Research on Stability Control System of Two-Wheel Heavy-Load Self-Balancing Vehicles in Complex Terrain
Abstract
:1. Introduction
- Design a heavy-duty two-wheeled self-balancing vehicle modeling method to make the center of mass calibration more accurate.
- Determine the friction coefficient through terrain recognition results to ensure the stability of the self-balancing vehicle and achieve precise control.
- Propose a lightweight terrain recognition method based on deep learning, introduce a coordinate attention mechanism to improve the network’s feature extraction capabilities for different types of terrain, and construct an auxiliary loss function to optimize the network.
2. Related Work
2.1. Wheel-Legged Balancing Robot
2.2. Terrain Recognition
2.3. Self-Balancing Control Strategy
3. Methods
3.1. Establishment and Analysis of Kinematic Models
3.2. Research on Control Strategy of Self-Balancing Two-Wheeled Vehicle
3.3. Terrain Recognition and Stability Analysis
3.3.1. LA-MobileNet Network
3.3.2. Stability Analysis
4. Experiments and Results
4.1. Terrain Recognition Results
4.2. Two-Wheeled Self-Balancing Vehicle Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Zhang, C.; Song, S.; Meng, M.Q.H. Dynamic height balance control for bipedal wheeled robot based on ros-gazebo. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 1875–1880. [Google Scholar]
- Xin, Y.; Rong, X.; Li, Y.; Li, B.; Chai, H. Movements and balance control of a wheel-leg robot based on uncertainty and disturbance estimation method. IEEE Access 2019, 7, 133265–133273. [Google Scholar] [CrossRef]
- Cui, L.; Wang, S.; Zhang, J.; Zhang, D.; Lai, J.; Zheng, Y.; Zhang, Z.; Jiang, Z.P. Learning-based balance control of wheel-legged robots. IEEE Robot. Autom. Lett. 2021, 6, 7667–7674. [Google Scholar] [CrossRef]
- Wang, S.; Cui, L.; Zhang, J.; Lai, J.; Zhang, D.; Chen, K.; Zheng, Y.; Zhang, Z.; Jiang, Z.P. Balance control of a novel wheel-legged robot: Design and experiments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 6782–6788. [Google Scholar]
- Zhang, C.; Liu, T.; Song, S.; Meng, M.Q.H. System design and balance control of a bipedal leg-wheeled robot. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 1869–1874. [Google Scholar]
- Zürn, J.; Burgard, W.; Valada, A. Self-Supervised Visual Terrain Classification from Unsupervised Acoustic Feature Learning. IEEE Trans. Robot. 2021, 37, 466–481. [Google Scholar] [CrossRef]
- Guan, T.; Kothandaraman, D.; Chandra, R.; Sathyamoorthy, A.J.; Weerakoon, K.; Manocha, D. GA-Nav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments. IEEE Robot. Autom. Lett. 2022, 7, 8138–8145. [Google Scholar] [CrossRef]
- Otsu, K.; Ono, M.; Fuchs, T.J.; Baldwin, I.; Kubota, T. Autonomous Terrain Classification with Co- and Self-Training Approach. IEEE Robot. Autom. Lett. 2016, 1, 814–819. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Zhu, D. Terrain feature-aware deep learning network for digital elevation model superresolution. Isprs J. Photogramm. Remote Sens. 2022, 189, 143–162. [Google Scholar] [CrossRef]
- Fei, S.; Chen, Y.; Tao, H.; Chen, H. Hexapod Robot Gait Switching Based on Different Wild Terrains. In Proceedings of the 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), Xiangtan, China, 12–14 May 2023; pp. 1325–1330. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Medeiros, V.S.; Jelavic, E.; Bjelonic, M.; Siegwart, R.; Meggiolaro, M.A.; Hutter, M. Trajectory Optimization for Wheeled-Legged Quadrupedal Robots Driving in Challenging Terrain. IEEE Robot. Autom. Lett. 2020, 5, 4172–4179. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Shi, D.; He, H.; Zheng, H. Posture Adjustment for a Wheel-Legged Robotic System Via Leg Force Control with Prescribed Transient Performance. IEEE Trans. Ind. Electron. 2023, 70, 12545–12554. [Google Scholar] [CrossRef]
- Zheng, C.; Sane, S.; Lee, K.; Kalyanram, V.; Lee, K. α-WaLTR: Adaptive Wheel-and-Leg Transformable Robot for Versatile Multiterrain Locomotion. IEEE Trans. Robot. 2023, 39, 941–958. [Google Scholar] [CrossRef]
- Li, J.; Qin, H.; Wang, J.; Li, J. OpenStreetMap-Based Autonomous Navigation for the Four Wheel-Legged Robot Via 3D-Lidar and CCD Camera. IEEE Trans. Ind. Electron. 2022, 69, 2708–2717. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Rong, X. The visual terrain classification algorithm based on fast neural networks and its application. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 5780–5784. [Google Scholar]
- Ebadi, F.; Norouzi, M. Road Terrain detection and Classification algorithm based on the Color Feature extraction. In Proceedings of the 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2017; pp. 139–146. [Google Scholar] [CrossRef]
- Liu, F.; Ma, X.; Li, X.; Song, R.; Tian, G.; Li, Y. Terrain recognition for outdoor mobile robots. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4257–4262. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Zhang, W.; He, X. Long-range terrain perception using convolutional neural networks. Neurocomputing 2018, 275, 781–787. [Google Scholar] [CrossRef]
- Liu, H.; Min, Q.; Sun, C.; Zhao, J.; Yang, S.; Hou, B.; Feng, J.; Jiao, L. Terrain classification with Polarimetric SAR based on Deep Sparse Filtering Network. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 64–67. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, W.; Zhang, Y. EfferDeepNet: An Efficient Semantic Segmentation Method for Outdoor Terrain. Machines 2023, 11, 256. [Google Scholar] [CrossRef]
- Song, P.; Ma, X.; Li, X.; Li, Y. Deep Residual Texture Network for Terrain Recognition. IEEE Access 2019, 7, 90152–90161. [Google Scholar] [CrossRef]
- Song, K.; Yang, H.; Yin, Z. Multi-Scale Boosting Feature Encoding Network for Texture Recognition. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4269–4282. [Google Scholar] [CrossRef]
- Kurobe, A.; Nakajima, Y.; Kitani, K.; Saito, H. Audio-Visual Self-Supervised Terrain Type Recognition for Ground Mobile Platforms. IEEE Access 2021, 9, 29970–29979. [Google Scholar] [CrossRef]
- Tran, D.T.; Hoang, N.M.; Loc, N.H.; Truong, Q.T.; Nha, N.T. A Fuzzy LQR PID Control for a Two-Legged Wheel Robot with Uncertainties and Variant Height. J. Robot. Control 2023, 4, 612–620. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Fan, L. Advanced Control of Wheeled Inverted Pendulum Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Merat, F. Introduction to robotics: Mechanics and control. IEEE J. Robot. Autom. 1987, 3, 166. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, H.; Dana, K. Deep Texture Manifold for Ground Terrain Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 558–567. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
i | ||||
---|---|---|---|---|
1 | 0 | 0 | ||
2 | 0 | 0 | ||
3 | 0 | |||
4 | 0 |
Method | Accuracy | Recall | F1-Score | Precision |
---|---|---|---|---|
VGG16 [9] | 0.8844 | 0.8036 | 0.7834 | 0.7896 |
Resnet50 [10] | 0.9539 | 0.9380 | 0.9413 | 0.9515 |
ShuffleNetV2 [14] | 0.9393 | 0.9040 | 0.9114 | 0.9397 |
MobileNetV3 [16] | 0.9335 | 0.8881 | 0.8941 | 0.9241 |
EfficientNet [37] | 0.9189 | 0.8733 | 0.8790 | 0.9407 |
InceptionV3 [38] | 0.9317 | 0.9519 | 0.9410 | 0.9395 |
DenseNet [11] | 0.9644 | 0.9380 | 0.9477 | 0.9673 |
LA-MobileNet | 0.9609 | 0.9515 | 0.9547 | 0.9602 |
Method | Accuracy | Recall | F1-Score | Precision |
---|---|---|---|---|
MobileNetV3 | 0.9335 | 0.8881 | 0.8941 | 0.9241 |
MobileNetV3+Auxloss | 0.9515 | 0.9386 | 0.9304 | 0.9439 |
MobileNetV3+CA | 0.9568 | 0.9274 | 0.9328 | 0.9537 |
LA-MobileNet | 0.9609 | 0.9515 | 0.9547 | 0.9602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Li, X. Research on Stability Control System of Two-Wheel Heavy-Load Self-Balancing Vehicles in Complex Terrain. Appl. Sci. 2024, 14, 7682. https://doi.org/10.3390/app14177682
Yan C, Li X. Research on Stability Control System of Two-Wheel Heavy-Load Self-Balancing Vehicles in Complex Terrain. Applied Sciences. 2024; 14(17):7682. https://doi.org/10.3390/app14177682
Chicago/Turabian StyleYan, Chunxiang, and Xiying Li. 2024. "Research on Stability Control System of Two-Wheel Heavy-Load Self-Balancing Vehicles in Complex Terrain" Applied Sciences 14, no. 17: 7682. https://doi.org/10.3390/app14177682
APA StyleYan, C., & Li, X. (2024). Research on Stability Control System of Two-Wheel Heavy-Load Self-Balancing Vehicles in Complex Terrain. Applied Sciences, 14(17), 7682. https://doi.org/10.3390/app14177682