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Abstract: On public benchmarks, current macro facial expression recognition technologies have
achieved significant success. However, in real-life scenarios, individuals may attempt to conceal
their true emotions. Conventional expression recognition often overlooks subtle facial changes,
necessitating more fine-grained micro-expression recognition techniques. Different with prevalent
facial expressions, weak intensity and short duration are the two main obstacles for perceiving and
interpreting a micro-expression correctly. Meanwhile, correlations between pixels of visual data in
spatial and channel dimensions are ignored in most existing methods. In this paper, we propose a
novel network structure, the Attention-based Spatiotemporal-aware network (ASTNet), for micro-
expression recognition. In ASTNet, we combine ResNet and ConvLSTM as a holistic framework
(ResNet-ConvLSTM) to extract the spatial and temporal features simultaneously. Moreover, we
innovatively integrate two level attention mechanisms, channel-level attention and spatial-level
attention, into the ResNet-ConvLSTM. Channel-level attention is used to discriminate the importance
of different channels because the contributions for the overall presentation of micro-expression vary
between channels. Spatial-level attention is leveraged to dynamically estimate weights for different
regions due to the diversity of regions’ reflections to micro-expression. Extensive experiments
conducted on two benchmark datasets demonstrate that ASTNet achieves performance improvements
of 4.25–16.02% and 0.79–12.93% over several state-of-the-art methods.

Keywords: micro-expression recognition; deep learning; spatiotemporal feature extraction; attention
mechanism

1. Introduction

Facial expressions convey a wealth of communicative information, often surpassing
that conveyed through language and bodily cues. Numerous studies have contributed
to facial expression recognition; however, many of these primarily focus on extracting
coarse-grained macroscopic features of facial expressions, potentially overlooking subtle,
brief facial information. In this paper, we take micro-expressions as an example to delve
into the exploration of visual recognition methods based on fine-grained features.

When human beings hide real emotions, subtle changes will occur in facial muscles.
These changes result in transient and involuntary facial expressions. A micro-expression
has the characteristics of real emotional reflection and is difficult to forge. Therefore, it
plays an important role in the fields of medical diagnosis [1], lie detection [2], business
negotiation [3] and so on. Due to micro-expression’s small range and short duration,
it is difficult to be captured and recognized by the naked eye. Even after professional
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training, the accuracy of recognition by human eyes is only 47% [4]. Therefore, in the era
of artificial intelligence, it is of great significance to study how to capture and recognize
micro-expressions with the help of fast visual capture equipment and artificial intelligence
technology. At present, the study of micro-expression is focused on video stream data. The
existing methods mainly include: LBP (Local Binary Pattern) [5], optical flow and methods
based on Deep Learning [6].

LBP can describe the local texture features of the image and extract them, which
has the advantages of gray invariance and rotation invariance. LBP usually extracts the
appearance and motion features from the symbol-based difference between two pixels, so
it will lose some information about features. In order to extract more useful information,
the improved methods based on LBP consider the information of amplitude and direction,
but this also leads to higher feature dimension after extraction. Most of these improved
methods will reduce the processing speed and find it difficult to achieve real-time detection.

Optical flow methods use the relevance between adjacent frames in an image sequence
to calculate the motion information of objects. These methods can detect small motion
changes, and are suitable for recognizing micro-expressions. Optical flow methods extract
geometric features from images, so they have a relatively low dimension of features and a
relatively fast processing speed. However, the effect of optical flow feature extraction will
be greatly reduced in the scenes with large changes in brightness.

Methods based on LBP or optical flow usually extract the shallow features of micro-
expression images, so they cannot fully describe the structural information of samples and
can hardly distinguish the relevance between high-dimensional features. Therefore, it is
still a challenge to extract useful information and obtain high-quality description from
micro-expressions.

For micro-expression recognition, feature extraction is an important critical issue [7],
especially for optimal flow-based micro-expression recognition. The methods based on
deep learning can extract the deep features from micro-expression images and recognize
them [8]. Due to the change in a micro-expression being relatively small, it is hard to
distinguish the effectiveness of features by directly transforming its RGB image into matrix
and inputting it into our network for convolution. Therefore, LBP or optical flow is usually
used to extract the image’s low-dimensional features before inputting them into the network
to extract the deep-dimensional features.

Due to the weak intensity of micro-expressions, directly inputting their RGB images
into the network for convolution makes it difficult to distinguish effective features. There-
fore, we use micro-expression videos as the model input. We employ a deep learning-based
video motion magnification network to amplify micro-expression features and use a con-
volutional neural network (CNN) to estimate optical flow, extracting the optical flow
information between adjacent frames in the image sequence.

Existing networks may overlook the correlation of image information in channel
and spatial dimensions. To address this issue, we combine ResNet and ConvLSTM to
extract spatiotemporal information, adding attention mechanisms between them. Our
model effectively focuses on the micro-expression information across multiple dimensions,
achieving superior recognition performance.

Micro-expression datasets are typically small and imbalanced, which can hinder the
training of deep networks and lead to overfitting. To address these challenges, we employ
data augmentation techniques, such as random rotation, to expand the effective dataset.
We exclude classes with very few samples to improve training efficiency. The ResNet
parameters are initialized with ImageNet pre-trained weights, and the model is further
trained on the macro-expression dataset CK+. Additionally, we incorporate dropout layers
into our network to selectively ignore some neurons and reduce their interactions in each
training batch, helping to prevent overfitting.

Figure 1 shows our research framework. The input to the model consists of video se-
quences containing micro-expressions. First, facial detection and alignment are performed
on each frame to ensure consistent facial feature points across all frames. Next, an action
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magnification network is used to amplify micro-expression features, making them easier to
capture. Subsequently, a convolutional neural network (CNN) processes the optical flow in-
formation between adjacent frames to capture subtle facial muscle movements. Specifically,
the optical flow describes the motion patterns between two consecutive frames. Following
this, ResNet is utilized to extract spatial features, and ConvLSTM is employed to capture
temporal variations. By combining these two methods, richer feature representations are
obtained. Additionally, both channel attention mechanisms and spatial attention mecha-
nisms are adopted to achieve multidimensional focus on micro-expressions, enhancing the
model’s ability to perceive important features. Finally, a fully connected layer maps the
extracted features to the classification space, and a classifier is used for categorization.

Preprocessing Feature extraction and recognition

11 frames(RGB)

11 frames with registration(RGB)

11 frames with registration and amplification (RGB)

10 frames(Optical Flow)
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Figure 1. Research framework.

Overall, our contributions can be mainly summarized as follows:

• Instead of using traditional RGB images, we leverage video motion to recognize
micro-expressions, which allows for better capture of expression dynamics.

• We combine spatiotemporal features with static features and introduce two types
of attention mechanisms—channel attention and spatial attention—to model micro-
expressions in a fine-grained manner from multiple dimensions.

• To address the challenge of limited micro-expression datasets, we employ effective data
augmentation techniques such as rotation and flipping, improving the training process.

• We conduct extensive experimental validation, demonstrating that ASTNet signifi-
cantly outperforms nine state-of-the-art open set recognition methods.

The structure of other parts of this paper is as follows: The second chapter briefly
describes the existing feature extraction methods based on traditional or deep learning.
The third chapter describes our processing method and proposes our network. The fourth
chapter describes the experimental process, use parameters, results of experiments and the
analysis of module effectiveness in detail. The last chapter summarizes our main work and
contributions and looks forward to the possible direction of follow-up work.

2. Related Work
2.1. Micro-Expression Recognition Based on Optical Flow Features

Improved methods based on optical flow typically consider the displacement of
feature regions rather than individual pixels, effectively recognizing subtle movements of
objects and having relatively low feature dimensions, making them suitable for describing
and processing small velocity changes in image motion [9]. Optical flow methods have
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two assumptions: (1) The imaging surface is smooth and flat, and the brightness of the
light illuminating the surface is uniformly distributed, meaning the image flow field is
continuously differentiable in both spatial and temporal domains, with constant brightness
in the time domain. (2) The variation in light reflectance is smooth and continuous, meaning
the illumination on the object is continuous. Lucas et al. [10] used the least squares method
to calculate the basic optical flow features of all pixels within a local region. Xu et al. [11]
proposed the Facial Dynamics Map (FDM) based on optical flow, removing errors caused
by facial translation and extracting the main directions of features in the spatiotemporal
dimension, effectively reflecting the movement of micro-expressions. However, due to
the long time required to compute dense optical flow fields, this method is unsuitable for
real-time, large-scale micro-expression recognition.

Liu et al. [12] proposed the Main Directional Mean Optical Flow Feature (MDMO).
In feature extraction, they divided the face into 36 non-overlapping regions and ex-
tracted optical flow features frame by frame, extracting the main direction in each region.
Khor et al. [13] used the TV-L1 [14] method to extract optical flow and optical strain, which
they combined with the original image and input into a CNN-LSTM network to highlight
the dynamic changes of micro-expressions. Another approach involves changing the net-
work structure, such as the Three-Dimensional Convolutional Neural Network Evolution
(C3DEvol) proposed by Liang Zhengyou et al. [15], which simultaneously extracts spa-
tiotemporal features of micro-expressions. This network uses global search and genetic
algorithms to optimize the C3D network structure, improving micro-expression recognition
performance. Compared to CNN-LSTM, this method can simultaneously extract spa-
tiotemporal features of micro-expressions, but it still does not fully explore comprehensive
micro-expression feature information, resulting in less-than-ideal recognition performance.

2.2. Micro-Expression Recognition Based on Action Units

The key to improving micro-expression recognition lies in capturing and extracting
more comprehensive and discriminative micro-expression information. Besides the spa-
tiotemporal dimensions of micro-expression information, the movement changes of facial
muscles during micro-expressions are also related. Therefore, analyzing micro-expressions
through the combination of action units (AUs) is an effective method.

For instance, Lo et al. [16] used a 3D convolutional neural network to extract AU-
related features and then utilized a graph convolutional network to connect AU nodes
with complex dependencies for emotion classification. This method focuses on local action
changes but employs a model with a large number of parameters. The designed adjacency
matrix is calculated based on the co-occurrence rate of AUs in the training set, making it
susceptible to noisy actions and lacking robustness.

Similarly, Xie et al. [17] proposed AGACN, which combines AU information with
micro-expression labels, modeling AUs in different regions based on facial muscle defor-
mation and relational information. Ling et al. [18] represented micro-expressions based
on partial facial key points and used depthwise convolution (DConv) to learn key point
features, or node learning, and employed the Transformer encoder to learn relationships be-
tween nodes, or edge learning. The AU-GCN module in this method constructs and learns
the AU feature matrix and adjacency matrix through word embedding and GCN. This
method combines facial features with AU information, yielding good recognition results.

Puneet et al. [19] proposed the MERASTC method, which encodes the subtle changes
in facial muscles in micro-expression image sequences by combining AU, key points, and
appearance features during micro-expressions. They also proposed a face normalization
method based on neutral features to accelerate the network’s micro-expression recogni-
tion efficiency. Although MERASTC alleviates the network overfitting issue, it requires
high sample data quality (the image sequence must contain neutral frames), thus having
certain limitations.

Wang et al. [20] combined AU with facial key points to construct four regions of
interest: eyes, nose, cheeks and mouth. They then weighted the corresponding regions
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and extracted features using the proposed MER-AMRE network, improving the network’s
ability to extract local motion information.

To explore the relationship between facial expressions and AUs, Cen et al. [21] seg-
mented micro-expression videos into multiple adjacent video clips, revealing the spatiotem-
poral feature changes in the three-dimensional neighborhood. They combined this with the
proposed Multi-Task Facial Activity Pattern Learning Framework (MFAPLF) to promote
the aggregation of similar micro-expressions.

3. Our Method

Firstly, we enlarge the features of the micro-expression and extract the optical flow
features to improve the inter-class discrimination and enhance the micro-expression fea-
tures. Then, we design a network structure, ASTNet, to further extract spatiotemporal
features and identify emotions. In ASTNet, ResNet and ConvLSTM process the spatial
and temporal features of the optical flow image, respectively. Finally, we add channel and
spatial attention (CBAM) between them to generate the weight map of the feature map
from the two dimensions of space and channel for feature adaptive learning. Figure 2
shows the structure of our network.
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Figure 2. Framework of our network.

3.1. Processing

(1) Micro-expression motion amplification

Micro-expressions change subtly, which leads to low characteristic intensity and low
category discrimination. Therefore, we use the motion amplification technology to properly
amplify these subtle dynamic changes and improve the discrimination of emotions. Some
methods of video action amplification can be used to complete this part of the work.
Their working principles are as follows: First they use Euler Video Amplification [22] to
decompose the input continuous segments into different spatial frequency bands. Then,
they use the same time filtering for processing and give an amplification factor to amplify
the signal of interest. Finally, they superimpose it on the original signal as output; the
mathematical description is as follows: Let I(x, t) be the image intensity of the image at
time t and position x, and use the displacement function to express the observed intensity
δ(t) , that is, I(x, t) = f (x + δ(t))) and I(x, 0) = f (x). After amplifying the image signal α
times, it is superimposed back to the original image to obtain the synthesized image signal
I′(x, t) , as shown in Equation (1):

I′(x, t) = f (x + (I + α)δ(t)) (1)
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This paper focuses on the amplification of facial micro-expression movements, setting
the amplification factor z to 2, 3 and 4 for comparison. Figure 3 shows the amplification
effects of three types of emotions in the CASME II dataset, with each set of experiments
using the same frame comparison.

Emotion Original 
amplification  

factor = 2 

amplification  

factor = 3 

amplification  

factor = 4 

Disgust 

    

Happiness 

    

Surprise 

    

 

Figure 3. Comparison of before and after micro-expression magnification.

In the emotion category labeled as disgust, as the amplification factor increases, the
muscle movements in the eyebrow area of the subjects become more noticeable, and the
activation level of the frowning action increases. In the happiness category, the muscle
movements in the mouth area of the subjects become more noticeable, and the activation
level of the mouth corner lifting action increases. In the surprise category, the muscle
movements in the eyebrow and mouth areas are generally amplified to varying degrees
compared to other muscle regions.Additionally, it can be observed that in the happiness
category, some subjects exhibit eye closure, while in the surprise category, the subjects’
eyeballs are amplified. This is because the network enhances eye movements such as pupil
changes and blinking through temporal information from consecutive frames. However,
these eye movements do not conform to the definition of micro-expressions and do not
contribute to their recognition.From the amplification results of the three emotions, al-
though image noise increases when the amplification factor is set to 3, the amplification
effect on motion is generally more noticeable than when the factor is set to 2. When the
amplification factor is set to 4, facial muscles start to distort excessively, and image noise
increases significantly. Considering these factors, this paper adopts an amplification factor
of 3 for the network to amplify the actions of micro-expression samples.

We magnify images of micro-expression in SMIC and CASME II by 3 times through the
Motion Amplification Network [23]. Figure 4 shows the comparison between the images
before and after processing.
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Original Rescontructed Original Rescontructed

Happiness

Others

Surprise          

Repression

Disgust

Emotion Emotion

Fear

Figure 4. Comparison of before and after micro-expression magnification.

(2) Optical flow feature extraction

In micro-expression recognition, feature extraction is a critical issue. Micro-expressions
are brief, involuntary facial expressions, and directly using RGB images of micro-expressions
as network input to extract deep features cannot effectively recognize emotions [24]. There-
fore, extracting effective features is essential [25].

In this paper, we employ an optical flow-based feature extraction method due to the
superior performance of optical flow in handling dynamic information and subtle changes,
which is crucial for micro-expression recognition. Micro-expressions are often difficult to
detect, and the optical flow method can provide detailed motion vectors, aiding in the more
accurate recognition of micro-expressions.

Therefore, we use features in the form of optical flow as the input to the network and
model them using the Motion Constraint Equation [22] of optical flow.

Specifically, for the RGB keyframe sequence, I(x, y, t) represents the light intensity of
the pixel at position (x, y) and time t. The pixel moves a distance of (dx, dy) to the next
frame over a time interval of dt. Since it is the same pixel, we assume that the light intensity
of the pixel remains unchanged before and after the movement. It is shown in Equation (2):

I(x, y, t) = I(x + dx, y + dy, t + dt) (2)

The flow field is continuously differentiable in both the space and time domain. Ac-
cording to Taylor series expansion, Equation (2) can be expanded, as shown in Equation (3):

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt + ξ (3)

ξ is the second-order or above estimator of time dt. When dt tends to infinity, the
optical flow constraint equation can be obtained by combining Equations (2) and (3), as
shown in Equation (4):

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

dt
dt

= 0 (4)

Then, the corresponding optical flow vector calculation equation is shown in
Equation (5):

V =

[
u =

(
dx
dt

)
, v =

dy
dr

]T
(5)

Figure 5 shows the use of LiteFlowNet [26] to extract the optical flow features between
11 frames of ‘happiness’ and visualize them. In the above optical flow images, different
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colors represent different directions of motion, while different depths of color represent
different intensities of motion.

Figure 5. Optical flow visualization.

3.2. Network

ASTNet consists of three parts: ResNet for extracting spatial features of the micro-
expression image sequence, an attention mechanism module for extracting attention maps
and ConvLSTM for processing temporal features and recognizing emotions. ResNet
can train very deep neural networks and extract deeper, fine-grained spatial features
of micro-expression image sequences. The attention mechanism calculates weighted fea-
tures through attention scores, allowing for a better focus on key features during the
micro-expression change process. Since we use micro-expression video sequences that vary
over time, temporal modeling is necessary. ConvLSTM excels in capturing spatiotempo-
ral relationships and can simultaneously model spatial relationships to recognize facial
emotions. In the following sections, we will detail each component of the model.

(1) ResNet

The first part of our network uses the transfer of learning; we initialize the param-
eters of ResNet by using ImageNet, and further train on the macro-expression dataset:
CK+. Finally, we extract the spatial features of the optical flow image by using the pro-
cessed ResNet.

ResNet was proposed by He Kaiming, Ren Shaoqing et al. [27]. They added a residual
structure in their network to solve the degradation problem of the poor stacking effect
when they deepened the depth of the network to a certain extent. ResNet also solved the
problem of gradient disappearance or explosion of the deep network through the identity
mapping method. Figure 6 shows the residual block.

weight layer

x
identity

relu

x

relu

F(x)+x

weight layer

Figure 6. Residual block structure of ResNet.

We remove the full connection layer of ResNet and directly output the convoluted and
pooled graph of features as the input of the next part of our network.

(2) Attention Mechanism

Each region or visual feature on micro-expression images has different importance for
the recognition of the network. Therefore, in order to establish the correlation of the pixels
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of a micro-expression image in the spatial and channel dimensions, we use CBAM [28] to
construct the attention mechanism. CBAM is a feedforward convolutional neural network
attention module that can be integrated into CNN. CBAM has two sequential submodules:
channel and space. The feature map of the network convolution block can be adaptively
refined through CBAM. Figure 7 shows CBAM’s structure.

Input Feature

Channel 
Attention 
Feature

Refined Feature
Spatial 

Attention 
Feature

Channel and Spatial Attention

Figure 7. CBAM attention module.

Given a feature graph F ∈ C × H × W as input, CBAM is successively transformed
into a one-dimensional channel attention map Mc ∈ RC×1×1 and a two-dimensional spatial
attention map Ms ∈ R1×H×W .

The channel attention module uses the channel relationship between features to
generate the channel attention map. Firstly, the channel attention module uses the average
pooling and maximum pooling to aggregate the spatial information of the feature graph,
and generate average pooling Fc

avg and maximum pooling Fc
max . Then, it transmits Fc

avg
and Fc

max to a shared network layer composed of multi-layer perceptrons to generate the
channel attention graph Mc ∈ RC×1×1. Finally, the feature vectors are merged. The channel
attention model structure is shown in Figure 8.

Input Feature F

Channel Attention
MaxPool

AvgPool

Shared MLP

Channel Attention
Mc

Figure 8. Channel attention module.

The spatial attention module uses the spatial relationship between features to generate
a spatial attention map. Firstly, the average pooling and maximum pooling operations are
used to aggregate the channel information of the characteristic graph along the channel
direction to generate two characteristic graphs: Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W. Then,

a standard convolution layer is used to connect and convolute them to generate a 2D spatial
attention map. The structure of spatial attention model is shown in Figure 9.

Spatial Attention

[MaxPool,AvgPool]

Conv Layer

Channel-refined Feature 
F’

Spatial Attention
Ms

Figure 9. Spatial attention module.
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The channel and spatial attention mechanisms are arranged in order. According to
the experimental results, we prioritize the channel attention module, and then arrange the
spatial attention module.

(3) ConvLSTM

The optical flow features of the micro-expression image sequence have strong temporal
correlation. Thus, we use ConLSTM [29] to explore the temporal information from adjacent
frames and retain the spatial information.

LSTM [30] has a good recognition effect for a video stream, but when processing
spatiotemporal data, LSTM uses a complete connection to model the sequence information
in the transformation of input–state and state–state, and then flattens the input image into a
one-dimensional vector. Thus, LSTM does not encode the spatial information, resulting in
the loss of spatial information. ConvLSTM uses convolution to replace matrix multiplication
to act on the conversion between input and state and state and state. Therefore, ConvLSTM
can retain the spatial information of the sequence. The structure of ConvLSTM is shown in
Figure 10.

σ tanh σσ

tanh

ct-1

ft gt ot

ht-1

it

ht

xt

Figure 10. The structure of ConvLSTM.

ConvLSTM combines the advantages of CNNs and LSTMs, enabling the capture of
spatial features while modeling the dynamic variations in time-series data. ConvLSTM
controls the flow of information through three gate mechanisms (input gate, forget gate
and output gate). The computations of these gates involve convolution operations instead
of the fully connected operations in traditional LSTMs: Input Gate: Controls the impact of
input data on the cell state. Forget Gate: Determines how much of the previous time step’s
cell state is forgotten. Output Gate: Regulates the influence of the current cell state on the
hidden state. The calculation Equations for each gate are detailed in Equations (6)–(8):

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi) (6)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + b f ) (7)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (8)

where σ denotes the sigmoid function, ∗ represents the convolution operation, Xt is the
input at the current time step, Ht−1 is the hidden state from the previous time step, and
W and b are the weights and biases, respectively. The process for updating the cell state is
shown in Equations (9) and (10):

C̃t = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (9)

Ct = ft ◦ Ct−1 + it ◦ C̃t (10)

where ◦ denotes element-wise multiplication, tanh represents the hyperbolic tangent func-
tion, C̃t is the new candidate cell state and Ct−1 is the cell state from the previous time step.
The update for the hidden state is calculated as Equation (11):
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Ht = ot ◦ tanh(Ct) (11)

Through the output gate control, the current cell state Ct is activated by the Tanh
function to obtain the current hidden state Ht. ConvLSTM outputs the current cell state
Ct and hidden state Ht at each time step. Ct serves as the processing result for the current
time step, while Ht serves as the input for the next time step.

Therefore, combining the above three modules, our network model is shown in Table 1.

Table 1. Overall network structure.

Network Layer Our Network

Layer 1 Conv0_1, BN1, RuLU, MaxPool
Layer 2 Conv1_1, BN1, ReLU, Conv1_2, BN2

Conv1_3, BN1, ReLU, Conv1_4, BN2

Layer 3
Conv2_1, BN1, ReLU, Conv2_2, BN2

Conv2_3, BN3
Conv2_4, BN1, ReLU, Conv2_5, BN2

Layer 4
Conv3_1, BN1, ReLU, Conv3_2, BN2

Conv3_3, BN3
Conv3_4, BN1, ReLU, Conv3_5, BN2

Layer 5
Conv4_1, BN1, ReLU, Conv4_2, BN2

Conv4_3, BN3
Conv4_4, BN1, ReLU, Conv4_5, BN2

Layer 6 CBAM, Dropout
Layer 7 ConvLSTM, AvgPool, FC

4. Experiment and Analysis
4.1. Datasets and Preprocessing

Considering the frame rate, emotion type and use frequency of each dataset, we use
SMIC [31] and CASME II [32] for the experiments. SMIC contains 164 micro-expression
samples of 16 subjects, which are divided into positive, negative and surprised. Among
them, the positive emotion is happiness, and negative emotions include sadness, fear and
disgust; CASME II contains 255 video samples from 26 participants, which are divided into
seven emotions: happiness, surprise, repression, disgust, sadness, fear and others. Table 2
summarizes the characteristics of the two datasets.

Table 2. Characteristics of datasets.

Characteristics SMIC CASME II

Samples 164 255
Subjects 16 26
Ethnicities 3 1
FPS 100 200
Resolution 640 × 480 640 × 480
Facial Area 160 × 130 340 × 280
Emotion Classes 3 7
Objective Classes - 7
FACS Coded NO YES

In CASME II, the number of samples of sadness and fear is less than 10. In order to
avoid the imbalance of data distribution affecting the recognition effect, we ignore these
two emotions in the experiment. Through image operations including mirror, random
rotation and clipping, we expand the datasets 20 times. The distribution of original and
expanded samples is shown in Table 3.
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Table 3. Sample distribution of datasets.

Emotions SMIC Processed Emotions CASME II Processed

Happiness 32 640
Positive 51 1020 Surprise 25 500

Disgust 63 1260
Negative 70 1400 Repression 27 540

Sadness 7 -
Surprise 43 860 Fear 2 -

Others 99 1980
Total Size 164 3280 Total Size 255 4920

The number of sample frames in the micro-expression datasets is not uniform. There-
fore, we extract the continuous frames from the apex to the peak and fix the length as
11 frames. We preprocess each sample sequence by using face detection and alignment,
facial motion feature amplification and optical flow feature extraction, as follows:

(1) Face detection and alignment

Firstly, we select the first frame image in each sample, and use ASM [33] to extract
68 facial key points; then, we use the Local Weighted Average [34] to transform these facial
key points into matrices, and normalize and align all frames of the sample with these
matrices. Finally, we locate the left eye coordinates, determine the distance between the
two eyes and cut all frames of the samples.

(2) Facial motion feature amplification

We use the video action amplification network based on deep learning to amplify the
features of micro-expression. According to our experiment, when the magnification is too
small, the micro-expression features are not obvious enough; when the magnification is
too large, it will cause too much noise interference and distort the micro-expression image.
After many experiments, we determine that the amplification factor is 3.

(3) Optical flow extraction

We use LiteFlowNet to extract optical flow features from two adjacent micro-expression
images in each sample. After a pair of images are processed through this network, an
optical flow file (.flo) is output and visualized. Therefore, one sequence of 11 frames can be
turned into an optical flow sequence of 10 frames.

4.2. Experimental Environment and Parameter Setting

The operating system of our experiments is ubuntu-16.04 and the development tool
we used is Pycham. Our experiments are accelerated by a Tesla p100-pcie GPU and we
selected the network parameters with the best effect after many experimental comparisons,
as shown in Table 4.

Table 4. Hyperparameters of our network.

Parameter Figure

epoch 50
batch_size 32
base_lr 1 × 10−5

decay 1 × 10−7

momentum 0.9
random deactivation rate 0.5

4.3. Detail of Experiment and Analysis

Our experiments use LOSO (Leave-One-Subject-Out) as the evaluation standard and
use the accuracy and F1-score as the performance indexes of micro-expression recognition.
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By reserving a specific participant sample as the test sample and using other participant
samples as the training sample, we divide the micro-expression recognition accuracy of all
participants equally. The final accuracy is (∑n

i=1 ci)/n, and the F1-score is (∑n
i=1 fi)/n.

The calculation equation of accuracy is shown in Equation (12):

Accuracy = (TP + TN)/(TP + TN + FP + FN) (12)

The F1-score is defined as Equation (13):
P = TP

TP+FP

R = TP
TP+FN

F1 = 2∗P∗R
P+R

(13)

We compared four traditional methods and three methods based on deep learning
with excellent performance in the past few years on the SMIC and CASME II datasets. Our
method achieved the best results in accuracy and F1-score among these methods, which
shows that it has significant advantages in micro-expression recognition. The specific
experimental results are shown in Table 5.

Table 5. Comparison of experimental results.

Methods
SMIC CASME II

ACC (%) F1-Score ACC (%) F1-Score

LBP-TOP [35] 43.38 0.34 46.46 0.42
Bi-WOOF+Phase [36] 68.29 0.67 62.55 0.65
FDM [11] 54.88 0.54 45.93 0.40
Sparse MDMO [37] 70.51 0.70 66.95 0.69
DSSN [38] 63.41 0.65 70.78 0.73
GEME [39] 65.24 0.61 75.02 0.73
OFF-Apex Net [40] 67.68 0.67 68.94 0.70
ASTNet 73.57 0.72 75.61 0.74

Bold text indicates the best results.

The proposed method outperforms other methods in recognition performance on both
the CASME II and SMIC datasets. This is because our proposed method does not use
traditional RGB images but instead utilizes video motion to recognize micro-expressions,
thereby better capturing the dynamics of expressions. Additionally, we combine spa-
tiotemporal characteristics with static features, modeling micro-expressions from multiple
perspectives in a fine-grained manner.

DSSN captures micro-expressions from different angles but only focuses on micro-
expression changes at the image level without considering optical flow features and dy-
namic changes. MDMO divides the face into 36 non-overlapping regions and extracts
optical flow features frame by frame. However, it only applies optical flow features, neglect-
ing the continuous spatiotemporal changes in micro-expressions, resulting in less effective
performance compared to our model.

4.4. Hyperparameter Optimization

First, we compare and experiment with different learning rate settings. Due to the
weak intensity of micro-expression features, the initial learning rate of the network should
be relatively low. In this experiment, we set the learning rates to 1 × 10−3, 1 × 10−4 and
1 × 10−5 and tested them on the CASME II dataset. When the learning rate was 1 × 10−3,
the network training experienced oscillations, and the accuracy could not improve steadily.
This was because the excessively high learning rate prevented the network from reaching
local minima. When the learning rate was 1 × 10−5, the network’s fitting speed was too
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slow, resulting in a waste of time. Therefore, considering these factors, the learning rate
was set to 1 × 10−4 for the experiment.

When training the network, the initial weights need to be initialized according to
a certain distribution to ensure faster convergence of the loss function during training,
thereby achieving better optimization results. However, when initializing network weights
randomly according to a certain distribution, inappropriate initial weights might cause the
loss function to get stuck in local minima during training, preventing it from reaching a
global optimum. Momentum can partially solve this problem. The larger the momentum,
the more energy is converted into potential energy, making it more likely to escape the
confines of local concave regions and enter global concave regions. The most common
setting for momentum is 0.9.

Other parameter settings are as follows: the optimizer used is Stochastic Gradient
Descent (SGD), and lr_scheduler is used to automatically update the learning rate. We
compared batch sizes of 16, 32, 64 and 128, and dropout rates of 0.3, 0.4, 0.5, 0.6 and 0.7.

Figures 11 and 12 show the impact of Batch Size and Dropout on network recognition,
respectively. When the batch is selected as 32 and the dropout parameter is set to 0.5,
the recognition of our network is the best. Dropout prevents overfitting by discarding
some features and improves the generalization ability of the network. However, when
the parameter is set too large, too much effective information is lost, which affects the
learning ability of our network; while when its parameter is set too small, there are too
many redundant neurons to extract enough effective features.

1 6 3 2 6 4 1 2 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Ac
cur

acy
 an

d F
1-s

cor
e(%

)

B a t c h

 A c c u r a c y
 F 1 - s c o r e

(a) SMIC

1 6 3 2 6 4 1 2 8
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Ac
cur

acy
 an

d F
1-s

cor
e(%

)

B a t c h

 A c c u r a c y
 F 1 - s c o r e

(b) CASME II

Figure 11. Influence of different batch sizes on our network.
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Figure 12. Influence of different dropouts on our network.
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The confusion matrices on SMIC and CASME II are shown in Figure 13. It can be
seen from Figure 13 that among the three emotions identified in the SMIC, ‘negative’ has
the highest accuracy, followed by ‘surprise’, and ‘positive’ has the lowest accuracy. The
possible reason is that the number of ‘negative’ samples is the largest and it has high
discrimination from other emotions. Among the five emotions identified in the CASME
II, the accuracy of ‘others’ is the highest, while the accuracy of ‘repression’ is the lowest.
The reason is that the number of ‘others’ is the largest, ‘repression’ has a small number of
samples and the class differentiation between other emotions is small. While the number
of samples is also small, the accuracies of ‘disgust’ and ‘surprise’ are better than that of
‘repression’, which is because the former two are highly distinguished from other emotions.
It can be seen that the number of samples and the intensity of features can have a great
impact on the recognition.

(a) SMIC (b) CASME II

Figure 13. Confusion matrix.

4.5. Ablation and Analysis

To validate the effectiveness of each module, we conducted ablation experiments,
testing the effectiveness of the action amplification module, the spatial attention mechanism
and the channel attention mechanism. We generated four variants: the ResNet-ConvLSTM
network without the action amplification module and both attention mechanisms. ResNet-
ConvLSTM with the action amplification module but without both attention mechanisms.
The ResNet-SpatialAttention-ConvLSTM network without the channel attention module.
The ResNet-ChannelAttention-ConvLSTM network without the spatial attention module.
We compared the results of these variants with our ASTNet.

Table 6 illustrates the effectiveness of micro-expression amplification and compares
the improvement of different attention modules on the network. It can be seen from Table 6
that although action amplification increases the noise of the micro-expression image and
causes a certain degree of image distortion, it has a significant amplification effect on micro-
expression features. On the whole, its recognition effect on the micro-expression has been
improved. ResNet+ConvLSTM has more degradation without the attention mechanism,
which indicates that the importance of pixels in different regions and different channels
of the micro-expression image is different and verifies the effectiveness of our attention
mechanism. Compared with spatial attention and channel attention, CBAM improves
the network recognition effect more significantly. At the same time, it can be seen that
the spatial attention mechanism improves the network recognition effect less than the
channel attention mechanism. This is because the convolution of ConvLSTM is used for
conversion between input and state and state and state, which can better capture the spatial
information of images than LSTM. Therefore, it can be considered that there is an overlap
between the spatial attention mechanism and the convolution of ConvLSTM.

We also try to add CBAM to different locations within ResNet to explore the impact of
location and structure on the CBAM module computing attention map and improve the
effect of the network model. As shown in Table 7, in our proposed network model, ResNet
is composed of five middle layers. We integrate CBAM modules between each two middle
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layers to form four different networks. In Table 8, we show the effect of these networks
on recognizing micro-expressions and analyze the possible reasons. The results show
that they improve the accuracy of recognition less than adding CBAM between ResNet
and ConvLSTM. The results show that although integrating the attention mechanism into
different locations within the ResNet will improve the recognition rate of our network,
their improvement is less than that of integrating CBAM between ResNet and ConvLSTM.
It is difficult to find the law of the effect of the attention mechanism integrated into the
network with the change in location, but they will affect the effect of transfer learning to a
certain extent, so the overall improvement effect is not as good as the effect of integrating
attention outside the network.

Table 6. Effectiveness analysis of amplification and attention models.

Methods
SMIC CASME II

ACC (%) ACC (%)
1 ResNet-ConvLSTM 64.21 66.83
2 ResNet-ConvLSTM 69.59 71.54

2 ResNet-Spatial Attention-ConvLSTM 71.83 73.96
2 ResNet-Channel Attention-ConvLSTM 72.27 74.35

2 ASTNet 73.57 75.61
1 indicates no action amplification. 2 indicates action amplification. Bold text indicates the best experimental
results.

Table 7. Network structure of CBAM integrated into different layers of ResNet.

ResNet in Our Model Fusion Position of Attention

Layer1 Conv0_1, BN1, RuLU, MaxPool
CBAM(1)

Layer2 Conv1_1, BN1, ReLU, Conv1_2, BN2
Conv1_3, BN1, ReLU, Conv1_4, BN2

CBAM(2)

Layer3
Conv2_1, BN1, ReLU, Conv2_2, BN2

Conv2_3, BN3
Conv2_4, BN1, ReLU, Conv2_5, BN2

CBAM(3)
Layer4 Conv3_1, BN1, ReLU, Conv3_2, BN2

Conv3_3, BN3
Conv3_4, BN1, ReLU, Conv3_5, BN2

CBAM(4)

Layer5
Conv4_1, BN1, ReLU, Conv4_2, BN2

Conv4_3, BN3
Conv4_4, BN1, ReLU, Conv4_5, BN2

CBAM indicates that the attention mechanism is added here.

Table 8. Comparison of adding CBAM in different locations.

ResNet+ConvLSTM Network(1) Network(2)

SMIC - ↑3.59% ↑3.52%
CASME II - ↑3.64% ↑3.79%

Network(3) Network(4) Proposed

SMIC ↑3.64% ↑3.59% ↑3.98%
CASME II 3.62% ↑3.61% ↑4.07%

↑ indicates the improvement compared with ‘-’. Bold text indicates the best experimental results.
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5. Application

The ASTNet model has been integrated into a multimodal teaching behavior intelligent
analysis system for smart classrooms (This system is designed based on the open source
smart classroom accessed on 1 October 2023 (https://github.com/hongyao-hongyao/
smart_classroom).), aiming to enhance teaching behavior through advanced technology.
This innovative system utilizes video data to perform detailed analysis of students’ micro-
expressions in the classroom and accurately perceive collective emotions. This emotional
insight assists teachers, enabling them to dynamically adjust teaching methods to improve
student engagement and learning efficiency. The system performs real-time detection
and analysis of classroom emotions through three aspects: attention, emotional state and
facial expressions.

The specific application scenario is a classroom with a frame width of 640 pixels,
height of 480 pixels and frame rate of 30 frames per second, ensuring high-quality data
acquisition and analysis. Figure 14 shows a screenshot of the prototype system, which we
now introduce: Firstly, the system uses three specific metrics to evaluate micro-expressions:
focused emotion, group emotional state and expressed emotion. The three graphs on the
right represent the score curves of these metrics, with the vertical axis showing the metric
scores. Higher scores indicate higher levels of focused emotion, group emotional state and
expressed emotion. The horizontal axis represents time, showing the emotional values at
each time point.

The classroom group emotion perception curve below represents the overall emotional
value of the classroom. The radar chart in the lower left corner shows the ratio of occur-
rences of each behavior to the total number, used as weights. By weighting and summing
each behavior, the classroom group emotion value is obtained.

The system interface also includes real-time video data captured during the class,
with the video capture time displayed in the upper left corner. The bounding boxes in
the video indicate identified students, and the number above each box represents the
individual student’s emotion value. These emotion values are crucial for teachers, as
higher emotion values indicate better student engagement, allowing teachers to adjust their
teaching methods accordingly.

The contribution of this application is significant. By providing real-time, detailed
insights into students’ emotions, the system enables teachers to create more responsive and
effective learning environments. This proactive educational approach not only improves
individual student performance but also enhances the overall classroom atmosphere,
fostering a more supportive and engaging learning experience.

Figure 14. The multimodal teaching behavior intelligent analysis system for smart classrooms.

https://github.com/hongyao-hongyao/smart_classroom
https://github.com/hongyao-hongyao/smart_classroom
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6. Conclusions

We propose a network combining ResNet with ConvLSTM and integrate an attention
mechanism, which achieve a good result in the task of micro-expression recognition. In our
model, ResNet extracts the features in the spatial domain, ConvLSTM processes the features
in the temporal domain and the CBAM model integrated between ResNet and ConvLSTM
make our network pay more attention to the effective information of images and improve
our network’s representation ability of the feature channel and space. We also verify the
effectiveness of the attention mechanism in the proposed network and compare the ability
of the spatial attention mechanism, channel attention mechanism and CBAM to improve
the recognition of our network. Finally, we try to explore the impact of the position of
CBAM in the network on the improvement of the recognition effect. In the follow-up work,
we can try to further optimize the network structure and explore the different combinations
of attention mechanism and ConvLSTM, so as to mine the micro-expression features more
effectively and further improve the recognition effect.
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