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Abstract: Efficient diagnosis of apple diseases and pests is crucial to the healthy development
of the apple industry. However, the existing single-source image-based classification methods
have limitations due to the constraints of single-source input image information, resulting in low
classification accuracy and poor stability. Therefore, a classification method for apple disease and
pest areas based on multi-source image fusion is proposed in this paper. Firstly, RGB images and
multispectral images are obtained using drones to construct an apple diseases and pests canopy
multi-source image dataset. Secondly, a vegetation index selection method based on saliency attention
is proposed, which uses a multi-label ReliefF feature selection algorithm to obtain the importance
scores of vegetation indices, enabling the automatic selection of vegetation indices. Finally, an
apple disease and pest area multi-label classification model named AMMFNet is constructed, which
effectively combines the advantages of RGB and multispectral multi-source images, performs data-
level fusion of multi-source image data, and combines channel attention mechanisms to exploit
the complementary aspects between multi-source data. The experimental results demonstrated
that the proposed AMMFNet achieves a significant subset accuracy of 92.92%, a sample accuracy
of 85.43%, and an F1 value of 86.21% on the apple disease and pest multi-source image dataset,
representing improvements of 8.93% and 10.9% compared to prediction methods using only RGB or
multispectral images. The experimental results also proved that the proposed method can provide
technical support for the coarse-grained positioning of diseases and pests in apple orchards and has
good application potential in the apple planting industry.

Keywords: multi-source images; apple diseases and pests; vegetation indices; feature fusion;
deep learning

1. Introduction

Apples are one of the most nutritious fruits, rich in vitamins, micronutrients, and fiber.
China is the largest producer and exporter of apples [1], with apple production accounting
for one-fourth of the total fruit production in the country and exports accounting for
more than one-third of the total fruit exports [2]. Due to its advantageous geographical
environment and unique natural climate conditions, Shaanxi Province has been recognized
by the Food and Agriculture Organization of the United Nations as the best eugenic area
for apples in the world [3]. By the end of 2022, the apple planting area in Shaanxi Province
reached 6160 km2, accounting for 31.45% of the total apple planting area in the country.
However, the occurrence of diseases and pests can lead to a decrease in apple yield and
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quality, causing immeasurable losses [4]. The untimely and inaccurate discovery of diseases
and insect pests will lead to the misuse and abuse of pesticides, causing pollution and
seriously affecting the healthy and sustainable development of the apple industry in China.

When diseases and pests occur in apple orchards, the traditional solution is that fruit
growers inspect the orchard on foot or by vehicle, visually judge the types and degree of
infection of diseases and pests on fruit trees, and take management measures to curb the
development of diseases and pests and reduce the losses caused by them [5]. However, the
manual judgment method is time-consuming and laborious and often limited by the height
and shade of apple trees, resulting in a lack of sight and omission of diseases and insect
pests and a wrong judgment of the type and severity of apple diseases and insect pests.
Therefore, realizing fast and efficient diagnosis of apple pests and diseases is crucial to the
sustainable development of the apple industry.

Due to its excellent algorithmic performance, deep learning has been widely used in
various fields, especially in computer vision tasks. For example, deep learning models can
autonomously learn to understand image features at different levels, enabling the automated
diagnosis of various crop diseases and pests [6–13]. At the same time, many theories and
methods such as MLOps have been proposed to facilitate the development, deployment,
and maintenance of deep learning models, providing assistance for the application of deep
learning in agriculture [14]. The structure of convolutional neural networks (CNNs) is capable
of adapting to the extraction of spatial features from images and exhibits outstanding perfor-
mance in the fields of image processing and computer vision. Ahad et al. used a CNN to
extend transfer learning and ensemble models to identify nine common rice diseases with
98 percent accuracy [7]. Liu et al. designed the Inception structure for feature extraction
and used the dense connectivity strategy to realize feature propagation, which improved the
accuracy of grape leaf disease recognition [8]. Thakur et al. combined the advantages of a VGG
network and the Inception block to propose a lightweight CNN model, VGG-ICNN, which
can significantly reduce the model parameters while achieving 99.16% classification accuracy
on a variety of plant disease datasets. Singha Amit et al. proposed an end-to-end method
based on convolutional neural networks (CNNs) and combined it with MLOps to improve the
efficiency of development and deployment, realizing accurate classification of potato fusarium
wilt and providing a solution for agricultural disease management [15]. Additionally, CNN
networks can also be applied to object detection tasks, accurately locating the positions of
disease occurrences while recognizing the types of diseases in images. Xie et al. introduced
the Inception-v1 module, Inception-ResNet-v2 module, and Squeeze-and-Excitation module
to propose a DR-IACNN for six faster common grape leaf disease detection models, achieving
an average accuracy of 81.1% Mean (mAP) and a detection frame rate of 15.01 frames/second
(FPS) [9]. Zeng et al. refactored the lead backbone of YOLOv5 using the bneck module of
MobileNetV3 and reduced the size of the model through pruning and quantification methods
while achieving a detection efficiency of 26.5FPS and a 93% mAP, realizing the real-time
accurate detection of tomato diseases [10]. Tang et al. combined the efficient channel attention
(ECA) mechanism and the Transformer encoder to improve the YOLO model and proposed a
real-time detection model, Pest-YOLO, which achieved 73.4% on multi-class pest detection
tasks [11]. Liu et al. proposed an early apple leaf disease detection model RE-RCNN [13] by
introducing a small spot feature enhancement branch and an improved SCMLoss to balance
the differences between similar and large spots. However, in apple orchards, relying solely
on leaf-scale disease and pest identification and detection methods is limited by perspec-
tive and field of view, making it difficult to quickly capture disease and pest information
across the entire orchard. Thus, there is still a significant gap before practical application can
occur in production. In comparison, the canopy-scale approach has significant advantages.
Canopy-scale models can observe orchards from a broader perspective, capturing more spatial
information, which is beneficial for comprehensively understanding the overall health of the
orchard. Therefore, research on automatic classification methods for apple diseases and pest
areas using canopy-scale spectral images has great significance.
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As an important component of remote sensing tools, unmanned aerial vehicles (UAVs)
have the advantages of low manufacturing cost, portability, and ease of operation, bringing
new opportunities to the area of precision agriculture. They have a wide range of applica-
tions in crop growth monitoring [16–20], yield estimation [21–24], disease diagnosis [25–28],
and pesticide spraying [29–31]. Due to their close-to-earth flight characteristics, UAVs can
quickly and flexibly complete monitoring tasks and obtain data with ultra-high spatio-
temporal resolution under suitable weather conditions [32]. In addition, the multispectral
images collected by the multispectral cameras carried by UAVs can reflect specific pest
information in each band and then can be targeted for the detection of the corresponding
pest. For example, near-infrared spectroscopy images can detect corn pathogens [26] and
peanut bacterial wilt [33], visible light (red, green, and blue) images can detect wheat
leaf rust [34] and grape yellow flower disease [35], etc. These studies have confirmed the
feasibility of using UAVs equipped with multispectral cameras to diagnose various crop
diseases and pests. However, manually discovering and verifying the correlation between
multispectral data and crop diseases and pests is inefficient, requires high professional
expertise, and often lacks universality. Vegetation indices (VIs), due to their ability to
significantly reflect crop conditions and their ease of calculation, have received widespread
attention from researchers studying crop diseases and pests. Due to the differences in the
composition of background substances such as plants and soil, as well as the changes in the
material structure of plants in the process of crop erosion by diseases and insect pests, the
differences and changes in spectral wavelengths at the corresponding wavelengths will oc-
cur. Therefore, the VIs can be used to distinguish between soil background, healthy plants,
and infected plants. Mahmud et al. screened seven VIs related to apple fire blight through
the clustering method and proposed an image segmentation method for diagnosing apple
fire blight based on canopy multispectral images taken by drone [5]. Wu et al. proposed
a recognition method for the gray mold of strawberry leaves by exploring the band and
texture and calculated VIs of hyperspectral images of strawberry leaves, combining these
various characteristics with existing machine learning models [36]. Most existing research
establishes diagnostic methods based on the correlation between a single data source image
and crop diseases and pests. However, it is difficult to comprehensively capture the growth
status of vegetation solely through RGB images. At the same time, analyzing apple biomass
solely through VIs may ignore the appearance and texture changes in the pathological
process, resulting in the low accuracy of disease and insect pest diagnosis. Therefore, it is
urgent to diagnose apple diseases and pests by combining multi-source image data.

This study reports work to solve the problems of low diagnostic accuracy and poor
stability of the existing single-source image-based disease and pest regional classification
methods, focusing on the following issues:

• Firstly, the visible light and multispectral image data of an apple orchard canopy are
collected by UAV, and the multi-source multi-label apple canopy image dataset of
apple diseases and pests is constructed, which made up for the shortage of multi-label
classification training data in large-scale orchards.

• Secondly, a VI selection method based on the saliency attention module is proposed.
Aiming at the habitat information of apple plants, a feature selection method is used to
weight the selected 22 vegetation indices in order to improve the accuracy of regional
multi-classification.

• Finally, a multi-label classification model called AMMFNet, based on the joint pre-
diction of RGB and multispectral images, is constructed. It can effectively utilize the
complementary features of RGB images and VIs so that the model can automatically
pay attention to the features related to diseases and pests and reduce the impact of
redundancy in multi-source data on prediction performance.

In summary, this paper aims to design a deep learning model based on multi-source image
fusion by combining visible light and multispectral image data. This model aims to realize
multi-label classification of apple disease and insect pest regional images. It further seeks
to provide technical support for the fast and efficient coarse-grained positioning of apple
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disease and insect pest canopy areas in order to provide new ideas and methods for the
healthy development of the apple industry.

The structure of this paper is as follows: Section 2 introduces the detailed structure
of AMMFNet. Section 3 presents the experiment results and corresponding analysis.
Finally, Section 4 summarizes the research findings and outlines the corresponding research
contributions.

2. Materials and Methods
2.1. Diseases and Pests Multi-Source Image Dataset of Apple Canopy
2.1.1. Image Data Collection

The canopy multi-source image data of apple diseases and insect pests were collected
at the Baishui Apple Test Demonstration Station of Northwest A& F University in Tongji
Village, Du Kang Town, Baishui County, Weinan City, Shaanxi Province (Figure 1). Two
data acquisitions were conducted on the orchard on 11 June and 31 August 2023. The
data were captured at noon on sunny and windless days to minimize interference from
factors such as light intensity and angle on the prediction results. The data acquisition
equipment used was the DJI Phantom 4 Pro multispectral UAV. During the image capturing
process, the aircraft was manually controlled to designate a cruise area and encompass the
boundaries of the orchard to ensure data availability. The shooting angle of the camera was
−90° (directly downwards), the shooting height was 40FT, and the horizontal and lateral
overlap rate was 75%. And the UAV kept hovering during shooting. In addition, at the same
time as the UAV shooting, the areas where diseases and insect pests occur were manually
recorded or marked. The visible light and multispectral image information obtained by UAV
shooting is shown in Table 1.

Figure 1. Data collection locations: Baishui, Weinan, Shaanxi, China.

Table 1. The parameters of the multispectral image.

Camera Category Band Name Wavelength/nm Minimum Mean Maximum Standard Deviation Variance

RGB
Red 660 5.07 109.74 255.99 33.32 1110.50

Green 550 14.84 115.87 254.94 27.86 776.29
Blue 470 0.00 76.97 254.80 26.20 686.36

Multispectral

Rblue 450 0.20 2.42 87.85 1.07 1.15
Rgreen 560 0.62 12.18 359.16 4.85 23.56
Rred 650 0.21 11.01 457.65 7.49 56.06

Rrededge 730 1.27 35.67 397.91 11.09 122.95
Rnir 840 1.77 50.89 458.85 16.35 267.19
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2.1.2. Construction of Multi-Source Image Dataset of Apple Diseases and Pests Canopy

To optimize the canopy-scale apple diseases and pests regional classification model, a
self-built multi-source image pest dataset based on the RGB and multispectral canopy images
taken by UAV was constructed. After that, the original image was divided into area images that
had the same size, and each area image had multiple tags, which respectively indicated that the
area was suffering from one or more types of apple diseases and pests, healthy, or had a soil
background. The specific image preprocessing and labeling process is shown in Figure 2.

Figure 2. Image segmentation method and manual labeling process.

The original image needed radiation correction and geometric correction beforehand to
eliminate the remote sensing imaging error caused by environmental factors and was then
spliced to obtain a multispectral reflectance map. Angle correction and channel splicing
were also performed on the reflectance map. Then, manual annotation was performed on
each area image. Firstly, the entire orchard was divided into a grid-like coarse-grained area
shown in Figure 2, and the image was cut into an image block with a size of 256 × 256 pixels.
Secondly, under the guidance of experts in the field of plant protection, each individual
fruit tree was identified as the smallest unit to determine which type or types of diseases
and pests it was suffering from, or whether it was healthy, and these were recorded. Based
on this information, multi-label annotation was performed on the regional images. Finally,
a total of 1901 area images were obtained, including 5 common apple diseases and pests.
As shown in Figure 3, they are Aphids, Alternaria, mosaic, brown spot, and gray spot.
Furthermore, it was necessary to clean the original dataset to eliminate the impact of outliers
on the training effect. Traditional image data augmentation techniques such as flipping,
rotation, sharpening, and whitening were adopted to simulate the possible shooting effects
encountered in reality, enhance the robustness of the model, and prevent overfitting during
the model training process. Finally, the dataset was divided into a training set and testing
set in a ratio of 8:2, and the multi-source apple canopy image dataset of apple diseases
and pests with multi-label information was constructed. The total number of RGB and
multispectral images in the augmented data is 28,515, and the distribution information is
shown in Table 2.

Figure 3. Five common apple diseases and pests images.
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Table 2. Apple diseases and pests canopy multispectral image dataset.

Disease and Pest Train Dataset Val Dataset

Aphids 6012 1503
Alternaria 600 150

Mosaic 432 108
Brown spot 6156 1539
Gray spot 1116 279

Notes: This dataset is a multi-label dataset; thus, the number of images for each disease category may not be
consistent with the total number of images. The distribution of RGB and multispectral images is consistent.

2.2. Vegetation Indices Calculation and Selection
2.2.1. Vegetation Indices of Apple Diseases and Pests

Vegetation indices, as indices for analyzing crop growth in agricultural remote sensing,
can effectively analyze crop growth and provide accurate data support for agricultural
production. The vegetation information on remote sensing images is mainly reflected by
the spectral characteristics of and spectral differences in vegetation canopy leaves, and
there is a certain correlation between the spectra of different bands and different elements
or characteristic states of vegetation. Using multispectral remote sensing data, through
linear or nonlinearity combination operations, some values that have certain indicative
significance for vegetation growth and biomass are generated, which is the vegetation
index. The visible light spectrum is controlled by the chlorophyll content of the leaves,
the short-wave near-infrared spectrum is controlled by the intracellular structure of the
leaves, and the medium-wave near-infrared spectrum is controlled by the water content
in the leaves. Green light is effective for distinguishing plant categories, while red light
is effective for assessing vegetation coverage and plant growth conditions. Healthy green
vegetation has a large difference in reflectance between the near-infrared spectrum Rnir
and the red spectrum Rred, because Rred is strongly absorbed by green plants, while Rnir
exhibits high reflection and high transmission. When diseases and pests occur, bacteria
and pests have varying degrees of influence on the changes in the chlorophyll, biomass,
cellulose, and protein content in the invaded parts of the vegetation, which further affects
the spectral information observable in the canopy of apple trees. Therefore, a total of
22 types of relevant vegetation indices, such as NDVI, GNDVI, RDVI, TNDVI, SR, and
MTVI2, which are sensitive to vegetation and background differentiation, and MSAVI,
OSAVI, and DVI, which are related to various biomass calculations, were selected and
calculated. The calculation formulas for each vegetation index are shown in Table 3.

Table 3. Equations used for vegetation indices calculation.

Index Name Equation Introduction

NDVI [37] NDVI = Rnir−Rred
Rnir+Rred

Normalized Differential Vegetation Index: a commonly
used index to measure vegetation growth and coverage

TNDVI [38] TNDVI = SQRT( Rnir−Rred
Rnir+Rred

+ 0.5)
Transformational Normalized Difference Vegetation

Index: a modified NDVI more sensitive to soil
brightness for arid and semi-arid regions.

GNDVI [39] GNDVI = Rnir−Rgreen
Rnir+Rgreen

Green Normalized Difference Vegetation Index: an
index emphasizing the green vegetation component,

which is suitable for high-biomass areas

RENDVI [40] RENDVI = Rrededge−Rred
Rrededge+Rred

Modified Red Edge Normalized Difference Vegetation
Index: using red edge bands to be more sensitive to

vegetation cover and chlorophyll content
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Table 3. Cont.

Index Name Equation Introduction

MSAVI2 [41] MSAVI2= 1
2(2Rnir+1−SQRT((2Rnir+1)2−8(Rnir−Rred)))

Modified Soil-Adjusted Vegetation Index 2: a vegetation
index to reduce the influence of soil background, which

is suitable for bare soil and vegetation mixed areas

RVI [42] RVI = Rred
Rblue

Vegetation Index: the ratio of vegetation reflectance to
soil reflectance, reflecting the degree of vegetation

density

DVI [43] DVI = Rnir − Rred

Differential Vegetation Index: simple vegetation and
non-vegetation reflectance differences for rapid

assessment of vegetation cover

GDVI [44] DVI = Rnir − Rgreen

Global Differential Vegetation Index: considering
differences in multiple bands for the assessment of

complex vegetation environments

GRVI [44] GRVI = Rnir
Rgreen

Green-Red Vegetation Index: using the ratio of green
and red bands to reflect chlorophyll content

WDRVI [45] WDRVI = αRnir−Rred
αRnir+Rred

Weighted Differential Vegetation Index: adjusting
NDVI by weighting to be more sensitive to high

vegetation cover areas

MSAVI [41] MSAVI = Rnir−Rred
Rnir+Rred+L (1 + L)L

L = 1 − 2α × NDVI × WDVI WDVI = Rnir − αRred

Modified Soil-Adjusted Vegetation Index: an improved
version to reduce the influence of soil background on

vegetation index

OSAVI [46] OSAVI = Rnir−Rred
Rnir+Rred+0.16

Optimizing Soil Adjustment Vegetation Index: further
optimizing the correction of soil background by

introducing soil factors

GOSAVI [47] GOSAVI = Rnir−Rgreen
Rnir+Rgreen+0.16

Global Optimizing Soil Adjustment Vegetation Index:
an improved version of OSAVI considering the effects

of multiple bands to improve accuracy

NDRE [48] NDRE =
Rnir−Rrededge
Rnir+Rrededge

Normalization Differential Red Edge Index: using red
edge band, sensitive to vegetation structure and health

status

SR [49] SR = Rnir
Rrededge

Structure Ratio Index: using to reflect complex
trade-offs in vegetation canopy structure

NLI [50] NLI = R2
nir−Rred

R2
nir+Rred

Normalization of Leaf Canopy Index: using to assess
vegetation canopy health and chlorophyll content

RDVI [51] RDVI =
√

NDVI × (Rnir − Rred) =

√
(Rnir−Rred)2

(Rnir+Rred)

Re-normalized Difference Vegetation Index: improving
the accuracy of vegetation cover assessment by

optimizing weights

MSR [52] MSR =
Rnir
Rred

−1√
Rnir
Rred

+1

Multispectral Ratios: comprehensive assessment of
vegetation growth using ratios of multiple bands

NG [53] NG =
Rgreen

Rnir+Rred+Rgreen

Normalized Greenness: a vegetation index emphasizing
green band reflectance for assessing chlorophyll content

NR [53] NR = Rred
Rnir+Rred+Rgreen

Normalized Redness: a vegetation index based on red
band reflectance that reflects the health status of

vegetation

IPVI [54] IPVI = Rnir
RRnir+Rred

Infrared Vegetation Index: using the infrared band to
reflect the moisture content and health status of

vegetation

MTVI2 [55] MTVI2 =
1.5×(1.2(Rnir−Rgreen)−2.5(Rred−Rgreen))√

(2Rnir+1)2−(6Rnir−5
√

Rred)−0.5

Modified Triangular Vegetation Index 2: vegetation
index sensitive to chlorophyll content, suitable for

high-biomass areas

2.2.2. Vegetation Indices Selection Algorithm

We applied salient attention to calculate the importance weight of the 22 calculated
plant cover indices and significantly weighted the vegetation index calculated in the
previous section, aiming to make the model pay more attention to the vegetation index
that is beneficial to the classification of apple diseases and pests. The ReliefF algorithm for
multi-label feature selection (RF-ML) [56] is used to calculate the importance of different
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vegetation indices when calculating vegetation index weights. RF-ML is proposed for
multi-label tasks based on the ReliefF and RReliefF [57] algorithms. ReliefF is one of the
commonly used feature selection algorithms. By measuring the distance between adjacent
samples and the difference between features within a certain range, each feature is assigned
a specific weight. On this basis, RF-ML further considers the differences between multiple
labels, so it is more suitable for the multi-label classification task. The calculation formula
is shown in Equation (1).

W(Xj) =
WdYX(Xj)

WdY
−

Wdx(Xj)− WdYX(Xj)

c − WdY
(1)

where c is the total number of iterations, i.e., the total number of randomly selected samples.
For the j-th sample Xj, the weight WdX, the tag weight WdY, and the joint weight WdYX
calculation methods are shown in Equations (2)–(4).

WdX(Xj) =
c

∑
i=1

k

∑
z=1

di f f (Xj, Ei, EKz)× d(Ei, EKZ) (2)

WdY =
c

∑
i=1

k

∑
z=1

mld(Ei, EKz)× d(Ei, EKz) (3)

WdYX(Xj) =
c

∑
i=1

k

∑
z=1

mld(Ei, EKz)× di f f (Xj, Ei, EKz)× d(Ei, EKz) (4)

where k represents the number of neighbors, i.e., the total number of EK calculated for each
iteration. The d is used to represent the distance between two samples. The Euclidean dis-
tance between all the samples is calculated and the first k samples are taken as the neighbor
sample set EK of the current sample after sorting by distance. The di f f (Xj, Ei, EKz) means
the difference in characteristic Xj between sample Ei and EKz. The mld(El , EKz) uses the
Hamming Distance (HD) to measure the difference between sample q labeled Ya and Ybb,
and its calculation method is shown in Equation (5).

mld(Ei, EKz) = HD(Ya, Yb) =
|Ya ∪ Yb| − |Ya ∩ Yb|

q
(5)

The overall flow of the RF-ML algorithm is shown in Figure 4. First, the algorithm
selects c samples by random sampling, where c is the total number of samples, and k
neighbor weights are calculated for each sample. Second, the k nearest neighbor (KNN)
algorithm is used to calculate the k nearest neighbors for each sample. KNN is an instance-
based classification algorithm that determines sample categories by measuring the distance
between samples. We used the KNN algorithm to calculate the Euclidean distance between
samples and sort the first k nearest neighbor samples of the current sample. Based on
the characteristics and labels of these samples, the importance weights of M vegetation
indexes were calculated, respectively. Finally, the calculated weight was weighted to the
corresponding vegetation index by point multiplication through the softmax function to
realize the significant attention weighting.
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Figure 4. The algorithm flowchart of RF-ML.

2.3. Multi-Label Classification Model for Apple Disease and Pest Areas

The model structure of AMMFNet is shown in Figure 5. AMMFNet includes four
parts: the data input layer, data fusion layer, feature extraction layer, and classifier. The
data input layer preprocesses the multispectral image to obtain the vegetation indices. The
data fusion layer uses a data-level fusion method and channel attention to combine the
RGB image with the vegetation index. The feature extraction layer uses ResNet [58] to
extract the feature representation of the fusion data. Finally, multi-label prediction of apple
diseases and insect pests is carried out through the classifier.
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Figure 5. The overall structure of AMMFNet.

2.3.1. Data Input Layer

To solve the problem of the low accuracy of single-source images using the diseases
and pest classification algorithm, RGB and multispectral images were used as the data input
of the model. This enhances the expression of the data information by using complemen-
tary information from multi-source images. Because multispectral images can reflect the
physiological information of apples, to fully utilize the information in multispectral images,
AMMFNet adopts the vegetation index selection algorithm introduced in Section 2.1 to
process multispectral images into weighted vegetation indices. Furthermore, RGB images
focus on intuitive effects and contain richer texture information. Therefore, AMMFNet uses
RGB and multispectral images as multi-source inputs and transmits the processed RGB
images and vegetation indices to the data fusion layer to obtain a more comprehensive
representation of the characteristics of the apple orchard.

2.3.2. Data Fusion Layer

In the canopy images of apple diseases and pests, RGB images can reflect the texture
information of vegetation, while vegetation indices reflect the physiological characteristics
of vegetation. To make more comprehensive use of this information and fully excavate
the common features beneficial to the prediction of apple diseases and pests, the above
two kinds of images need to be fused.

In the multi-source image fusion task, according to different stages of fusion, the
fusion method can be divided into data-level fusion, feature-level fusion, and decision-
level fusion, which, respectively, correspond to the original data source stage, feature
representation stage, and decision-making stage. The RGB and multispectral images of the
canopy apple pests and diseases were spatially aligned due to simultaneous shooting at
the same time and position, thus ensuring the spatial consistency between the RGB image
and the calculated vegetation indices. Data-level fusion can ensure data integrity and help
reduce the situations in which details are ignored due to the macro features obtained from
feature extraction. This approach can mine the common features beneficial for disease and
pest prediction from both types of data more effectively and can comprehensively describe
the growth status and disease and pest conditions of apple trees. Therefore, the data-level
fusion method was adopted to combine the two kinds of image data. The process can be
expressed as Equation (6).

X = Cat(XRGB, Dot(XVIs, WRF−ML)) (6)
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wherein X is the fused data, XRGB is the RGB images, XVIs is the vegetation indices, and
WRF−ML is the importance weight calculated by RF-ML. Cat(·) represents the data tensor
stitching in the channel dimension, and Dot(·) represents the data tensor and weight vector
dot product in the channel dimension.

The fused data need to further integrate the texture information contained in the RGB
image and the physiological information reflected by the vegetation index. Each channel
of the fused data may carry features related to diseases and insect pests. For example, the
red channel of the RGB image highlights the edge and veins of the leaves, and the green
channel can better capture the changes in the surface texture and details of the leaves. The
vegetation index can calculate the correlation with diseases and pests through the feature
selection algorithm as shown in Figure 6. MTVI2, SR, and NLI can capture the changes
in apple leaves caused by the invasion of diseases and insect pests such as brown spot
or gray spot by monitoring physiological parameters such as vegetation growth status,
chlorophyll content, and coverage, which has strong sensitivity to diseases and insect pests.
Therefore, to reintegrate the pest and disease-sensitive channels in the data before inputting
into the model, channel attention was used to ensure that the model automatically focuses
on the feature channels sensitive to pests and diseases, fully explores the complementary
information among multi-source features, and enhances the final feature representation.
Channel attention [59] is a common attention mechanism in deep learning, aiming at
improving the model attention to different channels of the input data. By learning the
weights of each channel, the model can adaptively adjust the importance of the channels to
capture the features of the input data more effectively. Specifically, the channel attention
calculates the global average-pooling and global max-pooling of the input image, then
passes through a shared multi-layer perceptron (MLP), and finally adds the two output
results and calculates the channel attention score through the activate function. It then
multiplies the attention score with the original image tensor point to enhance the results.
The calculation is shown in Equation (7).

X′ = Dot(σ(MLP(MaxPool(X)) + MLP(AvgPool(X))), X) (7)

where X is the fused image after weighting, and σ(·) is the activation function. The Sigmoid
function is used as the activation function.

Figure 6. The weight of the vegetation indices calculated by RF-ML.
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2.3.3. Feature Extraction Layer

Apple canopy fusion data contain rich disease and pest information; therefore, ResNet
with its deep network structure advantages was adopted as the feature extraction network
of the model in dealing with multi-label classification tasks of apple pests and diseases. In
ResNet, the low-level convolution layer is mainly responsible for extracting the low-level
features such as the texture, edges and colors of the disease and pest images. As the depth
of the network increases, the residual blocks gradually extract more abstract mid-level
features, such as texture variations, morphological features, and structural information
from smaller regions, which helps the model understand more complex and similar types
of diseases and pests. In the deep convolutional layers, the network focuses more on global
context information, thereby extracting high-level semantic features, including information
such as the overall shape and distribution patterns of pest and disease regions, which
enables the model to better understand the image content. In general, the hierarchical
feature extraction mechanism of ResNet provides a strong feature learning ability for
diseases and pest classification tasks, which can effectively distinguish different types of
diseases and pests and improve the performance and generalization ability of the model.

2.3.4. Classifier

Apple diseases and pests often exhibit different geometric shapes and visual char-
acteristics, and there can be multiple types of pests and diseases present within a single
region. Therefore, it is difficult for a single classifier to capture the complex characteristics
of various types of diseases and pests at the same time, resulting in poor classification
performance. For the features output by the feature extraction network, AMMFNet uses
multiple binary classifiers to realize multi-label classification tasks. As shown in Figure 5,
six binary classifiers (background and five types of diseases and insect pests) were adopted.
Each binary classifier was specifically aimed at the classification of a type of disease or
pests, thus realizing the multi-label classification task. This enables the model to carry
out flexible learning according to the characteristics of different diseases and insect pests
and finally improves the recognition accuracy and robustness of multi-label diseases and
pests. Furthermore, the usage of multiple binary classifiers can also enhance the prediction
interpretability of the model, as the output of each binary classifier can directly reflect the
confidence level or probability of the model to the corresponding pest labels, which is
convenient to understand and explain the prediction process of the model.

3. Results and Discussion

Extensive experiments and comparative analyses were carried out on the constructed
multi-source apple canopy image dataset of apple diseases and pests to verify the effective-
ness of the proposed method.

3.1. Experimental Environment Configuration

In the experiment, the training and evaluation of all the models were conducted on a
setup comprising four NVIDIA Tesla T4 GPUs, with the server configuration parameters
detailed in Table 4. The optimization for all the models was carried out using the Stochastic
Gradient Descent (SGD) algorithm, with the momentum value set to 0.9. The batchsize
was 128, and weight decay was implemented at a rate of 5 × 10−5. The learning rate
adjustment was accomplished through a cosine annealing schedule, initialized at 1 × 10−2

and culminating at a terminal rate of 1 × 10−4. Pre-training for all the models was executed
on the CIFAR100 dataset, followed by a fine-tuning process over 100 epochs on a multi-
source image dataset depicting apple tree canopies afflicted with diseases and pests.
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Table 4. Experimental setup.

Configuration Item Value

CPU Intel(R) Xeon(R) CPU E5-2650 v3 (Intel, Santa
Clara, CA, USA)

GPU NVIDIA Tesla T4 16 GB (NVIDIA, Santa Clara,
CA, USA)

CUDA 11.3
Operating system Ubuntu 18.04.2 LTS (64-bit)

Memory 128 GB
Hard drive 2 TB

Deep learning framework PyTorch 1.11.0
Language Python3.8

3.2. Evaluation Metrics

To verify the validity of the model, the following evaluation metrics were used to
validate the model on the validation set. The evaluation metrics are divided into subset-
based accuracy subsetacc, as shown in Equation (8), and sample-based evaluation metrics,
accuracy, recall, precision, and F1 scores, calculated according to the Equations (9), (10),
(11), and (12), respectively.

Subsetacc(h) =
1
p

p

∑
i=q

[[h(xi) = Yi]] (8)

Accuracy(h) =
1
p

p

∑
i=1

|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

(9)

Recall(h) =
1
p

p

∑
i=1

|Yi ∩ h(xi)|
|Yi|

(10)

Precision(h) =
1
p

p

∑
i=1

|Yi ∩ h(xi)|
h(xi)|

(11)

F1(h) =
2 · recisionexam(h · Recallexam(h))
Precisionexam(h) + Recallexam(h)

(12)

where h(·) presents the model function, p is the total number of samples, Xi is the i-th
sample, and Yi is the corresponding label for the sample. The calculation is correct only if
the prediction result is exactly consistent with the sample multi-label.

3.2.1. Comparison of Model Classification Accuracy

To verify the effectiveness of AMMFNet in apple disease and pest diagnosis, under the
same experimental conditions, the constructed apple disease and insect pest multi-source
canopy image dataset was used to compare the experimental performance of AMMFNet
with other classification models. The experimental results show that the model accuracy
is the best when the AMMFNet feature extraction network uses ResNet-18. Therefore,
the feature extraction networks of AMMFNet in the comparative experiments all used
ResNet-18. The comparison models used in the experiment included the multi-category
classification model residual error attention network (Attention-92) [60] and NFNet [61]
and the multi-label classification model Query2Label [62]. All the comparison models used
a combination of single-source RGB images and RGB + VIs as inputs to verify the improved
performance of AMMFNet relative to single-source input prediction and the effectiveness
of multi-source feature fusion.

The experimental results are shown in Tables 5 and 6. The experimental results show
that the accuracy of AMMFNet proposed in this paper is significantly higher than that of
all the models using single-source input RGB images, and at the same time, it has lower
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computational overhead. AMMFNet performs significantly better in accuracy than models
that use only a single RGB input. When using RGB + VIs combined input, although it
should theoretically provide more abundant information, not all models can effectively
integrate these multi-source data. Among them, due to its excessive dependence on the
attention mechanism, the Attention-92 model pays too much attention to redundancy data,
which fail to effectively learn and integrate multi-source features, and its performance is
even lower than that of the model using only RGB input. At the same time, each attention
module of Attention-92 needs to perform calculations such as weight generation and feature
recalibration, which takes up a large amount of computational resources and memory,
resulting in a large forward pass size. The Query2Label model, due to the computational
complexity of its self-attention mechanism, has a significantly higher forward pass size
and parameter size than other models. In comparison, AMMFNet, with a smaller forward
pass and parameter size, not only excels among all the models using combined inputs but
also surpasses the high-performing NFNet model by 4.7% in subset accuracy. Although
Weight Standardization is used in NFNet to replace the traditional BN layer, due to the large
distribution differences between data channels, this standardization method has limited
effect in processing multi-source data. However, before feature extraction, AMMFNet
performs global feature selection on the input data, effectively enhancing the fusion of
multi-source data and achieving higher model performance. In addition, AMMFNet is also
more accurate than other models in predicting single apple diseases and insect pests. This
shows that the proposed model can effectively fuse multi-source data and improve the
accuracy of apple pest classification.

Table 5. Comparison of apple disease classification performance and computational complexity
among different classification models.

Input Image Model Subsetacc/% Accuracy/% Recall/% Precision/% F1/% Forward Pass Size (MB) Params Size (MB)

RGB
Attention-92 39.19 61.29 89.71 61.30 72.81 723.53 192.37

NFNet 80.04 75.61 76.62 77.11 76.92 199.65 161.76
Query2Label 79.71 77.95 80.14 79.91 79.95 924.47 367.24

RGB + VIs

Attention-92 35.49 59.51 88.80 59.73 71.36 723.53 192.64
NFNet 88.18 82.00 82.69 83.60 83.11 199.65 162.03

Query2Label 86.16 81.49 82.89 83.22 83.10 924.47 367.51
AMMFNet 92.92 85.43 85.89 86.54 86.21 192.75 164.63

The bold content is the column optimal value.

Table 6. Comparison of single-class disease and pest classification accuracy (%) among different
classification models.

Input Image Model Aphid Alternaria Mosaic Brown Spot Gray Spot

RGB
Attention-92 68.51 87.31 99.60 72.02 86.33

NFNet 94.91 97.92 100.0 89.60 96.82
Query2Label 94.95 97.31 100.0 90.59 96.45

RGB + VIs

Attention-92 73.82 84.54 99.41 72.33 81.60
NFNet 96.50 98.59 100.0 95.11 97.67

Query2Label 95.81 98.33 99.90 93.86 97.17
AMMFNet 97.54 99.01 100.0 97.41 98.47

The bold content is the column optimal value.

3.2.2. Effectiveness Analysis of Multi-Source Fusion Prediction Model

This section focuses on validating the effectiveness of AMMFNet by comparing its
prediction accuracy with models trained using three different data sources: visible light im-
ages, multispectral images, and calculated vegetation indices. Additionally, this experiment
also evaluates the classification accuracy of the AMMFNet model for individual categories
to verify its effectiveness in identifying specific apple pest and disease categories.
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As shown in Table 7, the RGB, MS, and VIs in the table represent the RGB image,
the multispectral image, and the calculated vegetation indices, respectively, as the input
model recognition result obtained. The experiments show that AMMFNet is superior
to single-source input on ResNet18, ResNet34, and ResNet50, because RGB images and
multispectral images carry different features, and these features are all conducive to pest
classification. AMMFNet effectively uses the complementary information in the RGB and
multispectral images taken by the UAV to form an effective feature representation. Among
them, the recognition model using ResNet18 as the feature extraction network performed
best, achieving a 92.92% subset accuracy, 85.43% sample accuracy, and 86.21% F1 score.
This is because both the vegetation indices themselves and the multi-source data after
feature selection and fusion already have more significant pest-sensitive characteristics.
Compared with the deeper network structure, ResNet18 can converge faster and learn
these significant data characteristics, but it will not be disturbed by noise in the high feature
dimension. In addition, the subset accuracy of AMMFNet exceeds the subset accuracy of
single-source RGB images, multispectral images, and vegetation indices.

The accuracy rate of AMMFNet for five types of apple diseases and insect pests is
shown in Table 8. It can be found that the accuracy rate of AMMFNet for each type of
disease and insect pest is higher than 97%. Among them, the recall rate of brown spot
disease is the highest, reaching 95.6%. The recall rate of mosaic disease is the lowest. The
above experimental results are related to the distribution of the dataset, and the number of
positive samples is small. These experimental results prove that the proposed method can
effectively combine the characteristics of RGB images and vegetation indices to learn the
characteristics of various diseases and pests and accurately identify five common apple
diseases and insect pests.

Table 7. Comparison of classification results between AMMFNet and single-source input model.

Model Input Subsetacc/% Accuracy/% Recall/% Precision/% F1/%

ResNet18

RGB 83.99 78.26 78.53 79.92 79.22
MS 82.02 76.34 77.69 77.59 77.64
VIs 87.58 80.71 80.46 81.77 81.11

AMMFNet 92.92 85.43 85.89 86.54 86.21

ResNet34

RGB 82.38 77.64 78.06 79.83 78.93
MS 83.10 77.37 78.04 79.38 78.70
VIs 86.20 80.15 80.95 81.93 81.44

AMMFNet 87.02 81.88 82.71 83.99 83.34

ResNet50

RGB 83.83 78.56 79.56 81.04 80.29
MS 85.80 79.51 80.10 81.20 80.72
VIs 86.40 80.28 80.97 82.09 81.53

AMMFNet 87.38 81.80 82.61 83.65 83.13

The bold content is the column optimal value.

Table 8. Single-class apple disease and pest classification results of AMMFNet.

Evaluation Metrics Aphid Alternaria Mosaic Brown Spot Gray Spot

Accuracy/% 97.54 99.01 100.0 97.41 98.47
Recall/% 79.63 78.75 66.77 95.64 86.09

Precision/% 94.02 95.91 100.0 97.49 85.64
The bold content is the column optimal value.

3.2.3. Ablation Experiment

To further verify the effectiveness of AMMFNet, the ablation experiments were de-
signed to verify the effectiveness of each part of the model. The experimental results are
shown in Table 9. When the RGB image is used as the input reference model, the vegeta-
tion indices can reflect more sufficient physiological information of apple plants than the
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RGB image. Therefore, the subset accuracy rate predicted by the 22 vegetation indices is
3.59% higher than the RGB single-source image input result, and the improvement is the
largest. And the use of the RF-ML algorithm can further improve the accuracy of model
recognition. And RGB images can compensate for the local texture details that vegetation
indices lack. Therefore, fusing these two types of images improves the subset accuracy by
6.21% compared to the baseline model. In addition, for two kinds of multi-source images,
using data-level feature fusion can improve the quality of feature representation, while
using feature-level fusion will cause the lack of detailed features of the diseases and insect
pests, which will reduce the accuracy of the model, as shown in Table 10. After feature
fusion, channel attention is used to re-weight the features, which further improves the
classification accuracy by 2.72%. Ultimately, AMMFNet achieves a total improvement of
8.93% in subset accuracy compared to the baseline model.

Table 9. Ablation experiment.

Model RGB VIs RF-ML Channel
Attention

Data-Level
Fusion Subsetacc/%

ResNet18

✓ 83.99
✓ 87.58

✓ ✓ 86.40
✓ ✓ 88.14

✓ ✓ ✓ ✓ 90.20
✓ ✓ ✓ ✓ ✓ 92.92

✓represents the items retained in the ablation experiment.

Table 10. Classification results among RGB, multispectral (MS), and vegetation indices (VIs).

Model Input Image Subsetacc/% Accuracy/% Recall/% Precision/% F1/%

ResNet18
RGB 83.99 78.26 78.53 79.92 79.22
MS 82.02 76.34 77.69 77.59 77.64
VIs 87.58 80.71 82.05 81.97 81.90

ResNet34
RGB 82.38 77.64 78.06 79.83 78.93
MS 83.10 77.37 78.04 79.38 78.70
VIs 86.20 80.15 80.95 81.93 81.44

ResNet50
RGB 83.83 78.56 79.56 81.04 80.29
MS 85.80 79.51 80.10 81.20 80.72
VIs 86.40 80.28 80.97 82.09 81.53

ResNet101
RGB 86.61 81.14 81.85 83.01 82.50
MS 87.32 80.67 81.43 82.05 81.74
VIs 89.26 82.29 82.83 83.61 83.22

The bold content is the column optimal value.

3.2.4. Impact of Input Data on Model Performance

To verify the effectiveness of the calculated vegetation indices combination, this
experiment trained ResNet series models on RGB, multispectral, and vegetation indices
datasets, respectively. The universal effectiveness of the selected vegetation indices was
validated through ResNet18, ResNet34, ResNet50, and ResNet101.

The experimental results are shown in Table 10. The results show that the accuracy of
the proposed vegetation indices combination on the four models is higher than that of the
RGB and multispectral images. Especially when the model structure is simpler, such as
ResNet18, the vegetation indices combination has greater performance improvement. The
reason is that a simpler model structure often implies fewer parameters and less computa-
tional load. Therefore, the model can quickly learn effective feature representations from
the vegetation indices representing the physiological information of apples. In contrast,
complex models, due to their stronger learning capabilities, may fit unnecessary noise.
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Hence, vegetation indices are more effective on shallower networks. Compared with the
model trained with RGB images, the accuracy of the subset of ResNet18 trained with
vegetation indices increased by 3.59%, and the F1-score increased by 2.68%.

3.2.5. Impact of RF-ML Algorithm on Model Accuracy

The ReliefF algorithm controls the size of the dataset it adapts to by selecting the
number of neighbors k. A larger value means that more distant neighbors can influence the
weight results, which improves the robustness and accuracy of the algorithm, but it also
means that the algorithm will be subject to more noise interference. The corresponding
weights are calculated by the RF-ML suitable for multi-label classification tasks, and the
influence of the calculated weights combined with the vegetation indices on the accuracy
of the model when k = 5, 10, 20 is compared. As shown in Table 11, when k = 5, the RF-ML
algorithm performs best, and the subset accuracy on ResNet18 is 0.61% higher than the
unweighting vegetation indices. This shows that when the number of adjacent samples is
5, the importance weight calculated by RF-ML can better fit the sample distribution of the
dataset and help correct the focus of attention of the model. However, with the increase
in the k value, the algorithm will produce overfitting, which will lead to a decrease in the
accuracy of the model. Figure 6 shows the importance of the combination of the vegetation
index calculated by RF-ML at k = 5 weight.

Table 11. Classification results of the model guided by the RF-ML algorithm under different k values.

Value Subsetacc/% Accuracy/% Recall/% Precision/% F1/%

k = 5 88.14 81.13 81.84 82.40 82.22
k = 10 85.64 79.06 80.08 80.34 80.21
k = 20 86.89 80.05 81.33 81.24 81.28

The bold content is the column optimal value.

3.2.6. Influence of Multi-Source Data Fusion Method on Model Accuracy

RGB images can make up for the missing texture features of pests and diseases in
vegetation index features. Therefore, the method of RGB image fusion vegetation indices
is adopted to further improve the precision of the model. Data-level fusion and feature-
level fusion are, respectively, used in model training to explore appropriate multi-source
data fusion methods. Data-level fusion refers to aligning the raw data of RGB images
and vegetation indices and then concatenating them in the channel dimension to form
25-dimensional channel data for model prediction. Feature-level fusion, on the other hand,
involves extracting features from RGB images and vegetation indices separately through a
backbone network, concatenating these features in the channel dimension, and then sending
them into a classifier for multi-label classification results. In the experiment, ResNet18
was adopted as the feature extraction network of AMMFNet. As shown in Table 12, the
experimental results show that the data-level fusion is more suitable for the fusion of the
RGB image and the vegetation indices. Because the vegetation indices are calculated by the
meridian linearity and nonlinearity of the multispectral image, and the multispectral image
is taken at the same time as the RGB image, the two positions are aligned and have a high
degree of spatial consistency. Therefore, the fusion of RGB images and vegetation indices
at the data level can ensure that the two data form a more consistent data expression form
so as to promote the model to better capture the detailed features in the two. While the
features extracted by the network are independent feature expressions of the two data types,
they have become advanced semantics that can be classified. At this point, performing
feature fusion between the two semantics is equivalent to introducing noise into the clear
semantic information, which interferes with the original feature representation and results
in classification performance that is even lower than that of single-source input.
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Table 12. Classification results of the model under different fusion methods.

Method Model Subsetacc/% Accuracy/% Recall/% Precision/% F1/%

Data-level
fusion ResNet18 90.02 83.60 84.51 84.90 84.71

Feature-level
fusion ResNet18 85.64 79.06 80.08 80.34 80.21

The bold content is the column optimal value.

3.2.7. Influence of Noise on Model Performance

To further evaluate the performance of the proposed method, AMMFNet was tested
using a validation set with noise added to test the recognition ability of the model in the
actual situation when the image quality is impaired.

Specifically, Gaussian noise and salt and pepper noise are added to the RGB and
multispectral images in the verification set. Gaussian noise is a noise whose probability
density function obeys normal distribution, which can simulate the random interference
that image sensors may receive. Salt and pepper noise is formed by black and white dots
randomly appearing on the image and is often used to simulate possible errors during data
transmission. The standard deviation of Gaussian noise is set to 0.3, and the percentage of
salt and pepper noise is set to 0.1. The experimental results are shown in Table 13.

Table 13. Single-class apple disease and pest classification results of AMMFNet under noise interference.

Evaluation Metrics Aphid Alternaria Mosaic Brown Spot Gray Spot

Accuracy/% 94.83 97.41 99.98 93.94 96.21
Recall/% 73.33 59.72 60.83 91.75 76.32

Precision/% 91.15 93.90 94.68 87.02 92.62
The bold content is the row optimal value.

Comparing the performance metrics on the original validation set (Table 8) and the
noisy validation set (Table 13), although the addition of noise has had some impact on
the model’s performance, the changes in the various evaluation metrics of the model are
relatively small. Especially, it still maintains a high accuracy rate. Therefore, the proposed
model has good stability and robustness.

3.2.8. Main Contributions of This Work

To further illustrate the advancements made in this study, we provide a comprehensive
comparison between the key contributions of our work and those reported in previous
studies. Table 14 summarizes the main differences and advancements achieved in our study.

Table 14. Contribution comparison.

Contribution Aspect This Work Literature References

Methodology

Developed a multi-source
image fusion approach
combining RGB and
multispectral images.

Utilized single-source RGB
images or multispectral
images for classification [4,17].

Feature selection

Implemented global feature
selection using ReliefF
algorithm to enhance
multi-source data fusion.

Did not include feature
selection steps or use artificial
feature screening [5,17].
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Table 14. Cont.

Contribution Aspect This Work Literature References

Attention mechanism

Applied channel attention to
re-weight fused features,
improving model
performance by 2.72%.

Used different attention
mechanisms [5], which did
not achieve comparable
improvements.

Input data combination

Evaluated the effectiveness of
different input data
combinations on various
model architectures,
demonstrating the superiority
of the vegetation indices
combination.

Compared single-source input
methods without exploring
the impact of different input
data combinations on model
performance [4,5,17].

Accuracy

Achieved a subset accuracy of
92.92%, outperforming
single-source methods by
8.93% for RGB and 10.9% for
multispectral images.

Reported subset accuracies of
83.99% for RGB images and
82.02% for multispectral
images [5].

This comprehensive comparison highlights the advances and innovations introduced
in our research, highlighting the effectiveness of our multi-source image fusion method
and the significant improvements made in accuracy.

4. Conclusions

A regional classification method of apple diseases and insect pests based on multi-
source image fusion is proposed. Firstly, the RGB images and multispectral canopy images
of an apple orchard are collected by UAV. After regional division and labeling, a multi-
source apply canopy image dataset of diseases and pests is constructed. Secondly, a
vegetation indices selection method based on salient attention is proposed, which calculates
the vegetation index with a strong correlation between the physiological information of
22 apples and optimizes the selection of the vegetation indices. Finally, a multi-label classi-
fication model of the apple disease and pest areas based on RGB and multispectral image
fusion is proposed, which can effectively combine the texture information of RGB images
and the apple physiological information reflected by multispectral images. The experiments
show that the subset accuracy of the model proposed in this paper, tested on the apple pest
and disease canopy multi-source image dataset, is 8.93% and 10.9% higher than prediction
methods based on single-source RGB images or multispectral images, reaching 93.92%. It
is worth mentioning that the classification accuracy for individual apple pest and disease
regions is higher than 97%. Therefore, this model meets the accuracy requirements of
practical production, providing technical support for coarse-grained localization of apple
pests and diseases and ensuring the healthy development of the apple industry. At the
same time, in order to extend the proposed method to other plant species to improve the
universality of disease and insect pest diagnosis, how to develop spectral feature extraction
methods suitable for more plant species to avoid differences in spectral features between
species, data quality and quantity, and the influence of changes in spectral characteristics
under different conditions is an important direction for further research in the future.
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