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Abstract: The Internet of Things (IoT) is witnessing a surge in sensor-equipped devices. The data
generated by these IoT devices serve as a critical foundation for informed decision-making, real-
time insights, and innovative solutions across various applications in everyday life. However, data
reliability is often compromised due to the vulnerability of sensors to faults arising from harsh
operational conditions that can adversely affect the subsequent operations that depend on the
collected data. Hence, the identification of anomalies within sensor-derived data holds significant
importance in the IoT context. This article proposes a sensor fault detection method using a Long
Short-Term Memory autoencoder (LSTM-AE). The AE, trained on normal sensor data, predicts a
20-step window, generating three statistical features via SHapley Additive exPlanations from the
estimated steps. These features aid in determining potential faults in the predicted steps using a
machine learning classifier. A secondary classifier identifies the type of fault in the sensor signal.
Experimentation on two sensor datasets showcases the method’s functionality, achieving fault
detection accuracies of approximately 93% and 97%. It is possible to attain a perfect fault classification
performance by slightly modifying the feature calculation approach. In a univariate prediction
scenario, our proposed approach demonstrates good fault detection and classification performance.

Keywords: sensor faults; LSTM autoencoder; SHAP; multi-step prediction

1. Introduction

The Internet of Things (IoT) is a marvelous integration of several technologies that
enable interconnectivity among everyday objects and devices, allowing data and intelli-
gence sharing among them. In recent times, the applications of the Internet of Things (IoT)
have expanded rapidly in diversified domains. The IoT is providing more flexible and
automated patient monitoring in critical scenarios [1,2]. In agriculture, IoT-enabled systems
can perform efficient irrigation [3], plant disease detection and control [4], and monitoring
of soil and environment states [5,6]. In power systems, the IoT can ensure reliable operation
of smart grids [7], analysis of electricity demand [8], and anomaly detection in grids [9].
IoT systems can bring us a smarter environment for living by automating lighting systems,
waste disposal and management; parking allocation utilizing electric vehicles; and home
automation [10,11].

At its core, there are several underlying components, such as sensors, micro-controllers
and embedded systems, wireless networking, data analytics, and edge computing, that
bring the IoT into its functional existence. Among the core elements, sensors and sensor
networks play a pivotal role because they are the means to interact with the physical
world. The majority of IoT applications rely on data-driven decision-making, analysis,
and prediction based on the data collected by sensors. Thus, the reliability of sensor data
is of paramount importance in IoT applications. Depending on the specific application,
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sensors can be deployed in rugged environments like industries or in open environments
with extreme weather conditions [12]. Aside from the environmental conditions, a sensor
device can deviate from its normal functionality because of prolonged operation, hardware
malfunctions, and improper installation. A sensor is considered faulty when the data stream
generated demonstrates a significant deviation from its specified range. Such deviations
are deemed anomalous or faulty [13]. In a broad context, sensors can be affected by two
types of fault: incipient and abrupt [14]. Incipient faults are gradual in nature, develop
slowly over time, and are hard to detect immediately. On the other hand, abrupt faults
appear suddenly in sensor readings and are marked by a rapid and sometimes significant
deviation from the normal readings. An elaborate classification is provided in Figure 1.

Figure 1. Sensor fault types.

In the current data-driven world, sensor fault detection and classification tasks carry
great significance. In critical systems like those in the automotive and aerospace industries,
undetected faulty sensors can compromise the safety and reliability of a system and could
lead to catastrophic accidents. The timely detection of a sensor fault can prevent unwanted
downtime and unnecessary maintenance, and ensuring sensor data integrity helps make
data-based control and decision-making more accurate. Wu and Zhao [15] classified sensor
fault analysis into three broad categories: knowledge-based, model-based, and data-driven
approaches. Among these approaches, data-driven techniques are now widely explored by
the research community due to the availability of unprecedented amounts of data generated
from the integration of the IoT. The improvements in sensor technology, networking, and
efficient computation power have given the data-driven sensor fault the upper hand over
the other approaches. Several popular machine learning algorithms are utilized in sensor
fault classification and analysis tasks. The support vector machine (SVM) [16–18], K-nearest
neighbor (KNN), random forest (RF)-based classifiers, Gaussian Naive Bayes (GNB), and
Artificial Neural Networks (ANNs) have demonstrated compelling results in sensor fault
classification [19–21].

Several deep convolutional neural network (CNN) architectures are also employed
for this purpose. As two-dimensional CNN networks require image data for processing,
when CNNs are used for sensor fault classification, the one-dimensional sensor signals
are converted to images using methods like Short-Time Fourier Transform (STFT) [22],
scalograms [23], and wavelet transforms [24]. As sensor recordings are sequential in nature,
recurrent neural networks (RNNs) are more suitable for them as these deep networks
have the ability to capture long-term sequential dependencies and can handle variable
sequence lengths.

Although machine learning (ML) algorithms such as SVM, RF, KNN, and others have
been suggested for sensor fault analysis, they come with certain limitations. ML algorithms
require careful feature extraction from raw sensor data, which can be both challenging
and time-consuming. Additionally, ML algorithms do not inherently capture the temporal
dependencies in time series data, which is crucial in sensor fault detection, where under-
standing the relationship between data points as they change during fault occurrences is
essential. In real-world scenarios, faulty instances in sensor signals are expected to occur
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less frequently, leading to an imbalance between faulty and non-faulty classes in practical
datasets. Unfortunately, ML models often struggle with imbalanced data.

In contrast, deep learning (DL) models have the capability to automatically extract
features, and models such as RNN, LSTM, and TCN can capture the temporal dependencies
in time series data. These models are also suitable for multivariate time series scenarios.
However, deep learning models require considerable computational resources, and power
consumption is a significant concern in real-world deployments.

Both ML and DL approaches have their strengths and weaknesses in developing a
methodology for sensor fault detection and classification. Given the nature of the data,
DL models with recurrent structures are well suited for capturing temporal dependencies.
However, for simpler implementations, ML models are more desirable. In this work, we
aim to combine both approaches to leverage their strengths while keeping the overall
approach less complex by maintaining a simple DL model architecture and considering a
small number of features necessary for an ML model.

It is observed in the literature that when recurrent models are used for fault or abnor-
mality detection in time series, multivariate data are typically considered. However, for
fault detection and classification in individual sensors deployed in real environments, a
univariate approach is often more practical. Multi-step prediction is a relatively newer
concept for time-series-related tasks. While several multi-step prediction models have been
proposed for other applications, their use in sensor fault analysis has not been widely ex-
plored. Therefore, in this work, we investigate how this approach can be applied to sensor
fault detection and classification. The major contributions of this paper are as follows.

• A Long Short-Term Memory autoencoder (LSTM AE)-based univariate multi-step-
ahead forecasting approach is proposed for sensor fault detection and classification.
This method uses only normal sensor data for training.

• A feature extraction step is integrated into the prediction model to enable the detection
of multiple types of faults. Additionally, three influential statistical features are
reported that better represent bias, drift, and stuck faults in sensors.

• Results obtained from two different datasets are presented to demonstrate the func-
tionality of the proposed approach.

This sensor fault-detection and classification scheme can be integrated into real-world
systems where sensing activity is critical, such as in IoT networks. The inclusion of
sensor fault analysis is essential for ensuring data reliability. In scenarios like smart
cities, smart agriculture, smart grids, smart environmental monitoring, smart homes and
healthcare, and smart industry, many applications today heavily depend on sensor data
for effective analysis and informed, intelligent decision-making. Therefore, to ensure the
credibility of the sensed data, implementing sensor fault analysis approaches is crucial in
real-world applications.

The remainder of this paper is organized as follows. A brief summary of recent
research focused on sensor fault analysis using an RNN and similar models is presented in
Section 2. The proposed methodology is described extensively in Section 3. Experimental
results and discussions are presented in Section 4, and Section 5 concludes the paper.

2. Related Works

For fault detection in systems, components, or sensors, autoencoder-based models are
used in a wide range of applications such as bearing fault classification [25], smart grids [26],
industrial processes [27], and healthcare [28]. Based on the number of features utilized in
forecasting and the number of features in the output, time series forecasting tasks can be
grouped into three categories: univariate, covariate, and multivariate. Considering the
forecasting window, a time series forecasting problem can be categorized into single-step
or multi-step scenarios. A single-step forecasting model predicts only a single time step in
the future, whereas, in a multi-step scenario, the forecasting horizon comprises multiple
time steps as depicted in Figure 2.



Appl. Sci. 2024, 14, 7717 4 of 23

Figure 2. Univariate multi-step forecasting.

Both multivariate and univariate schemes are addressed in the literature for multi-step
time series forecasting. Liu and Lin in [29] proposed a bidirectional LSTM (Bi-LSTM) model
using multiple features to analyze how COVID-19 impacts electricity demand. Those
authors achieved good performance while forecasting demand for a 20-day duration in
terms of root mean square error (RMSE) and mean squared logarithmic error (MSLE). A
modified encoder–decoder architecture was proposed in [30], where the encoder section
is based on LSTM cells, and the decoder section is based on Bi-LSTM cells. Between the
encoder and decoder, a temporal attention layer is included to obtain the latent space
variables. The model was tested on five different datasets to predict up to six time steps
in the future. The authors in [31] proposed a novel deep learning architecture called
the Spatiotemporal Attention Mechanism (STAM) for multivariate time series prediction
and interpretation. Spatial and temporal embeddings are computed using feed-forward
networks and LSTM networks, respectively. Autoencoder-based deep learning models
are particularly suitable for anomaly or fault detection in sensor signals, which is a semi-
supervised approach where only normal signals are used; later, the reconstruction error
is used to identify faults. Fault detection in a diesel engine of a maritime vessel using
an LSTM-based variational autoencoder (VAE) was proposed in [32]. The authors used a
modified parameter (log reconstruction probability) as the anomaly score to detect faults
in an engine component. The drift detection of a chemical vapor deposition process in a
semiconductor manufacturing system was studied in [33] using a variational autoencoder.
The autoencoder model was trained to learn the normal process drift, and it later detected
abnormal process drift from the sensor data by comparing the reconstruction error. An
end-to-end framework for sensor fault analysis was presented in [34], in which the authors
implemented two deep learning architectures: a CNN and a convolutional autoencoder
(CAE). The CNN model was used to detect faults that occur in a single sensor within a
collection of 10 sensors. Upon fault detection, the CAE is used to reconstruct a normal
estimation of the faulty sample.

Detecting unusual patterns in time series data utilizing the concept of multi-step
forecasting was implemented in several works. Bai and Zhao [35] proposed a multi-
variable transformer architecture to predict incipient faults in chemical processes. Their
model predicts the target process variable multiple steps in advance by utilizing multiple
transformer models, and the multi-horizon prediction is compared with a fault threshold
to detect faults in the process. In [36], anomalous pattern detection in internet traffic data is
carried out using an LSTM-based encoder–decoder model. The authors predicted different
horizons from three to twelve time steps with increments of three steps. An ANN-based
multi-step forecasting model is described in [37] to detect leaks in a water distribution
network. The difference between multi-step forecast data and the actual measured data is
analyzed to check for anomalous patterns in the data under leakage conditions. A voltage
fault diagnostic scheme was proposed by Zhao et al. [38] using a Gated Recurrent Unit
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(GRU) neural network multi-step-ahead voltage prediction. The GRU predicts the battery
cell voltages six time steps (one minute) in advance from 30 previous time step values.
Predicted values are compared with a predefined threshold to make decisions about fault
occurrences. Another attention-based multi-step prediction model was investigated in [39]
to predict tool wear in a CNC router machine. Performance from various prediction
horizons ranging from five steps to twenty steps was examined. Sensor fault diagnosis
in a wind turbine blade by mapping spatiotemporal relationships among sensors was
proposed in [40] by using a CNN model. The CNN predicts individual sensor readings
employing all sensor readings, and the predicted value is compared with the actual reading
to detect faults. More advanced variants of convolutional neural network-based models,
such as Generative Adversarial Networks (GANs), have also been implemented for sensor
fault analysis [41]. Given that sensor signals are highly prone to noise, other adversarial
techniques, as proposed in [42,43], could be explored in future research for sensor fault
analysis. A summary of significant works in sensor fault analysis is presented in Table 1.

Table 1. Summary of approaches for sensor fault analysis in the existing literature.

Reference Dataset Time Series
Type Model Features Task

[16] Temperature signal collected
by Arduino Univariate SVM Statistical features Classification

[17] Gas turbine sensor data collected
from simulator Univariate SVM EMD based features Classification

[18] Sensor data published by Intel lab Multivariate SVM with Grey-Wolf
Optimization

Feature extracted by
Kernel Principle

Component Analysis
Classification

[19] Various sensor data collected from
pressurized water reactor Univariate SVM, KNN, NN - Classification

[21]
Temperature and humidity sensor

signal from a wireless sensor
network setup

Multivariate SVM, RF, DT,
Extra-Trees - Classification

[22] Altitude barometer sensor signal
collected from an UAV Univariate CNN Time frequency

images Classification

[23] Various sensor data collected from
aeroengine control system Univariate CNN CWT scalograms Classification

[33] Sensor signal from semiconductor
manufacturing process Univariate VAE - Classification

[34]
Synthetic data generated from

shear-type structure and experimental
data from an arc bridge structure

Mutivariate CNN and CAE -
Detection,

classification, and
correction

[44] Sensor data derived from autonomous
driving dataset Univariate 1D CNN and DNN Time domain

statistical features
Detection,

classification, and
isolation

[45]
Sensor data from air quality dataset,

WSN dataset, and Permanene Magnet
Synchronous Dataset

Multivariate ANN based digital
twin concept -

Detection,
classification, and
accommodation

3. Materials and Methods

The proposed methodology is presented in Figure 3. The complete fault detection and
classification framework can be viewed as a combination of three major segments: multi-
step prediction, fault detection, and fault classification. We consider a fault detection and
classification framework for a single node in a sensor network. The multi-step prediction
segment forecasts multiple future time steps, referred to as the prediction window. This
segment is implemented using an LSTM autoencoder architecture. As shown in the figure,
the LSTM autoencoder takes N time steps as input, from time instance t to t − N as input.
It then predicts M future time steps, from t to t + M.

In the next step, features selected during the feature-selection stage are computed from
the predicted time steps. The prior feature-selection stage ensures that the most important
features are chosen to minimize computational load during the fault-detection and classifi-
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cation stages. Once these key features are computed, the feature vector is provided to the
first-stage classifier, which performs fault detection. If the classifier identifies a potential
fault, the features are then utilized by a second-stage classifier to classify the type of fault.
Therefore, the first-stage classifier functions as a binary classifier, while the second-stage
classifier functions as a multi-class classifier. A detailed description of each step in the
proposed methodology is provided in the following subsections.

Figure 3. Univariate multi-step forecasting-based sensor fault detection and classification.

3.1. Datasets

In this work, sensor data from two different datasets are utilized. The first dataset
consists of temperature sensor recordings from the dataset presented in [46]. This dataset
contains load information and oil temperature data from two transformers over two years,
recorded at 15-minute intervals. The oil temperature of a transformer is a significant
indicator of its condition, and since this reading comes from a real sensor, we considered
the temperature sensor signal from one transformer. The second dataset consists of sensor
signals collected using a wireless sensor network (WSN) [47]. This WSN dataset includes
temperature signals collected under both single-hop and multi-hop network settings. In this
work, we considered the data collected using the multi-hop scenario. In order to perform
sensor fault analysis, a dataset that includes sensor measurements for both normal and
faulty measurements is required. Unfortunately, no open dataset offers sensor recordings
of real sensor faults. Thus, researchers have adopted an approach to synthetically injecting
faults into normal sensor signals [34,44,48]. To create the fault dataset in our work, we
injected three types of artificial sensor faults. These three types of faults are commonly
found in most of the articles on this topic. Researchers in [44,45,48] have included these faults
in their studies. Additionally, drift, bias, and stuck faults have been studied in several real-world
scenarios, such as aeroengines [23], UAVs [22], chiller systems [49], and hydrogen sensors [50].
The faults and the equations used to generate them are briefly described below.

3.1.1. Bias Fault

When the sensor output deviates to a higher value than normal, the sensor is said to
exhibit a bias fault. This type of fault can be artificially generated by adding a constant bias
term to the normal sensor output.
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SN
bias = SN

normal + τ, τ = constant. (1)

3.1.2. Drift Fault

In a drift fault, the sensor signal pattern is offset from the normal in a linear pattern
over time. Sensors may experience this type of fault due to external factors or if circuit
parameters are changed for any reason. This type of fault can be generated from a normal
signal using the following equation:

SN
dri f t = SN

normal + βN . (2)

Here, βN = α × N to represent drift that increases over time along slope α, with N
denoting the index of the data point.

3.1.3. Stuck Fault

A sensor reading that remains constant for considerably longer than anticipated
implies the sensor is stuck. Such a fault might occur due to signal clipping, hardware issues, or
battery malfunction. A stuck fault can be artificially generated with the following equation:

St:N
stuck = τ, τ = constant. (3)

Figure 4 depicts samples of each type of fault considered in this work. As seen in
Figure 4a, the bias faults were injected at random locations. Several samples were created
where the location of the bias was kept random. Similarly, in drift fault and stuck fault are
shown in Figure 4b,c the location of fault initiation is also random for the different samples.

0 500 1000 1500 2000 2500 3000

Normal
Bias Fault

(a)

0 500 1000 1500 2000 2500 3000

Normal
Drift Fault

(b)

0 500 1000 1500 2000 2500 3000

Normal
Stuck Fault

(c)

Figure 4. Sample of (a) bias fault, (b) drift fault, and (c) stuck fault.

3.2. Signal Pre-Processing:

After creating additional samples, the next step is to normalize the data. It is significant
to bring the instances of the dataset within the same scale for proper training of deep
learning models. In this study, we implemented the min–max normalization approach for
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rescaling the samples. A time step value xt in the sensor signal XN is normalized using the
following equation.

xt
′ =

xt − min(XN)

max(XN)− min(XN)
(4)

The first major block of our proposed scheme is the LSTM auto-encoder-based fore-
casting model. This model takes the sensor signal as its input and performs prediction for
a horizon in the future. For training the auto-encoder model, it is necessary to format the
raw sensor signal to properly train the model. The signal pre-processing stage involves
scaling the signal and modifying its shape according to the shape that a recurrent neural
network accepts.

3.3. Feature Importance Analysis

After creating the simulated dataset that contains three types of fault patterns and
the normal sensor fault samples, we performed some prior investigation to identify the
significant features from a number of statistical features. To proceed, in the first step, we
computed 16 statistical features from the dataset. The statistical features that are computed
from the sensor signals are listed in Table 2.

Table 2. Statistical features.

Feature Name Mathematical Expression

Minimum min(yi)
Maximum max(yi)

Mean µ = 1
N ∑N

i=1 yi

Standard deviation σ =

√
∑N

i=1(yi−µ)2

N

Kurtosis K = 1
N ∑N

i=1
(yi−µ)4

σ4

Skewness S = 1
N ∑N

i=1
(yi−µ)3

σ3

Root mean square (RMS) yRMS =
√

1
N ∑N

i=1|yi2|
Crest factor CF = max(yi )

yiRMS

Shape factor SF = yRMS
1
N ∑N

i=1 |yi |
Impulse factor IF =

ypeak
1
N ∑N

i=1 |yi |
Clearance factor CLF =

ypeak

( 1
N ∑N

i=1

√
|yi |)2

Variance S2 =
∑N

i=1(yi−µ)
n−1

Energy E = ∑∞
n=−∞|yn|2

Power P = limN→∞
1
N ∑n=N−1

n=0 |y(n)|2

Peak to rms
ypeak
yrms

Range ymax − ymin

Once the features are calculated, the next step is to observe the importance of these
features in classifying the faults on the basis of Shapley values. The concept of Shapley
values originates in game theory, where these values help to determine the contribution
of each player to the total gain in a collaborative game. In a machine learning paradigm
considering each feature in the dataset as a player, Lundberg and Lee in their seminal
paper proposed the SHapley Additive exPlanations (SHAP) method [51] for interpreting
the features’ importance in a model’s predicting capability.

The SHAP values are obtained by comparing the model’s predictions, first by including
the particular feature and again by excluding the feature. For a dataset consisting of N
features, the SHAP value of a particular feature, ϕi, can be expressed as

ϕi = ∑
S⊆N−i

|S|!(|N| − |S| − 1)!
|N|! [F(S ∈ {i})−F(S)] (5)
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Here, S represents a subset excluding feature i, F(S ∈ {i}) denotes the model’s prediction
considering feature i, and F(S) is the prediction when feature i is not present. Finally, the
summation is carried out over all the possible subsets of S. These SHAP values can then be
utilized to express a feature’s importance. Evaluating the features at an early stage will be
beneficial in fault detection and classification in later stages because it will be enough to
consider only the highly important features instead of all the features.

3.4. Long Short-Term Memory

First introduced by Hochreiter and Schmidhuber [52] in 1997, the LSTM architecture
excels compared to the other recurrent structures in processing sequential data. The
inclusion of the memory cell and the gating mechanism enables LSTM to address long-term
dependencies efficiently. LSTM also mitigates the vanishing gradient problem, thus making
the training of deep architectures on sequential data more effective. The structure of a
single LSTM unit is shown in Figure 5.

Forget
gate 

Input
gate 

Candidate
memory

Output
gate

Memory  

Hidden
state  

Input  

Figure 5. An LSTM cell.

At each time step, an LSTM unit manages a hidden state and a memory state by
utilizing three gating mechanisms. The input gate decides whether new information should
be stored in the cell state or not. The input gate uses the current input and the previous
hidden state in its computation, as expressed by the following equation:

it = σ(Wi · [ht−1, xt] + bi) (6)

The candidate memory state, C̃t, is also computed using the same input, and it rep-
resents new information that could be added to the cell state. The candidate cell state
equation is

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

The forget gate decides what information from the previous cell state should be dis-
carded or retained. The input to this gate is the previous hidden state and the current input:

ft = σ(W f · [ht−1, xt] + b f ) (8)

The cell state at the core of the LSTM is responsible for retaining long-term information,
which is updated according to the following equation:

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

Based on the previous hidden state and the current input, the output gate controls
what the output would be as the new hidden state. The output and the hidden state
relations are as follows:

Ot = σ(W0 · [ht−1, xt] + b0) (10)

ht = Ot ∗ tanh(Ct) (11)
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3.5. LSTM Autoencoder

Autoencoders are a specific kind of deep neural network and are quite efficient at
sequential data analysis and prediction [53,54]. As discussed in the previous subsection, to
leverage LSTM’s ability to adapt to temporal dependencies in the data, an LSTM-based
autoencoder architecture is considered in our work. The principle of such autoencoder
models is to encode the input sequence into a compressed representation through the en-
coder section, and the subsequent decoder segment decompresses the latent representation
to reconstruct the original sequence. In this work, we utilize an LSTM autoencoder network
to learn the pattern in a sensor signal through training, so it can make predictions for
multiple time steps into the future.

During training, the encoder will take a particular input window of the sensor signal,
xt ∈ St−m, that represents the m historical data points, including the current time step. The
encoder network will transform this input into a latent vector of length l: Z = E(xt) ∈ Sl .
In the final stage, the decoder produces a sequence of length n that represents the prediction
for n time steps in the future: x̃⋆t ∈ St+n. The autoencoder is trained with the objective
being to minimize the mean squared error for the prediction horizon, L = 1

2 ∑n∥x⋆ − x̃⋆∥,
where x⋆ is the actual value for future time steps.

3.6. Fault Detection and Classification

The fault detection approach in this paper is envisioned as a binary classification
problem. Two key elements in fault detection are multi-step prediction by the LSTM au-
toencoder and the selected features based on their importance from the feature importance
analysis described in earlier segments. The multi-step-ahead prediction of a sensor signal is
performed by the LSTM autoencoder, which works as a sequence-to-sequence model. Using
this autoencoder model, n time steps will be predicted using the past m time step values.

The autoencoder is trained with normal data following the steps listed in Algorithm 1.
Once the model is trained, it is evaluated using fault observations from the sensor signals.
For an input window of n time steps, the trained model will predict m time steps in the
future. In the next step, these predicted data points are used to compute the features that
were selected on the basis of their importance using the SHAP analysis described earlier.
Utilizing the calculated features for multiple windows in the fault samples and information
on the point of fault injection from the fault dataset generation step, a dataset is created that
consists of only two classes: no-fault and fault. The fault class encompasses all three types
of fault considered in this work. This makes fault detection a binary classification scheme
that classifies the feature vector resulting from the future prediction horizon from the
LSTM multi-step prediction model. The calculation and utilization of the features for the
prediction horizon are necessary because of the range in the sensor signal amplitude. For
example, if we consider the bias fault scenario, at the fault’s location, the signal increases
to a value higher than normal. Now, there may be some instances where the amplitude
after the occurrence of the fault may equal or even be smaller than the maximum sensor
reading observed in a sample of the sensor recordings. This has been observed in a few
research papers that compare some threshold value with the multi-step predicted value to
identify the occurrence of a fault. As mentioned, normal sensor recordings might acquire
higher or similar values for some instances of a fault, and this reason prevents us from
setting a threshold, because in such a case, some fault instances might go undetected. If the
threshold is set to a higher or lower value, a normal instance might be determined as faulty.
Additionally, three different types of fault are considered in this work, so it is hard to set
a fixed threshold for different types of fault because fault patterns differ from each other.
Once a fault is detected, the next step is fault classification, and again, ML classifiers are
used. However, at this stage, it becomes a multiclass problem. Utilizing prior information
about fault-injected time steps from synthetic fault data generation, another dataset is
constructed in which the faults are given different labels according to their type. Therefore,
this dataset contains three classes: bias, drift, and stuck faults. As a predicted horizon
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is detected as a fault by the preceding classifier, it is provided to the second classifier to
determine the type of fault that occurred.

Algorithm 1 Multi-step prediction-based fault detection and classification.

Inputs: Training data: Time series sequence with T data points, T = {x1, x2, x3, · · · · · · , xT},
Encoder: E(·), Decoder: D(·), Window size: w, Prediction horizon: h

Outputs: Decision on fault detection and fault type
Training Autoencoder:
Create input and output sequences (Xi, Yi)
for i = 1, 2, · · · ,T−w+ 1 do

Xi = {xi, xi+1, · · · , xi+w−1}
Yi = {xi+w, xi+w+1, · · · , xi+w+h−1}

end for
for Each training epochs do

Encoder output: di = E(Xi)
Decoder output: Ŷh = D(di)

Calculate loss: L
(
Ŷi, Yi

)
= 1

h ∑h
t=1( ˆyi,t − yi,t)

2

Optimize the model parameters, φ: minimize
φ

L
(
Ŷi, Yi

)
end for
Prediction, Fault detection and classification:
Predict the output sequence: Ŷh = D(E(Xi))
Compute the four selected features: f1

(
Ŷh

)
, f2

(
Ŷh

)
, f3

(
Ŷh

)
, f4

(
Ŷh

)
Fault detection: C1( f1, f2, f3, f4) = f aultdetect
if f aultdetect = True then

Classify the fault type: C2( f1, f2, f3, f4) = f aulttype
end if
Return: Fault detection decision: f aultdetect Fault classification result: f aulttype

4. Results and Discussion

In this section, the performance of the autoencoder in multi-step forecasting along with
fault detection and classification performance by our proposed methodology are discussed.

4.1. Feature Selection Using SHAP

As mentioned earlier, based on the Shapley values, the important features for classi-
fying the types of fault are determined. This prior feature importance investigation will
help in observing only a few features for fault detection and classification at a later stage.
For finding feature importance, a tree-based explainer approach is used, and the XGBoost
classifier model is chosen as the tree-based model. The significant features are presented
using the SHAP feature importance plots and SHAP summary plots in Figures 6 and 7.

(a) (b) (c)

Figure 6. SHAP feature importance plot for (a) bias faults, (b) drift faults, and (c) stuck faults.
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(a) (b) (c)

Figure 7. SHAP summary plot for (a) bias faults, (b) drift faults, and (c) stuck faults.

In the bar charts presented in Figure 6, the features are arranged according to their
importance for each type of fault. We can see that maximum, minimum, and mean are
the top three important features that distinguish these three sensor faults from the normal
scenario. The summary plots in Figure 7 provide more insights into the significance of
the features. The summary plot shows that the more positive SHAP values of the features’
maximum, minimum, and mean correspond to the fault class, and negative values pertain
to the normal class. Based on the SHAP analysis, the top five features are selected for use
in the subsequent stages of fault detection and classification.

4.2. Multi-Step-Ahead Prediction by the Autoencoder

For predicting a multi-step prediction horizon, we experimented with two different
LSTM autoencoder models. In the first model, the encoder and decoder have three LSTM
layers with 75, 50, and 25 units, respectively, and in the second model, the encoder and
decoder have two LSTM layers consisting of 50 and 25 units each. The size of the latent
space was set to 15 in each variant. The input window size (w) and the prediction horizon
(h) were both set to 20. To evaluate prediction performance by the model, root mean square
error was used as the performance metric, which is defined in the following equation:

RMSE =

√
∑h

t=1
(
Ŷi − Yi

)2

h
(12)

Out of the 17,000 data points, the first 14,000 data points were used to train the model, and
the rest were used for testing. The training and testing segments are presented in Figure 8.

Several experiments were performed by varying the batch size and the number of
epochs, as listed in Table 3. The lowest test RMSE of 0.0410 was obtained for a batch size
of 64 when the model was trained for 100 epochs. The model was trained using normal
sensor signals only. After the model was trained, faulty sensor signal samples are provided
as input to predict 20 future data points.

Table 3. List of parameters for model training.

Model 1

Input Window Prediction Horizon Batch Size Epochs MSE

20 20 64 200 0.0588
20 20 32 200 0.0572
20 20 20 200 0.0582

Model 2

20 20 64 100 0.0410
20 20 32 100 0.0596
20 20 16 100 0.0531
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Figure 8. Training and testing segments.

The prediction performance of the autoencoder model for the test data segment is
presented in Figure 9, where it is evident that the prediction by the model follows the
general pattern of the test data. At this point, the trained model is employed to detect faults
by utilizing its ability to predict a window of 20 time steps in the future.

Figure 9. Sensor signal prediction performance by the autoencoder.

4.3. Sensor Fault Detection

The fault detection mechanism can be explained with the help of Figure 10, which
illustrates several time steps of a bias fault sample and the corresponding prediction by the
model. As discussed in the methodology section, our model takes input window w1 and
predicts the next 20 time steps in ŵ1, as indicated in Figure 10. This implies that with this
model, we can estimate the future trends in the sensor data, and therefore, if there is an
unusual change in the sensor data stream due to the possible presence of a fault, the model
can predict the trend a few time steps ahead; thus, the presence of a fault can be determined.
Considering input window wi in the same figure, a bias fault occurred immediately after
the segment. Once the model has window wi as input, it will predict change due to a bias
fault, and by calculating the four selected features from the predicted values, decisions
can be made as to whether there is a fault in segment ŵi with the help of the first classifier
mentioned in the proposed methodology.

From prior information on fault locations recorded during injection of synthetic faults
into the normal sensor signals, we created a labeled dataset consisting of the four selected
features calculated from the prediction window, in which the corresponding time steps in
the predicted signal are labeled as normal or faulty. Utilizing this dataset with some of the
most widely used classifiers to identify whether the future predicted segment is faulty or
normal, we exceeded 90% accuracy for all the classifiers. The commonly used classification
metrics are listed in Table 4.
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Figure 10. Concept of fault detection with multi-step-ahead prediction.

Table 4. Fault detection performance by the classifiers.

Classifier Accuracy Precision Recall F1 Score

Random forest 93.39% 95.47% 91.98% 93.70%
XGBoost 93.84% 95.12% 93.25% 94.18%

SVM 92.34% 92.00% 93.81% 92.90%
KNN 93.24% 95.467% 91.70% 93.54%

LightGBM 93.47% 94.83% 92.83% 93.82%

Fault detection performance can be observed more clearly from the confusion matrices
in Figure 11. The performance metrics indicate that the boosting algorithm classifiers
performed slightly better in comparison to the other classifiers. KNN had comparable
performance in detecting the presence of faults in the predicted trends of the sensor signals.

(a) (b) (c)

(d) (e)

Figure 11. Fault detection performance for different classifiers: (a) random forest, (b) XGBoost,
(c) SVM, (d) KNN, and (e) LightGBM.



Appl. Sci. 2024, 14, 7717 15 of 23

4.4. Fault Classification

After the detection of a fault, the next step is to identify the type of fault using ML
classifiers. In the dataset that was used for fault detection in the previous step, any of the
three types of fault are considered under a single class as a fault. In this step, a second
dataset is used, in which the injected time steps are labeled according to the type of fault:
bias, drift, or stuck. Fault classification performance by the five ML classifiers is presented
with confusion matrices in Figure 12. As can be seen from the confusion matrices, every
classifier could recognize the stuck fault accurately, but all of them performed poorly in
distinguishing between the bias fault and the drift fault.

(a) (b) (c)

(d) (e)

Figure 12. Fault classification performance for different classifiers: (a) random forest, (b) XGBoost,
(c) SVM, (d) KNN, and (e) LightGBM.

This deterioration in classification performance between these two classes is because
of the gradual increase in the drift fault signal, which after a certain point equals the
amplitude of the signal during a bias fault. The same signal amplitude makes the signature
of both faults similar, and thus, it becomes difficult for the classifier to distinguish between
these classes. The corresponding metrics are listed in Table 5 for the fault classification task.

Now, to improve fault classification performance, we propose an approach to calculate
the feature for more time steps rather than computing features for the prediction horizon
of 20 time steps. In the proposed approach, once the presence of a fault is identified by
the first classifier, the system will continue to observe the signal for more than 20 time
steps and will then extract the selected features for a wider time span. It has been observed
that when 100 time steps instead of 20 time steps are considered after the occurrence of a
fault, the classifiers can more accurately classify the type of fault with the feature extracted
from the extended time steps. The improvement in fault classification is indicated by the
confusion matrices in Figure 13.
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Table 5. Fault classification performance metrics.

Random Forest

Bias Fault Drift Fault Stuck Fault Average

Precision 64.21% 72.48% 100% 78.90%
Recall 63.54% 73.91% 99.04% 78.83%

F1-Score 63.87% 73.19% 99.52% 78.86%
Accuracy 81.82% 78.89% 99.60% 86.77%

XGBoost

Precision 66.32% 74.80% 100% 80.37%
Recall 66.67% 75.10% 99.36% 80.38%

F1-score 66.49% 74.95% 99.68% 80.37%
Accuracy 83.00% 83.27% 99.74% 88.67%

SVM

Precision 66.39% 65.85% 99.68% 77.31%
Recall 42.19% 84.58% 99.04% 75.27%

F1-score 51.59% 74.05% 99.36% 75.00%
Accuracy 79.97% 80.24% 99.47% 86.56%

KNN

Precision 63.54% 71.16% 100% 78.23%
Recall 59.90% 75.10% 99.04% 78.01%

F1-score 61.60% 73.08% 99.52% 78.07%
Accuracy 81.16% 81.55% 99.60% 87.44%

LightGBM

Precision 64.97% 74.40% 100% 79.79%
Recall 66.67% 73.52% 99.36% 79.85%

F1-score 65.81% 73.96% 99.68% 79.81%
Accuracy 82.48% 82.74% 99.74% 88.32%

(a) (b) (c)

(d) (e)

Figure 13. Improved fault classification performance for different classifiers: (a) random forest,
(b) XGBoost, (c) SVM, (d) KNN, and (e) LightGBM.

Turning now to the analysis of the second dataset, we focused on applying the same
methodology without reapplying SHAP feature selection. This decision was based on our
ability to demonstrate that the features selected from the first dataset for the three different
types of faults are equally appropriate for the new sensor signals. Therefore, from the
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predicted time steps, only the top three features, as determined previously, were calculated
and sent to the first classifier for fault detection. Figure 14 depicts the fault detection
performance in the form of confusion matrices obtained from the different classifiers.

(a) (b) (c)

(d) (e)

Figure 14. Fault detection performance for different classifiers with the WSN dataset: (a) random
forest, (b) XGBoost, (c) SVM, (d) KNN, and (e) LightGBM.

Table 6 lists values from the performance in the fault detection task. The table shows
that every classifier can recognize the pattern of the prediction horizons for normal or fault
classes with an accuracy of around 97%, except for the SVM classifier, which had a slightly
lower accuracy at 96.64%.

During fault type classification, a pattern similar to the previous case was observed.
The classifiers could recognize the stuck fault successfully, but for bias and drift faults the
classifiers were not very accurate, as demonstrated in the confusion matrices of Figure 15.

The bar chart in Figure 16 shows the average values for precision, recall, F1-score, and
accuracy from the five classifiers considered in this work. The last group of bars shows
all the classifiers had above 93% accuracy in classifying the types of fault except for the
SVM, which had an accuracy of 91% (about 2% less than the others). Although the average
classification accuracy is quite promising, the confusion matrices of Figure 15 show the
classifiers did not perform definitively with bias faults and drift faults. These misclassified
instances could be reduced by considering multiple prediction horizons after detecting a
fault in order to calculate features and then using the classifier.

The improvement in classification when five prediction horizons are considered,
rather than one, is visible in the confusion matrices in Figure 17. The improvement in
fault classification is because when multiple prediction windows are considered, more
time steps are enlisted for calculating features. Thus, it is possible to capture the distinct
patterns in two types of faults. In the previous case, the associated features were computed
for only 20 time steps, and the misclassified samples aligned with prediction windows
where the sensor signal values for bias and drift faults exhibited similarity. Due to this,
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the features calculated from those segments were not significantly different, and thus,
wrongly classified.

Table 6. Fault detection performance for the WSN dataset.

Random Forest

Normal Faulty Average

Precision 96.98% 97.82% 97.40%
Recall 97.67% 97.18% 97.43%

F1-score 97.33% 97.50% 97.41%
Accuracy 97.42% 97.42% 97.42%

XGBoost

Precision 97.29% 97.28% 97.28%
Recall 97.09% 97.46% 97.28%

F1-score 97.19% 97.37% 97.28%
Accuracy 97.28% 97.28% 97.28%

SVM

Precision 96.18% 97.07% 96.62%
Recall 96.86% 96.43% 96.65%

F1-score 96.52% 96.75% 96.63%
Accuracy 96.64% 96.64% 96.64%

KNN

Precision 96.98% 97.55% 97.26%
Recall 97.37% 97.18% 97.27%

F1-score 97.17% 97.27% 97.27%
Accuracy 97.27% 97.27% 97.27%

LightGBM

Precision 96.77% 97.36% 97.07%
Recall 97.17% 96.99% 97.08%

F1-score 96.97% 97.18% 97.07%
Accuracy 97.08% 97.08% 97.08%

(a) (b) (c)

(d) (e)

Figure 15. Fault classification performance for the different classifiers with the WSN dataset: (a) ran-
dom forest, (b) XGBoost, (c) SVM, (d) KNN, and (e) LightGBM.
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Figure 16. Performance metrics for WSN dataset fault classifications.

(a) (b) (c)

(d) (e)

Figure 17. Fault classification performance from the different classifiers with the WSN dataset when
considering multiple prediction horizons: (a) random forest, (b) XGBoost, (c) SVM, (d) KNN, and
(e) LightGBM.

In Table 7, a brief comparison of our proposed model with some existing works on
sensor fault analysis is presented. As multi-step prediction-based approach is not imple-
mented for sensor fault classification and detection tasks; for that reason, we select works
that considered the WSN dataset and common fault types as in this paper. The accuracy
score provided for comparing the performance represents the highest accuracy reported in
the paper for drift, bias, or stuck fault. The authors of [16,21,21] used the same WSN dataset
with SVM and ExtraTree (ET) algorithm. It can be seen that our proposed model classifies
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the faults with higher accuracy than ET. The SVM model-based method achieves 100%
accuracy, which is comparable with our work but they only considered the classification
task. Compared with the results reported in [45], our proposed model achieved higher
accuracy scores for both fault detection and classification. Although deep bidirectional
Long Short-Term Memory recurrent-neural-network-based deep recurrent canonical corre-
lation analysis (BLCCA) [49] model and Fuzzy Deep Neural Network (FDNN) [55] used
different datasets, the classification accuracy for the fault types is significantly higher in
our proposed model.

Table 7. Comparison of the proposed method with other works.

Reference Model Faults Considered Task Performance
Metric (Accuracy)

[16] SVM Drift, bias, stuck,
spike, erratic Fault classification 100%

[21] ET
Drift, bias, stuck,

spike, erratic,
dataloss, random

Fault classification 81%

[48] ET
Drift, bias, stuck,

spike, erratic,
dataloss, random

Fault classification 90%

[45] Multi-layer
perceptron Drift, bias Fault detection

and classification 89.8% and 86%

[22] DNN Drift, bias Fault classification 99.6%

[49] BLCCA Drift Fault classification 92.40%

[55] FDNN Drift, bias, stuck,
spike, degradation Fault classification 92.89%

This paper
LSTM-based

multi-step
prediction

Drift, bias, stuck Fault detection
and classification 93∼97% and 100%

The proposed methodology can be applied to anomalous behaviour detection for all
real-world applications where sensors are deployed, for instance, self-driving cars, smart
homes, smart energy meters, smart cities, and Internet-of-things. The challenge lies in the
collection and use of sufficient realistic for training ML algorithms because of the infrequent
occurrence of fault for short intervals of time. Nevertheless, we have designed the LSTM
model to be small and identified only four features to work with the ML algorithm, thereby
simplifying the approach. Consequently, our proposed method could be a good candidate
for real-world implementation.

5. Conclusions

In this paper, a sensor fault detection and classification approach based on the multi-
step-ahead prediction technique is explored. An LSTM autoencoder model is used to
predict multiple time steps to capture the trend of a sensor signal. In the autoencoder
training stage, normal sensor signals are used. As the autoencoder model predicts a
window of 20% time steps, estimated time steps are utilized to compute features. In the
initial phase of data preparation, feature importance is determined using SHAP analysis to
select the most significant features from a set of statistical features that effectively discern
bias, drift, and stuck fault patterns in the sensor signals. Based on SHAP analysis, only
three features are selected and calculated using an estimated prediction window that has
a length of 20% time steps. Considering only three features will ensure less computation
complexity and faster classification of faults in the next stage. Once a feature is obtained
from the predicted windows, two classifiers are used in the subsequent stages. The first
classifier takes the feature point and tries to determine whether the estimated future time
steps are faulty or normal. Since the feature point represents characteristics of future data
points, the classifier output based on the feature point provides early fault detection. If the
next prediction window is classified as faulty by the first classifier, a second classifier in the
next stage is used to classify the type of fault. For the two classifiers (fault detection and
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classification), two datasets were created for training. In the dataset for fault detection, all
the time steps corresponding to the fault were labeled as faulty, irrespective of the type of
fault, and the rest were labeled as normal. But the dataset for fault classification consisted
of only faulty time step information and had three classes: bias, drift, and stuck faults. The
labels are determined from the location of faults in the time steps extracted from synthetic
fault injection in the data preparation stage. The proposed methodology was conducted
on two different datasets, and five common classification algorithms were used in fault
detection and classification. For the first dataset, most of the classifiers achieved about
93% accuracy in fault detection, whereas with the second dataset, around 97% accuracy
was attained. In the fault classification step, the identification of bias and drift faults was
uncertain, unlike for stuck faults. However, fault classification performance improved
if an extended number of time steps were considered for calculating features after fault
detection. The multi-step prediction approach has recently gained attention and is mostly
implemented in multivariate scenarios. In this work, we experimented with a univariate
scenario, and multiple faults were considered. The results indicate that our proposed
approach can provide considerable sensor fault detection and classification performance
with a single sensor signal. As a future extension of this work, the LSTM-based autoencoder
model could be further optimized using advanced optimization methods. Additionally,
a broader range of sensor faults could be considered. Furthermore, a more accurate and
robust multi-step prediction model could be developed to minimize prediction errors across
the horizon, potentially eliminating the need for feature computation and the subsequent
machine learning classifier segment. In this scenario, the presence of faults could be
determined by observing the difference between the actual values and the predicted time
step values.
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