-
tion techniques are used during training to constrain the generator’s outputs, reducing
mode collapse [28,29]. These improvements offer effective solutions for enhancing GAN
performance in generating diverse samples.

3. Image Style Transfer Technology Based on GAN

Image style transfer is an important application of GANs in image processing. Image
style migration can apply the style of one image to another image to generate a new image,
such that the new image retains the content characteristics of the original image while
having the style characteristics of the other image [30].

3.1. Image Style Transfer Based on CycleGAN

Despite their effectiveness, GAN-based image style transfer techniques have several
limitations, including the need for extensive data, significant computational resources,
and lengthy training times. During training, the generator and discriminator can become
unstable, complicating convergence to an optimal solution. Additionally, the generator
may overfit to fine details and noise in the target style image, resulting in generated images
that lack clarity and accuracy.

Traditional image-to-image translation methods often require separate models for
different tasks. For example, converting a black-and-white photo to color demands one
model, while transforming a horse image into a zebra requires another. The CycleGAN
architecture addresses these issues by introducing a cyclic consistency loss function, which
enables image translation between domains without paired training data [31]. This innova-
tion significantly reduces the cost and time required for training. Further advancements
have enhanced the CycleGAN model by improving the cyclic consistency loss function to
learn many-to-many mappings without paired data, thereby boosting GAN performance
in unsupervised settings [32]. Moreover, some studies have refined CycleGAN’s image
translation capabilities in complex scenes by incorporating a patch-based discriminator [33].

Other research has explored the integration of network architectures like U-Net and
ResNet into GANs to achieve more effective style transfer. For instance, DU-GAN [34]
incorporates a U-Net-based discriminator within the GAN framework. This U-Net-based
discriminator offers dual benefits: it provides pixel-level feedback to the denoising network
through its output while also considering global structure at the semantic level via its
intermediate layers. In another study [35], a signal-to-image conversion method was
developed to transform time-domain fault signals into RGB image format, which serves
as the input datatype for ResNet-50. This led to the proposal of a new TCNN (ResNet-50)
structure, which has been tested on multiple datasets, including the bearing damage dataset
from KAT datacenter, the motor bearing dataset from Case Western Reserve University
(CWRU), and a self-priming centrifugal pump dataset.

Appl. Sci. 2024, 14, 7637 5 of 18

Ma et al. [36] introduced an iterative architecture for Restorable Arbitrary Style Trans-
fer (RAST) to address content leak issues in arbitrary style transfer. RAST achieves the
transmission of both content and style information through multi-restorations, controlling
the content–style balance in stylized images through the precision of image restoration. To
ensure the effectiveness of this architecture, two novel loss functions—multi-restoration
loss and style difference loss—were designed. Additionally, a new quantitative evaluation
method was proposed to assess content preservation and style embedding performance.

3.2. Comparison and Improvement of an Image Style Transfer System Based on CycleGAN

CycleGAN represents an advancement over traditional GAN architectures, incorpo-
rating key improvements such as cyclic consistency, the ability to operate with non-paired
data, multi-modal output, and the integration of identity loss. Compared to other GAN
variants like CoGAN [37], BiGAN/ALI [38], and SimGAN [39], CycleGAN is particularly
well-suited for image style transfer across different domains. The following outlines the
differences and improvements of CycleGAN over these other models:

Firstly, compared to CoGAN, CycleGAN leverages cyclic consistency loss, which
ensures that an image, once transformed to another domain and then back, retains its
original content. CoGAN, lacking this loss function, may suffer from content loss or dis-
tortion. Moreover, CycleGAN employs identity loss, allowing the generator to output the
original image without transformation when the input is already in the target domain, thus
preserving the image’s style. CoGAN does not utilize identity loss, leading to potential
over-transformation or blending of styles. Additionally, CycleGAN supports multi-modal
output, enabling the generation of images in various styles based on the input’s characteris-
tics and random noise. In contrast, CoGAN only allows for single-modal output, producing
images in just one style.

Secondly, in comparison to BiGAN/ALI, CycleGAN avoids using an encoder to map
input images to a latent space, instead directly transforming the input image to the target
domain using a generator. This approach reduces model complexity and computation while
avoiding errors and information loss introduced by the encoder. Unlike BiGAN/ALI, which
relies on supervised data pairs for training, CycleGAN can utilize unsupervised datasets,
allowing for broader application and more diverse data sources, while also mitigating
issues related to incomplete or inaccurate data. Furthermore, CycleGAN supports multi-
domain transformations, enabling the generator to process multiple source and target
domains simultaneously, whereas BiGAN/ALI is limited to two-domain conversions.

Lastly, when compared to SimGAN, CycleGAN employs adversarial loss and a dis-
criminator to train the generator, improving the quality and realism of the generated images
by ensuring they can fool the discriminator. SimGAN, on the other hand, uses perceptual
loss and local perceptual discriminators to train the generator, which can result in images
that are similar to those in the real image domain but may be lacking in quality and au-
thenticity. CycleGAN’s use of cyclic consistency loss and identity loss helps maintain both
the content and style of the original image. In contrast, SimGAN relies on self-supervised
learning, which, while gradually enhancing the synthetic image’s defects, might alter the
original content and style. Moreover, CycleGAN allows for conversion between any two
different image domains without requiring paired data, whereas SimGAN is restricted to
converting synthetic images to real images, necessitating synthetic data as the input.

Building on these principles, this study proposes an image style transfer system based
on CycleGAN, which not only achieves unique artistic effects by applying the style of one
image to another but also enhances adaptability across various datasets and broadens the
system’s application scenarios.

4. Method
4.1. Overview

The proposed C3GAN model is built upon the foundational principles of Generative
Adversarial Networks (GANs). In a traditional GAN, two networks, the generator G and

Appl. Sci. 2024, 14, 7637 6 of 18

the discriminator D compete in a zero-sum game. The generator G aims to generate data
samples that are indistinguishable from real data, while the discriminator D strives to
distinguish between real and generated data. The overall objective function for a basic
GAN can be expressed as follows:

min
G

max
D

Ex∼pdata(x)[log D(x)] +Ez∼pz(z) [log(1 − D(G(z)))]

However, one limitation of traditional GANs is their difficulty in maintaining training
stability and generating diverse outputs. To address these challenges, we propose the
C3GAN model, which introduces cyclic consistency to enhance both stability and diversity.

The schematic diagram of the C3GAN model is shown in Figure 2. The model
comprises four neural networks: two generator networks and two discriminator net-
works. Specifically, one generator network is responsible for transforming images from
domain A to domain B, while the other performs the inverse transformation. Each dis-
criminator is trained to distinguish between real images and those generated by the
corresponding generator.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18

supervised learning, which, while gradually enhancing the synthetic image’s defects,
might alter the original content and style. Moreover, CycleGAN allows for conversion
between any two different image domains without requiring paired data, whereas Sim-
GAN is restricted to converting synthetic images to real images, necessitating synthetic
data as the input.

Building on these principles, this study proposes an image style transfer system
based on CycleGAN, which not only achieves unique artistic effects by applying the style
of one image to another but also enhances adaptability across various datasets and broad-
ens the system’s application scenarios.

4. Method
4.1. Overview

The proposed C3GAN model is built upon the foundational principles of Generative
Adversarial Networks (GANs). In a traditional GAN, two networks, the generator 𝐺 and
the discriminator 𝐷 compete in a zero-sum game. The generator 𝐺 aims to generate data
samples that are indistinguishable from real data, while the discriminator 𝐷 strives to
distinguish between real and generated data. The overall objective function for a basic
GAN can be expressed as follows: minீ max஽ 𝔼௫∼௣೏ೌ೟ೌ(௫)ሾlog 𝐷(𝑥)ሿ + 𝔼௭∼௣೥(೥) ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ

However, one limitation of traditional GANs is their difficulty in maintaining training
stability and generating diverse outputs. To address these challenges, we propose the
C3GAN model, which introduces cyclic consistency to enhance both stability and diversity.

The schematic diagram of the C3GAN model is shown in Figure 2. The model com-
prises four neural networks: two generator networks and two discriminator networks.
Specifically, one generator network is responsible for transforming images from domain
A to domain B, while the other performs the inverse transformation. Each discriminator
is trained to distinguish between real images and those generated by the corresponding
generator.

Figure 2. The schematic diagram of the C3GAN model.

Generator Networks: The C3GAN model employs two generator networks, denoted
as 𝐺஺ and 𝐺஻, for bidirectional transformation between domains 𝐴 and 𝐵. Both gener-
ators utilize a convolutional neural network (CNN) architecture. For an input image 𝑥஺
from domain 𝐴, 𝐺஺ generates a corresponding image 𝑥஻ = 𝐺஺(𝑥஺) in domain 𝐵. Con-
versely, 𝐺஺ maps an image 𝑥஻ from domain 𝐵 back to domain 𝐴 , producing 𝑥஺ᇱ =

Image
(Domain A)

Converted
image

(Domain B)

Reverse
conversion

image

Reverse
conversion Image

(Domain A)

Converted
image

(Domain B)

Reverse
conversion Image

(Domain A)

Creator
G_A

Creator
G_B

Cyclic consistency

Figure 2. The schematic diagram of the C3GAN model.

Generator Networks: The C3GAN model employs two generator networks, denoted
as GA and GB, for bidirectional transformation between domains A and B. Both generators
utilize a convolutional neural network (CNN) architecture. For an input image xA from
domain A, GA generates a corresponding image xB = GA(xA) in domain B. Conversely,
GA maps an image xB from domain B back to domain A, producing x′A = GB(xB). The
structure of these networks includes Batch Normalization to stabilize training and ReLU
activation functions for non-linearity.

Discriminator Networks: The model also incorporates two discriminator networks,
denoted as DA and DB, which evaluate the realism of images in domains A and B, respec-
tively. DA is trained to distinguish between real images xA and generated images GB(xB),
while DB discriminates between xB and GA(xA). The discriminator networks are also
implemented using CNN architectures, with LeakyReLU activations to handle negative
inputs more effectively.

Cyclic Consistency Loss: A critical feature of C3GAN is the introduction of cyclic
consistency loss, which ensures that the transformations are reversible and consistent. This
loss is defined as the L1 distance between the original images and the images reconstructed
after a complete cycle of transformations.

The training process of the C3GAN model, illustrated in Figure 3, begins with two inputs:
image sets from two distinct domains that are labeled as domain A and domain B. These
image sets are composed of 256× 256 pixel RGB images, ensuring that both domains share
the same number of channels and resolution. The model outputs two sets of images—one set

Appl. Sci. 2024, 14, 7637 7 of 18

transforming images from domain A to domain B, and the other performing the reverse—with
the outputs retaining the original resolution and channel dimensions.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

𝐺஻(𝑥஻). The structure of these networks includes Batch Normalization to stabilize training
and ReLU activation functions for non-linearity.

Discriminator Networks: The model also incorporates two discriminator networks,
denoted as 𝐷஺ and 𝐷஻, which evaluate the realism of images in domains 𝐴 and 𝐵, re-
spectively. 𝐷஺ is trained to distinguish between real images 𝑥஺ and generated images 𝐺஻(𝑥஻), while 𝐷஻ discriminates between 𝑥஻ and 𝐺஺(𝑥஺). The discriminator networks are
also implemented using CNN architectures, with LeakyReLU activations to handle nega-
tive inputs more effectively.

Cyclic Consistency Loss: A critical feature of C3GAN is the introduction of cyclic
consistency loss, which ensures that the transformations are reversible and consistent.
This loss is defined as the 𝐿ଵ distance between the original images and the images recon-
structed after a complete cycle of transformations.

The training process of the C3GAN model, illustrated in Figure 3, begins with two
inputs: image sets from two distinct domains that are labeled as domain 𝐴 and domain 𝐵. These image sets are composed of 256 ൈ 256 pixel RGB images, ensuring that both
domains share the same number of channels and resolution. The model outputs two sets
of images—one set transforming images from domain 𝐴 to domain 𝐵, and the other per-
forming the reverse—with the outputs retaining the original resolution and channel di-
mensions.

Figure 3. Training of C3GAN Model.

The C3GAN architecture is built upon four key components: two generators (𝐺஺ and 𝐺஻) and two discriminators (𝐷஺ and 𝐷஻). The generators are designed to perform the im-
age-to-image translation tasks, where 𝐺஺ converts images from domain 𝐴 to domain 𝐵,
and 𝐺஻ performs the inverse operation. The discriminators 𝐷஺ and 𝐷஻ evaluate the au-
thenticity of images in their respective domains, determining whether the images are real
or generated. Each of these networks is constructed from multiple convolutional layers,
interspersed with normalization layers to stabilize training and activation layers to intro-
duce non-linearity.

The training process of C3GAN involves optimizing three key loss functions:
Adversarial Loss: This loss ensures that the generators produce outputs that are in-

distinguishable from real images in the target domain. It drives the generators to create
realistic and convincing images, fooling the discriminators into classifying them as real.

Cycle Consistency Loss: The cycle consistency loss maintains the integrity of the con-
tent information during the transformation. It guarantees that an image translated from
domain A to domain B and then back to domain A closely resembles its original form,
preserving essential features and structures.

Identity Loss: This loss encourages the generators to retain the style information of
the input images when the output domain matches the input domain. For example, when 𝐺஺ processes an image from domain B, the output should be identical to the input image,

D_A D_B

DataA(real) G_A G_B Data(G_A)

DataB(real)

DataA(rebuild)

Cyclic uniform loss

Adversarial loss Adversarial loss

Loss of identity Loss of identity

Fake/real？
Fake/real？

Figure 3. Training of C3GAN Model.

The C3GAN architecture is built upon four key components: two generators (GA and
GB) and two discriminators (DA and DB). The generators are designed to perform the
image-to-image translation tasks, where GA converts images from domain A to domain
B, and GB performs the inverse operation. The discriminators DA and DB evaluate the
authenticity of images in their respective domains, determining whether the images are
real or generated. Each of these networks is constructed from multiple convolutional
layers, interspersed with normalization layers to stabilize training and activation layers to
introduce non-linearity.

The training process of C3GAN involves optimizing three key loss functions:
Adversarial Loss: This loss ensures that the generators produce outputs that are

indistinguishable from real images in the target domain. It drives the generators to create
realistic and convincing images, fooling the discriminators into classifying them as real.

Cycle Consistency Loss: The cycle consistency loss maintains the integrity of the
content information during the transformation. It guarantees that an image translated from
domain A to domain B and then back to domain A closely resembles its original form,
preserving essential features and structures.

Identity Loss: This loss encourages the generators to retain the style information of
the input images when the output domain matches the input domain. For example, when
GA processes an image from domain B, the output should be identical to the input image,
ensuring that the generator does not unnecessarily alter the image’s style when no domain
translation is required.

4.2. Generator

The architecture of the generator network in the C3GAN model is illustrated in
Figure 4. The generator begins with an initial convolutional layer (Conv2d) with a kernel
size of 7 × 7, a stride of 1, 3 input channels (corresponding to the RGB channels of the
image), and 64 output channels. After passing through this layer, the output feature map
size becomes 250 × 250 × 64, calculated as (256 − 7 + 1)× (256 − 7 + 1)× 64.

Following this, the generator processes the feature map through a series of residual
blocks, which maintain the spatial dimensions (W, H) while increasing the number of
channels. The model typically uses 6 ResNet blocks, each doubling the number of channels.
As a result, after passing through all residual blocks, the number of channels increases from
64 to 1024, calculated as 64 × 24.

Subsequently, the generator employs upsampling layers (ConvTranspose2d) to enlarge
the spatial dimensions of the feature map while reducing the number of channels by half.

Appl. Sci. 2024, 14, 7637 8 of 18

With two default upsampling layers, the spatial size expands from 250 to 1000, while the
number of channels decreases from 1024 to 512, and finally to 256.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

ensuring that the generator does not unnecessarily alter the image’s style when no domain
translation is required.

4.2. Generator
The architecture of the generator network in the C3GAN model is illustrated in Fig-

ure 4. The generator begins with an initial convolutional layer (Conv2d) with a kernel size
of 7 ൈ 7, a stride of 1, 3 input channels (corresponding to the RGB channels of the image),
and 64 output channels. After passing through this layer, the output feature map size be-
comes 250 ൈ 250 ൈ 64, calculated as (256 − 7 + 1) ൈ (256 − 7 + 1) ൈ 64.

Figure 4. Generator of a C3GAN model.

Following this, the generator processes the feature map through a series of residual
blocks, which maintain the spatial dimensions (𝑊, 𝐻) while increasing the number of
channels. The model typically uses 6 ResNet blocks, each doubling the number of chan-
nels. As a result, after passing through all residual blocks, the number of channels in-
creases from 64 to 1024, calculated as 64 ൈ 2ସ.

Subsequently, the generator employs upsampling layers (ConvTranspose2d) to en-
large the spatial dimensions of the feature map while reducing the number of channels by
half. With two default upsampling layers, the spatial size expands from 250 to 1000, while
the number of channels decreases from 1024 to 512, and finally to 256.

The final Conv2d layer reduces the number of channels to match the output image’s
required channels, typically 3, corresponding to the RGB color channels of the output im-
age.

4.3. Discriminator
The architecture of the discriminator network in the C3GAN model is depicted in

Figure 5. The first convolutional layer (Conv2d) of the discriminator 𝐷 has a kernel size
of 4 ൈ 4 and a stride of 2, with 3 input channels corresponding to the RGB channels of

Conv2d
7*7

W*H*3 W*H*64 W*H*64

Conv2d
7*7

… W*H*64

Conv2d
7*7

W*H*64

ResNet

W*H*64*2 W*H*64*2*2

ResNet

…
W*H*64*2^4

ResNet

W*H*1024

BatchN
orm2d

W*H*512

BatchN
orm2d

W*H*256

Conv2d
7*7

W*H*3

Figure 4. Generator of a C3GAN model.

The final Conv2d layer reduces the number of channels to match the output image’s
required channels, typically 3, corresponding to the RGB color channels of the output image.

4.3. Discriminator

The architecture of the discriminator network in the C3GAN model is depicted in
Figure 5. The first convolutional layer (Conv2d) of the discriminator D has a kernel size
of 4 × 4 and a stride of 2, with 3 input channels corresponding to the RGB channels of the
image and 64 output channels. After passing through this layer, the resulting feature map
has a size of 127 × 127 × 64.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

the image and 64 output channels. After passing through this layer, the resulting feature
map has a size of 127 ൈ 127 ൈ 64.

Figure 5. Discriminator of the C3GAN model.

As the feature map progresses through multiple convolutional layers, downsampling
occurs, which gradually reduces the spatial dimensions while increasing the number of
channels. The final convolutional layer increases the number of output channels to 256.

The last Conv2d layer reduces the number of channels to 1. This is followed by a
sigmoid activation function, which outputs a value between 0 and 1, representing the
probability that the input image is classified as a real image.

4.4. Design of an Image Style Transfer System Based on C3GAN
In common cases, software systems are required to be efficient and stable. We fol-

lowed these principles when designing our image style transfer system based on our
C3GAN model, such that our system can generate high-quality style transfer images un-
der a short time limit. Additionally, we established an algorithm database for quick im-
plementation of different algorithms. Meanwhile, our system also focused on security
problems and user privacy. The architecture of our system is illustrated in Figure 6.

Figure 6. System architecture of our image style transfer system.

Our system is developed using Python and MySQL. Python serves as the core pro-
gramming language, Flask is utilized as the web framework for frontend and backend
interactions, and MySQL is employed as a lightweight database to store user and image
information. Python is a high-level, easy-to-learn, open-source, and cross-platform lan-
guage suitable for data science, artificial intelligence, web development, and other fields.
Flask, a Python-based web framework, provides straightforward routing, template ren-
dering, and request processing functionalities, making it ideal for small to medium-sized
web application development. MySQL, a lightweight relational database management
system that supports various platforms and is widely used in web application develop-
ment. In this design, Python, Flask, and MySQL collaboratively build the development
environment for the image style transfer system based on our C3GAN.

Conv2d
4*4

W*H*3 W*H*64 W*H*128

Conv2d
4*4

W*H*256

Conv2d
4*4 Conv2d

0~1

Figure 5. Discriminator of the C3GAN model.

As the feature map progresses through multiple convolutional layers, downsampling
occurs, which gradually reduces the spatial dimensions while increasing the number of
channels. The final convolutional layer increases the number of output channels to 256.

The last Conv2d layer reduces the number of channels to 1. This is followed by a
sigmoid activation function, which outputs a value between 0 and 1, representing the
probability that the input image is classified as a real image.

Appl. Sci. 2024, 14, 7637 9 of 18

4.4. Design of an Image Style Transfer System Based on C3GAN

In common cases, software systems are required to be efficient and stable. We followed
these principles when designing our image style transfer system based on our C3GAN
model, such that our system can generate high-quality style transfer images under a short
time limit. Additionally, we established an algorithm database for quick implementation of
different algorithms. Meanwhile, our system also focused on security problems and user
privacy. The architecture of our system is illustrated in Figure 6.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

the image and 64 output channels. After passing through this layer, the resulting feature
map has a size of 127 ൈ 127 ൈ 64.

Figure 5. Discriminator of the C3GAN model.

As the feature map progresses through multiple convolutional layers, downsampling
occurs, which gradually reduces the spatial dimensions while increasing the number of
channels. The final convolutional layer increases the number of output channels to 256.

The last Conv2d layer reduces the number of channels to 1. This is followed by a
sigmoid activation function, which outputs a value between 0 and 1, representing the
probability that the input image is classified as a real image.

4.4. Design of an Image Style Transfer System Based on C3GAN
In common cases, software systems are required to be efficient and stable. We fol-

lowed these principles when designing our image style transfer system based on our
C3GAN model, such that our system can generate high-quality style transfer images un-
der a short time limit. Additionally, we established an algorithm database for quick im-
plementation of different algorithms. Meanwhile, our system also focused on security
problems and user privacy. The architecture of our system is illustrated in Figure 6.

Figure 6. System architecture of our image style transfer system.

Our system is developed using Python and MySQL. Python serves as the core pro-
gramming language, Flask is utilized as the web framework for frontend and backend
interactions, and MySQL is employed as a lightweight database to store user and image
information. Python is a high-level, easy-to-learn, open-source, and cross-platform lan-
guage suitable for data science, artificial intelligence, web development, and other fields.
Flask, a Python-based web framework, provides straightforward routing, template ren-
dering, and request processing functionalities, making it ideal for small to medium-sized
web application development. MySQL, a lightweight relational database management
system that supports various platforms and is widely used in web application develop-
ment. In this design, Python, Flask, and MySQL collaboratively build the development
environment for the image style transfer system based on our C3GAN.

Conv2d
4*4

W*H*3 W*H*64 W*H*128

Conv2d
4*4

W*H*256

Conv2d
4*4 Conv2d

0~1

Figure 6. System architecture of our image style transfer system.

Our system is developed using Python and MySQL. Python serves as the core pro-
gramming language, Flask is utilized as the web framework for frontend and backend
interactions, and MySQL is employed as a lightweight database to store user and image in-
formation. Python is a high-level, easy-to-learn, open-source, and cross-platform language
suitable for data science, artificial intelligence, web development, and other fields. Flask,
a Python-based web framework, provides straightforward routing, template rendering,
and request processing functionalities, making it ideal for small to medium-sized web
application development. MySQL, a lightweight relational database management system
that supports various platforms and is widely used in web application development. In
this design, Python, Flask, and MySQL collaboratively build the development environment
for the image style transfer system based on our C3GAN.

To be more specific, our system consists mainly of the User Login Module and the
Main Interface Module.

User login module. The function of the user login module of this system is to verify
the identity of different users and then display the main interface. The module supports
two user types: ordinary users and user administrators. The module automatically jumps
to different main interfaces according to the user type. Firstly, we created a web application
based on Python Flask, then we created a Flask application named “app” and defined
two routes, namely the root route “/”, “/login” and “/uploader”, and the sub-route
“/admin”. Among them, the root route “/” corresponds to the login page; the route
“/login” is used to receive the submission of the login form, verify the user’s identity, and
jump to different main interfaces according to the user type; the routes “/uploader” and
“/admin” correspond to the main interfaces of ordinary users and administrators. The user
information is stored in the database, and the MySQL database is accessed by using the
SQLAlchemy module of Python Flask. After reading the user information in MySQL, it is
compared with the content filled in the form. If the username matches, the password is
judged. If both match, the login is successful, otherwise the login fails.

Appl. Sci. 2024, 14, 7637 10 of 18

Main interface module. The main interface of the system shows the effect of image
style transfer based on the C3GAN model, as shown in Figure 7. The image upload
interface has a button for uploading files and an area for displaying images, allowing users
to upload their own images and perform style transfer, and then download the images. The
website’s graphical user interface is simple and beautiful, using the Bootstrap framework
and providing important information and functions so that users can better use the system.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

To be more specific, our system consists mainly of the User Login Module and the
Main Interface Module.

User login module. The function of the user login module of this system is to verify
the identity of different users and then display the main interface. The module supports
two user types: ordinary users and user administrators. The module automatically jumps
to different main interfaces according to the user type. Firstly, we created a web applica-
tion based on Python Flask, then we created a Flask application named “app” and defined
two routes, namely the root route “/”, “/login” and “/uploader”, and the sub-route “/ad-
min”. Among them, the root route “/” corresponds to the login page; the route “/login” is
used to receive the submission of the login form, verify the user’s identity, and jump to
different main interfaces according to the user type; the routes “/uploader” and “/admin”
correspond to the main interfaces of ordinary users and administrators. The user infor-
mation is stored in the database, and the MySQL database is accessed by using the SQLAl-
chemy module of Python Flask. After reading the user information in MySQL, it is com-
pared with the content filled in the form. If the username matches, the password is judged.
If both match, the login is successful, otherwise the login fails.

Main interface module. The main interface of the system shows the effect of image
style transfer based on the C3GAN model, as shown in Figure 7. The image upload inter-
face has a button for uploading files and an area for displaying images, allowing users to
upload their own images and perform style transfer, and then download the images. The
website’s graphical user interface is simple and beautiful, using the Bootstrap framework
and providing important information and functions so that users can better use the system.

(a) (b)

Figure 7. (a) Main user interface of our system and (b) specific operation interface.

The overall workflow of the system is illustrated in Figure 8. The frontend user inter-
face provides a user-friendly page with options to upload files, allowing users to select
and upload images for style conversion. The Flask backend processes user requests, in-
vokes the C3GAN model for image style conversion, and returns the results to the front
end. The pre-trained C3GAN model, loaded in the backend, performs the image style con-
version, trained for tasks such as art style changes (e.g., Ukiyo-e) and seasonal changes.

Figure 7. (a) Main user interface of our system and (b) specific operation interface.

The overall workflow of the system is illustrated in Figure 8. The frontend user
interface provides a user-friendly page with options to upload files, allowing users to
select and upload images for style conversion. The Flask backend processes user requests,
invokes the C3GAN model for image style conversion, and returns the results to the front
end. The pre-trained C3GAN model, loaded in the backend, performs the image style
conversion, trained for tasks such as art style changes (e.g., Ukiyo-e) and seasonal changes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18

Figure 8. The overall architecture design of the system.

The main steps are as follows:
1. Upload Data: The system receives the image file uploaded by the user.
2. Send Data: The image data are transmitted to the Flask backend via the frontend user

interface.
3. Data Processing: The validated image data enter the C3GAN model.
4. Image Style Conversion: The backend calls the loaded C3GAN model, inputs the

user’s image into the model, and generates the converted image.
5. Temporary Storage and Transfer: The converted image is saved to a temporary

folder, associating the file name with the user for later identification and storage.
6. Return Result to Front End: The backend sends the file path or name of the converted

image back to the front end for display to the user.
7. User Interface Update: The front end updates the displayed image based on the file

path or name returned by the backend, presenting the style conversion result and
providing a download button.

5. Experiment
In this section, we utilized the Cityscapes dataset, a high-quality and widely used

dataset in the field of computer vision, primarily for tasks such as semantic segmentation,
object detection, and image synthesis. The dataset contains urban street scene images from
50 cities, with fine pixel-level semantic annotations, making it particularly suitable for vis-
ual tasks in urban environments. The dataset comprises a total of 5000 finely annotated
images, which we split into a training set and a test set in an 8:2 ratio. Specifically, 4000
images were used for model training, while the remaining 1000 images were reserved for
testing, ensuring the model’s generalization ability across diverse scenes.

The experiments were conducted on a Windows 11 operating system, using Python
3.8 and PyTorch 1.9.0 as the deep learning framework. To accelerate computation, CUDA
11.1 was employed, and the training was performed on an NVIDIA RTX 3090 GPU, paired
with an Intel i7 13700k CPU and 32 GB of 3200 MHz memory.

The models were trained with a batch size of 16, which provided a balance between
memory usage and training stability. The Adam optimizer was utilized with default pa-
rameters (𝛽ଵ = 0.9 and 𝛽ଶ = 0.999) and a learning rate of 0.0002, which is commonly used
in GAN training for effective convergence. The training process spanned 100 epochs, al-
lowing ample time for the models to learn from the high-resolution dataset. Additionally,
the weights of the networks were initialized using the Xavier initialization method to en-
sure stable training. This comprehensive setup ensured the efficiency and stability of both
model training and evaluation.

5.1. System Testing

WEB UI User Flask server

Database

CycleGAN

Result

Upload Send

User data

Verification

No

Images data

Style shift

Images data

Yes

Figure 8. The overall architecture design of the system.

The main steps are as follows:

1. Upload Data: The system receives the image file uploaded by the user.
2. Send Data: The image data are transmitted to the Flask backend via the frontend

user interface.
3. Data Processing: The validated image data enter the C3GAN model.
4. Image Style Conversion: The backend calls the loaded C3GAN model, inputs the

user’s image into the model, and generates the converted image.
5. Temporary Storage and Transfer: The converted image is saved to a temporary folder,

associating the file name with the user for later identification and storage.
6. Return Result to Front End: The backend sends the file path or name of the converted

image back to the front end for display to the user.

Appl. Sci. 2024, 14, 7637 11 of 18

7. User Interface Update: The front end updates the displayed image based on the file
path or name returned by the backend, presenting the style conversion result and
providing a download button.

5. Experiment

In this section, we utilized the Cityscapes dataset, a high-quality and widely used
dataset in the field of computer vision, primarily for tasks such as semantic segmentation,
object detection, and image synthesis. The dataset contains urban street scene images from
50 cities, with fine pixel-level semantic annotations, making it particularly suitable for visual
tasks in urban environments. The dataset comprises a total of 5000 finely annotated images,
which we split into a training set and a test set in an 8:2 ratio. Specifically, 4000 images
were used for model training, while the remaining 1000 images were reserved for testing,
ensuring the model’s generalization ability across diverse scenes.

The experiments were conducted on a Windows 11 operating system, using Python 3.8
and PyTorch 1.9.0 as the deep learning framework. To accelerate computation, CUDA 11.1
was employed, and the training was performed on an NVIDIA RTX 3090 GPU, paired with
an Intel i7 13700k CPU and 32 GB of 3200 MHz memory.

The models were trained with a batch size of 16, which provided a balance between
memory usage and training stability. The Adam optimizer was utilized with default
parameters (β1 = 0.9 and β2 = 0.999) and a learning rate of 0.0002, which is commonly
used in GAN training for effective convergence. The training process spanned 100 epochs,
allowing ample time for the models to learn from the high-resolution dataset. Additionally,
the weights of the networks were initialized using the Xavier initialization method to
ensure stable training. This comprehensive setup ensured the efficiency and stability of
both model training and evaluation.

5.1. System Testing

The black box testing method was employed to validate the system’s image style
migration capabilities using a diverse range of test cases. The testing process began by
selecting a landscape image with dimensions of 256 × 256 pixels (as shown in Figure 9).
The initial steps involved verifying that both the operating environment and the devel-
opment environment were functioning correctly. Following this, the web interface was
tested, beginning with the login functionality. The test confirmed that users could success-
fully log in using registered accounts stored in the database, while unregistered accounts
were appropriately denied access. The registration feature was also tested, ensuring that
newly registered accounts were correctly added to the database and could be used for
subsequent logins.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

The black box testing method was employed to validate the system’s image style mi-
gration capabilities using a diverse range of test cases. The testing process began by se-
lecting a landscape image with dimensions of 256 × 256 pixels (as shown in Figure 9). The
initial steps involved verifying that both the operating environment and the development
environment were functioning correctly. Following this, the web interface was tested, be-
ginning with the login functionality. The test confirmed that users could successfully log
in using registered accounts stored in the database, while unregistered accounts were ap-
propriately denied access. The registration feature was also tested, ensuring that newly
registered accounts were correctly added to the database and could be used for subse-
quent logins.

Figure 9. Landscape picture before style migration.

The core of the testing focused on the style migration functionality. After inputting
the landscape image, the system automatically converted it into the Ukiyo-e style (as
shown in Figure 10) and returned the stylized image to the web interface. The download
function was also tested, confirming that users could successfully download the stylized
images.

Figure 10. Landscape image after style transfer.

The scope of the testing was then broadened to include various categories of images
such as animals, architecture, flowers, and portraits. The system consistently performed
successful style conversions across all these categories. The original and converted images
are displayed in Figures 9–18, demonstrating the effectiveness of the system across differ-
ent types of input images.

Figure 11. Animal images before style migration.

Figure 9. Landscape picture before style migration.

The core of the testing focused on the style migration functionality. After inputting the
landscape image, the system automatically converted it into the Ukiyo-e style (as shown in
Figure 10) and returned the stylized image to the web interface. The download function
was also tested, confirming that users could successfully download the stylized images.

Appl. Sci. 2024, 14, 7637 12 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

The black box testing method was employed to validate the system’s image style mi-
gration capabilities using a diverse range of test cases. The testing process began by se-
lecting a landscape image with dimensions of 256 × 256 pixels (as shown in Figure 9). The
initial steps involved verifying that both the operating environment and the development
environment were functioning correctly. Following this, the web interface was tested, be-
ginning with the login functionality. The test confirmed that users could successfully log
in using registered accounts stored in the database, while unregistered accounts were ap-
propriately denied access. The registration feature was also tested, ensuring that newly
registered accounts were correctly added to the database and could be used for subse-
quent logins.

Figure 9. Landscape picture before style migration.

The core of the testing focused on the style migration functionality. After inputting
the landscape image, the system automatically converted it into the Ukiyo-e style (as
shown in Figure 10) and returned the stylized image to the web interface. The download
function was also tested, confirming that users could successfully download the stylized
images.

Figure 10. Landscape image after style transfer.

The scope of the testing was then broadened to include various categories of images
such as animals, architecture, flowers, and portraits. The system consistently performed
successful style conversions across all these categories. The original and converted images
are displayed in Figures 9–18, demonstrating the effectiveness of the system across differ-
ent types of input images.

Figure 11. Animal images before style migration.

Figure 10. Landscape image after style transfer.

The scope of the testing was then broadened to include various categories of images
such as animals, architecture, flowers, and portraits. The system consistently performed
successful style conversions across all these categories. The original and converted images
are displayed in Figures 9–18, demonstrating the effectiveness of the system across different
types of input images.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

The black box testing method was employed to validate the system’s image style mi-
gration capabilities using a diverse range of test cases. The testing process began by se-
lecting a landscape image with dimensions of 256 × 256 pixels (as shown in Figure 9). The
initial steps involved verifying that both the operating environment and the development
environment were functioning correctly. Following this, the web interface was tested, be-
ginning with the login functionality. The test confirmed that users could successfully log
in using registered accounts stored in the database, while unregistered accounts were ap-
propriately denied access. The registration feature was also tested, ensuring that newly
registered accounts were correctly added to the database and could be used for subse-
quent logins.

Figure 9. Landscape picture before style migration.

The core of the testing focused on the style migration functionality. After inputting
the landscape image, the system automatically converted it into the Ukiyo-e style (as
shown in Figure 10) and returned the stylized image to the web interface. The download
function was also tested, confirming that users could successfully download the stylized
images.

Figure 10. Landscape image after style transfer.

The scope of the testing was then broadened to include various categories of images
such as animals, architecture, flowers, and portraits. The system consistently performed
successful style conversions across all these categories. The original and converted images
are displayed in Figures 9–18, demonstrating the effectiveness of the system across differ-
ent types of input images.

Figure 11. Animal images before style migration. Figure 11. Animal images before style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

Figure 12. Animal images after style migration.

Figure 13. Picture of a building before style migration.

Figure 14. Picture of a building after style migration.

Figure 15. Flower picture before style migration.

Figure 16. Flower picture after style migration.

Figure 12. Animal images after style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

Figure 12. Animal images after style migration.

Figure 13. Picture of a building before style migration.

Figure 14. Picture of a building after style migration.

Figure 15. Flower picture before style migration.

Figure 16. Flower picture after style migration.

Figure 13. Picture of a building before style migration.

Appl. Sci. 2024, 14, 7637 13 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

Figure 12. Animal images after style migration.

Figure 13. Picture of a building before style migration.

Figure 14. Picture of a building after style migration.

Figure 15. Flower picture before style migration.

Figure 16. Flower picture after style migration.

Figure 14. Picture of a building after style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

Figure 12. Animal images after style migration.

Figure 13. Picture of a building before style migration.

Figure 14. Picture of a building after style migration.

Figure 15. Flower picture before style migration.

Figure 16. Flower picture after style migration.

Figure 15. Flower picture before style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

Figure 12. Animal images after style migration.

Figure 13. Picture of a building before style migration.

Figure 14. Picture of a building after style migration.

Figure 15. Flower picture before style migration.

Figure 16. Flower picture after style migration. Figure 16. Flower picture after style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

Figure 17. Character picture before style migration.

Figure 18. Character picture after style transfer.

5.2. Visualization Comparison against SOTA Methods
This experiment aimed to evaluate the performance of different image translation

methods, particularly in converting aerial images into maps. To ensure the objectivity of
the volunteers’ evaluations, we designed a series of measures to minimize subjective bias.

First, the experiment selected multiple types of aerial images, converting them into
map images and then converting the maps back into photos. All generated images were
presented to the volunteers in random order to avoid any sequence effects that might in-
fluence the evaluation results. Additionally, each volunteer could only see one original
image and its generated counterpart at a time, preventing them from making comparative
judgments with other original or generated images. This design helps mitigate reference
bias in their evaluations.

The experiment was conducted on the AMT crowdsourcing platform, recruiting a
large number of volunteers. Each volunteer was asked to evaluate multiple pairs of im-
ages and identify the one they believed to be the most realistic. The volunteers’ ratings
were calculated using a weighted average approach, further reducing the impact of indi-
vidual assessment biases. The results of these ratings are shown in Table 1.

Table 1. Summary of the scoring results of the same group of volunteers for the same picture.

 Map–Photo Photo–Map
Method Believed it to be the true Believed it to be the true
CoGAN 16.65% 15.12%
SimGAN 16.68% 18.56%

BiGAN/ALI 18.28% 17.95%
L1+CNN 20.88% 20.24%
C3GAN 24.63% 22.90%

In the map-to-photo task, our C3GAN model was rated as producing the most real-
istic images, with 24.63% of volunteers believing the images were real. This was notably
higher than other methods, such as CoGAN (16.65%) and L1+CNN (20.88%). Similarly, in
the photo-to-map task, C3GAN again outperformed the others with a score of 22.90%,
compared to SimGAN’s 18.56% and L1+CNN’s 20.24%. These results demonstrate

Figure 17. Character picture before style migration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

Figure 17. Character picture before style migration.

Figure 18. Character picture after style transfer.

5.2. Visualization Comparison against SOTA Methods
This experiment aimed to evaluate the performance of different image translation

methods, particularly in converting aerial images into maps. To ensure the objectivity of
the volunteers’ evaluations, we designed a series of measures to minimize subjective bias.

First, the experiment selected multiple types of aerial images, converting them into
map images and then converting the maps back into photos. All generated images were
presented to the volunteers in random order to avoid any sequence effects that might in-
fluence the evaluation results. Additionally, each volunteer could only see one original
image and its generated counterpart at a time, preventing them from making comparative
judgments with other original or generated images. This design helps mitigate reference
bias in their evaluations.

The experiment was conducted on the AMT crowdsourcing platform, recruiting a
large number of volunteers. Each volunteer was asked to evaluate multiple pairs of im-
ages and identify the one they believed to be the most realistic. The volunteers’ ratings
were calculated using a weighted average approach, further reducing the impact of indi-
vidual assessment biases. The results of these ratings are shown in Table 1.

Table 1. Summary of the scoring results of the same group of volunteers for the same picture.

 Map–Photo Photo–Map
Method Believed it to be the true Believed it to be the true
CoGAN 16.65% 15.12%
SimGAN 16.68% 18.56%

BiGAN/ALI 18.28% 17.95%
L1+CNN 20.88% 20.24%
C3GAN 24.63% 22.90%

In the map-to-photo task, our C3GAN model was rated as producing the most real-
istic images, with 24.63% of volunteers believing the images were real. This was notably
higher than other methods, such as CoGAN (16.65%) and L1+CNN (20.88%). Similarly, in
the photo-to-map task, C3GAN again outperformed the others with a score of 22.90%,
compared to SimGAN’s 18.56% and L1+CNN’s 20.24%. These results demonstrate

Figure 18. Character picture after style transfer.

Appl. Sci. 2024, 14, 7637 14 of 18

5.2. Visualization Comparison against SOTA Methods

This experiment aimed to evaluate the performance of different image translation
methods, particularly in converting aerial images into maps. To ensure the objectivity of
the volunteers’ evaluations, we designed a series of measures to minimize subjective bias.

First, the experiment selected multiple types of aerial images, converting them into
map images and then converting the maps back into photos. All generated images were
presented to the volunteers in random order to avoid any sequence effects that might
influence the evaluation results. Additionally, each volunteer could only see one original
image and its generated counterpart at a time, preventing them from making comparative
judgments with other original or generated images. This design helps mitigate reference
bias in their evaluations.

The experiment was conducted on the AMT crowdsourcing platform, recruiting a
large number of volunteers. Each volunteer was asked to evaluate multiple pairs of images
and identify the one they believed to be the most realistic. The volunteers’ ratings were
calculated using a weighted average approach, further reducing the impact of individual
assessment biases. The results of these ratings are shown in Table 1.

Table 1. Summary of the scoring results of the same group of volunteers for the same picture.

Map–Photo Photo–Map

Method Believed it to be the true Believed it to be the true
CoGAN 16.65% 15.12%
SimGAN 16.68% 18.56%

BiGAN/ALI 18.28% 17.95%
L1+CNN 20.88% 20.24%
C3GAN 24.63% 22.90%

In the map-to-photo task, our C3GAN model was rated as producing the most realistic
images, with 24.63% of volunteers believing the images were real. This was notably higher
than other methods, such as CoGAN (16.65%) and L1+CNN (20.88%). Similarly, in the
photo-to-map task, C3GAN again outperformed the others with a score of 22.90%, com-
pared to SimGAN’s 18.56% and L1+CNN’s 20.24%. These results demonstrate C3GAN’s
superiority in generating realistic images, with a clear advantage of 4–8 percentage points
over the other methods.

5.3. Metric Comparison against SOTA Methods

In this section, we delve into the performance of various image style transfer systems,
focusing on key metrics such as Per-pixel Accuracy (PixelAcc), Per-class Accuracy (ClsAcc),
and Mean Intersection over Union (mIoU). These metrics offer a comprehensive view of
how well each model performs in translating image styles while preserving the semantic
integrity of the content.

Pixel Accuracy (PixelAccuracy). Pixel Accuracy measures the proportion of correctly
predicted pixels for each class over the total number of pixels. It is calculated using the
following formula:

PixelAcc = ∑i nii

∑i ti

Class Accuracy (ClsAcc). Class Accuracy provides the average accuracy across all
classes. It is calculated as follows:

ClsAcc =
PixelAcc

ncls

Appl. Sci. 2024, 14, 7637 15 of 18

Mean Intersection over Union (mIoU). Mean IoU is a widely used metric in image
segmentation that measures the overlap between the predicted segmentation and the
ground truth. It is calculated as follows:

mIoU =
1

ncls
∑

i

nii

ti + ∑j
(
nji − nii

)
where nii is the number of pixels predicted as class i that are actually class i, ti is the total
number of pixels in class i, ncls is the number of classes, and nji is the number of pixels
predicted as class i but are actually class j.

Our C3GAN model, enhanced with cyclic consistency loss, demonstrates clear superi-
ority across all evaluated metrics, highlighting its effectiveness in producing high-quality
image style transfers. As shown in Table 2, C3GAN achieved a remarkable PixelAcc of 0.76,
outperforming all other methods, including the well-established Pix2Pix baseline, which
scored 0.62. This substantial improvement in PixelAcc indicates that C3GAN excels in
accurately predicting the pixel-level content of the transferred images.

Table 2. Comparison of various image style transfer systems.

Method Per-Pixel ACC Per-Class ACC Class IOU

CoGAN 0.38 0.12 0.06
BiGAN/ALI 0.21 0.07 0.03

SimGAN 0.24 0.11 0.05
GAN 0.22 0.05 0.01
cGAN 0.57 0.22 0.16

L1+CNN 0.42 0.15 0.11
L1+GAN 0.58 0.19 0.14
L1+cGAN 0.60 0.22 0.16

Pix2Pix(baseline) 0.62 0.21 0.16
CycleGAN(ours) 0.76 0.28 0.19

When examining ClsAcc, which reflects the average accuracy across all classes, C3GAN
again takes the lead with a score of 0.28. This is a notable enhancement over other methods
like L1+cGAN and Pix2Pix, which scored 0.22 and 0.21, respectively. The improved ClsAcc
underscores C3GAN’s ability to maintain high accuracy across different classes within
the images, suggesting that the model is particularly effective at preserving class-specific
details during the style transfer process.

The mIoU metric, which measures the overlap between predicted segmentations and
ground truth, further demonstrates C3GAN’s strength. With an mIoU of 0.19, C3GAN
surpasses other approaches such as cGAN and L1+cGAN, both of which scored 0.16. This
improvement indicates that C3GAN not only preserves the overall structure of the images
but also ensures a better match between the generated content and the actual semantic
layout, leading to more coherent and contextually accurate style transfers.

The consistent performance across these metrics can be attributed to C3GAN’s use
of cyclic consistency, which effectively mitigates common issues in GAN-based models,
such as mode collapse and training instability. By ensuring that the generated image can be
accurately translated back to the original semantic tags, C3GAN achieves higher fidelity in
the style transfer process.

5.4. Time-Efficiency Comparison against SOTA Methods

In evaluating the performance of different GAN-based models for image style transfer,
inference time is a critical metric, especially for applications requiring real-time processing.
Table 3 presents the inference times (in milliseconds) for various models at an input–output
resolution of 512 × 512.

Appl. Sci. 2024, 14, 7637 16 of 18

Table 3. Time-efficiency comparison of various image style transfer methods.

Method Time(ms)

CoGAN 8260
BiGAN/ALI 7032

SimGAN 7900
cGAN 6260

L1+CNN 6840
L1+cGAN 6480

C3GAN(ours) 6240

Among the models compared, our proposed C3GAN demonstrates the fastest in-
ference time of 6240 ms, marginally outperforming other models, including cGAN and
L1 + cGAN, which exhibit times of 6260 ms and 6480 ms, respectively. Traditional mod-
els like CoGAN and SimGAN show significantly longer inference times, at 8260 ms and
7900 ms, respectively, reflecting their higher computational demand.

6. Conclusions

This study introduces the C3GAN model, which was designed to address the issues
of unstable training and limited pattern generation in traditional Generative Adversarial
Networks (GANs). The core principle of C3GAN is the incorporation of cyclic consistency
loss, which ensures the consistency of content during the image style transfer process while
maintaining the style information of the input images. By leveraging cyclic consistency,
C3GAN effectively stabilizes the training process and enhances the diversity and quality of
the generated images.

Experimental results demonstrate that C3GAN significantly outperforms existing
image style transfer models, such as CoGAN, BiGAN/ALI, and SimGAN, in terms of
Per-pixel Accuracy (ACC), Per-class Accuracy (ACC), and Mean Intersection over Union
(mIOU). These improvements highlight the effectiveness of cyclic consistency loss in
enhancing the performance of GAN-based image style transfer systems.

Additionally, we designed a comprehensive image style transfer system that integrates
the C3GAN model. This system, developed using Python, Flask 2.0.1, and MySQL 5.7,
provides a user-friendly interface for uploading and processing images, leveraging the
advanced capabilities of C3GAN to deliver superior style transfer results. This system not
only demonstrates the practical applications of our model but also sets a new standard for
future developments in the field of image style transfer.

Author Contributions: Conceptualization, Y.G. and J.P.; methodology, B.S. and T.Z.; software, J.P.
and T.Z.; validation, B.S. and J.P.; formal analysis, B.S. and Y.G.; investigation, T.Z. and B.S.; resources,
Y.G., J.P. and K.C.; data curation, Y.G., T.Z. and K.C.; writing—original draft preparation, J.P., B.S. and
K.C.; writing—review and editing, B.S. and J.P.; visualization, Y.G., B.S. and K.C.; supervision, J.P.,
T.Z. and K.C.; project administration, B.S. and Y.G.; funding acquisition, J.P., K.C., Y.G. and B.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the 2024 Macao Foundation Project (MF2342); the 2022
Research Topic of Online Open Course Guidance Committee of Undergraduate Universities in
Guangdong Province (2022ZXKC041; 2022ZXKC561); and the “Four New” Experimental Teaching
Curriculum Reform Project of Jinan University (SYJG202317).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study can be obtained
from the corresponding author upon request.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

Appl. Sci. 2024, 14, 7637 17 of 18

References
1. Chen, H.; Wang, Z.; Zhang, H.; Zuo, Z.; Li, A.; Xing, W.; Lu, D. Artistic style transfer with internal-external learning and

contrastive learning. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online,
6–14 December 2021; Volume 34, pp. 26561–26573.

2. Savardi, M.; Kovács, A.B.; Signoroni, A.; Benini, S. CineScale: A dataset of cinematic shot scale in movies. Data Brief 2021, 36,
107002. [CrossRef] [PubMed]

3. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680.

4. Goodfellow, I. NIPS 2016 tutorial: Generative adversarial networks. arXiv 2016, arXiv:1701.00160.
5. Fang, Z.; Shahbazi, M.; Probst, T.; Paudel, D.P.; Van Gool, L. Training dynamics aware neural network optimization with

stabilization. In Proceedings of the Asian Conference on Computer Vision, Macau, China, 4–8 December 2022; pp. 4276–4292.
6. Kunapinun, A.; Dailey, M.N.; Songsaeng, D.; Parnichkun, M.; Keatmanee, C.; Ekpanyapong, M. Improving GAN learning

dynamics for thyroid nodule segmentation. Ultrasound Med. Biol. 2023, 49, 416–430. [CrossRef] [PubMed]
7. Cheng, Y.C.; Lin, C.H.; Lee, H.Y.; Ren, J.; Tulyakov, S.; Yang, M.H. Inout: Diverse image outpainting via gan inversion. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 11431–11440.

8. Kossale, Y.; Airaj, M.; Darouichi, A. Mode collapse in generative adversarial networks: An overview. In Proceedings of the 2022
8th International Conference on Optimization and Applications (ICOA), Sestri Levante, Italy, 6–7 October 2022; pp. 1–6.

9. Ding, Z.; Jiang, S.; Zhao, J. Take a close look at mode collapse and vanishing gradient in GAN. In Proceedings of the 2022 IEEE
2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29
May 2022; pp. 597–602.

10. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

11. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. In Proceedings of
the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1060–1069.

12. Gadelha, M.; Maji, S.; Wang, R. 3D shape induction from 2D Views of multiple objects. arXiv 2016, arXiv:1612.05872.
13. Mathieu, M.; Couprie, C.; Lecun, Y. Deep multi-scale video prediction beyond mean square error. arXiv 2015, arXiv:1511.05440.
14. Vondrick, C.; Pirsiavash, H.; Torralba, A. Generating videos with scene dynamics. In Proceedings of the Conference on Neural

Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016; pp. 613–621.
15. Li, J.; Monroe, W.; Shi, T.; Ritter, A.; Jurafsky, D. Adversarial learning for neural dialogue generation. arXiv 2017, arXiv:1701.06547.
16. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence generative ad-versarial nets with policy gradient. arXiv 2016,

arXiv:1609.05473.
17. Ma, L.; Jia, X.; Sun, Q.; Schiele, B.; Tuytelaars, T.; Van Gool, L. Pose Guided Person Image Generation. In Proceedings of the 31st

Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 406–416.
18. Tang, H.; Xu, D.; Sebe, N.; Wang, Y. GANimation: Anatomically-aware Facial Animation from a Single Image. IEEE Trans. Pattern

Anal. Mach. Intell. 2020, 42, 528–541.
19. Qin, J.; Huang, Y.; Wen, W. Multi-scale feature fusion residual network for single image super-resolution. Neurocomputing 2020,

379, 334–342. [CrossRef]
20. Zhang, Y.; Wang, Y.; Fritts, J.E.; Zhuang, H. Conditional Generative Adversarial Network for Single Image Super-Resolution.

IEEE Trans. Image Process. 2021, 30, 4937–4949.
21. Tschannen, M.; Djolonga, J.; Ritter, M.; Mahendran, A.; Houlsby, N.; Gelly, S. On Mutual Information Maximization for

Representation Learning. In Proceedings of the 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, 30 April 2020.

22. Jeong, J.J.; Tariq, A.; Adejumo, T.; Trivedi, H.; Gichoya, J.W.; Banerjee, I. Systematic review of generative adversarial networks
(GANs) for medical image classification and segmentation. J. Digit. Imaging 2022, 35, 137–152. [CrossRef] [PubMed]

23. Adler, J.; Lunz, S. Banach wasserstein gan. In Proceedings of the 32nd Conference on Neural Information Processing Systems
(NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018.

24. Cao, J.; Mo, L.; Zhang, Y.; Jia, K.; Shen, C.; Tan, M. Multi-marginal wasserstein gan. In Proceedings of the 33rd Conference on
Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

25. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv 2018,
arXiv:1802.05957.

26. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of the
Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017.

27. Gur, S.; Benaim, S.; Wolf, L. Hierarchical patch vae-gan: Generating diverse videos from a single sample. In Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; Voume
33; pp. 16761–16772.

28. Pei, S.; Da Xu, R.Y.; Xiang, S.; Meng, G. Alleviating mode collapse in GAN via diversity penalty module. arXiv 2021,
arXiv:2108.02353.

https://doi.org/10.1016/j.dib.2021.107002
https://www.ncbi.nlm.nih.gov/pubmed/33997191
https://doi.org/10.1016/j.ultrasmedbio.2022.09.010
https://www.ncbi.nlm.nih.gov/pubmed/36424307
https://doi.org/10.1016/j.neucom.2019.10.076
https://doi.org/10.1007/s10278-021-00556-w
https://www.ncbi.nlm.nih.gov/pubmed/35022924

Appl. Sci. 2024, 14, 7637 18 of 18

29. Tran, N.T.; Bui, T.A.; Cheung, N.M. Improving GAN with neighbors embedding and gradient matching. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5191–5198.

30. Alotaibi, A. Deep generative adversarial networks for image-to-image translation: A review. Symmetry 2020, 12, 1705. [CrossRef]
31. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251.
32. Almahairi, A.; Rajeswar, S.; Sordoni, A.; Bachman, P.; Courville, A. Augmented CycleGAN: Learning Many-to-Many Mappings

from Unpaired Data. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden,
10–15 July 2018; pp. 300–309.

33. Habijan, M.; Gali, I. Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks. arXiv
2022. [CrossRef]

34. Huang, Z.; Zhang, J.; Zhang, Y.; Shan, H. DU-GAN: Generative adversarial networks with dual-domain U-Net-based discrimina-
tors for low-dose CT denoising. IEEE Trans. Instrum. Meas. 2021, 71, 4500512. [CrossRef]

35. Wen, L.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl.
2020, 32, 6111–6124. [CrossRef]

36. Ma, Y.; Zhao, C.; Li, X.; Basu, A. RAST: Restorable arbitrary style transfer via multi-restoration. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 331–340.

37. Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. In Proceedings of the 30th Conference on Neural Information
Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; Volume 29.

38. Ding, R.; Guo, G.; Yan, X.; Chen, B.; Liu, Z.; He, X. BiGAN: Collaborative filtering with bidirectional generative adversarial
networks. In Proceedings of the 2020 SIAM International Conference on Data Mining, Cincinnati, OH, USA, 7–9 May 2020;
pp. 82–90.

39. Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through
adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 2107–2116.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/sym12101705
https://doi.org/10.48550/arXiv.2205.09842
https://doi.org/10.1109/TIM.2021.3128703
https://doi.org/10.1007/s00521-019-04097-w

	Introduction
	Related Work
	Background of GAN Research
	Unstable Training Dynamics
	Generation of Sample Diversity

	Image Style Transfer Technology Based on GAN
	Image Style Transfer Based on CycleGAN
	Comparison and Improvement of an Image Style Transfer System Based on CycleGAN

	Method
	Overview
	Generator
	Discriminator
	Design of an Image Style Transfer System Based on C3GAN

	Experiment
	System Testing
	Visualization Comparison against SOTA Methods
	Metric Comparison against SOTA Methods
	Time-Efficiency Comparison against SOTA Methods

	Conclusions
	References

