The Effects of Activated Carbon Toothpastes on Orthodontic Elastomeric Chains—An In Vitro Study
Abstract
:1. Introduction
- The presence or absence of activated carbon agents in toothpaste has a similar effect on EC tensile strength degradation over time;
- The presence or absence of activated carbon agents in toothpaste has a similar effect on the EC rupture point over time;
- The presence or absence of activated carbon agents in toothpaste similarly affects the EC colour stability.
2. Materials and Methods
2.1. Sample Size
2.2. Sample Preparation
2.3. Acrylic Plates
2.4. Determination of the Tensile Strength
2.5. Determination of the Resistance to Rupture
2.6. Determination of Colour Stability
2.7. Statistical Analysis
3. Results
3.1. Baseline Discrepancy between the Three Brands of ECs
3.2. Tensile Strength Assessment within and between Groups on Day 28
3.3. Rupture Point Assessment within and between Groups on Day 28
3.4. Evaluation of Colour Change within and between Groups on Day 28
4. Discussion
5. Conclusions
- There are significant discrepancies in tensile strength, rupture point and colour between the three EC brands tested, both before and after their exposure to any toothpaste;
- The material composition of each brand of EC contributes to its strength decay, resistance to rupture and colour change over time;
- The percentage of activated carbon in a toothpaste may be responsible for the variable effects on each brand of EC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yagura, D.; Baggio, P.; Carreiro, L. Deformation of elastomeric chains related to the amount and time of stretching. Dental Press. J. Orthod. 2013, 18, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Tortamano, A.; Naccarato, S. An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs. Braz. Oral. Res. 2007, 21, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mirhashemi, A.; Saffarshahroudi, A.; Sodagar, A.; Atai, M. Force-degradation pattern of six different orthodontic elastomeric chains. J. Dent. 2012, 9, 204. [Google Scholar]
- Eliades, T.; Bourauel, C. Intraoral aging of orthodontic materials: The picture we miss and its clinical relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412. [Google Scholar] [CrossRef]
- Pithon, M.; Macena, J.; Prado, M. Effects of active substances in dentifrices on force degradation of elastomeric chain elastics. J. Indian. Orthod. Soc. 2014, 48, 27–32. [Google Scholar] [CrossRef]
- Bachiega Morelli, R.F.; Nelson-Filho, P.; Carpio Horta, K.; Feres, M.; Lima Ferreira, J.T.; Romano, F.L.; Stuani, M.B.S.; Saraiva, M.C.P.; Reis, C.L.B.; Matsumoto, M.A.N. Microbial contamination profile on esthetic elastomeric ligatures through the checkerboard DNA–DNA hybridization technique: A randomized split-mouth study. J. Orofac. Orthop. 2024, 85, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Braga, E.; Souza, G.; Barretto, P.; Ferraz, C.; Pithon, M. Experimental Evaluation of Strength Degradation of Orthodontic Chain Elastics Immersed in Hot Beverages. J. Indian Orthod. Soc. 2019, 53, 244–248. [Google Scholar] [CrossRef]
- Vaz, V.; Jubilato, D.; Oliveira, M.R.M.; Bortolatto, J.F.; FlorOs, M.C.; Dantes, A.A.R.; Oliveira Junior, O.B.D. Whitening toothpaste containing activated charcoal, blue covarine, hydrogen peroxide or microbeads: Which one is the most effective? J. Appl. Oral. Sci. 2019, 27, e20180051. [Google Scholar] [CrossRef]
- Franco, M.; Uehara, J.; Meroni, B.; Zuttion, G.; Cenci, M. The effect of a charcoal-based powder for enamel dental bleaching. Oper. Dent. 2020, 45, 618–623. [Google Scholar] [CrossRef]
- Pertiwi, U.; Eriwati, Y.; Irawan, B. Surface changes of enamel after brushing with charcoal toothpaste. J. Phys. Conf. Ser. 2017, 884, 12002. [Google Scholar] [CrossRef]
- Brooks, J.; Bashirelahi, N.; Reynolds, M. Charcoal and charcoal-based dentifrices: A literature review. J. Am. Dent. Assoc. 2017, 148, 661–670. [Google Scholar] [CrossRef]
- Muntean, A.; Sava, S.; Delean, A.G.; Mihailescu, A.M.; Dumitrescu, L.S.; Moldovan, M.; Festila, D.G. Toothpaste composition effect on enamel chromatic and morphological characteristics: In vitro analysis. Materials 2019, 12, 2610. [Google Scholar] [CrossRef] [PubMed]
- Hattab, F.N.; Qudeimat, M.A.; AL-Rimawi, H.S. Dental discoloration: An overview. J. Esthet. Restor. Dent. 1999, 11, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Behnaz, M.; Dalaie, K.; Hosseinpour, S.; Namvar, F.; Kazemi, L. The effect of toothpastes with bleaching agents on the force decay of elastomeric orthodontic chains. Eur. J. Dent. 2017, 11, 427–431. [Google Scholar] [CrossRef]
- Huaman-Sarmiento, E.; Mayta-Tovalino, F.; Munive-Degregori, A.A.; Mendoza, R.; Barja-Ore, J.; Mauricio-Vilchez, C. Uses and applications of activated charcoal in the manufacture of toothpastes and oral rinses: A narrative review. J. Intl Oral. Health 2023, 15, 237–241. [Google Scholar]
- Ghajari, M.F.; Shamsaei, M.; Basandeh, K.; Galouyak, M.S. Abrasiveness and whitening effect of charcoal-containing whitening toothpastes in permanent teeth. Dent. Res. J. 2021, 18, 51. [Google Scholar] [CrossRef]
- Maciel, C.R.O.; Amorim, A.A.; Oliveira, R.F.L.; Vivanco, R.G.; Pires-de-Souza, F.C.P. Whitening efficacy of popular natural products on dental enamel. Braz. Dent. J. 2022, 33, 55–66. [Google Scholar] [CrossRef]
- Singh, R.P.; Sharma, S.; Logani, A.; Shah, N.; Singh, S. Comparative evaluation of tooth substance loss and its correlation with the abrasivity and chemical composition of different dentifrices. Indian J. Dent. Res. 2016, 27, 630–636. [Google Scholar]
- Oshagh, M.; Khajeh, F.; Heidari, S.; Torkan, S. The effect of different environmental factors on force degradation of three common systems of orthodontic space closure. Dent. Res. J. 2015, 12, 50–56. [Google Scholar]
- Baratieri, C.; Mattos, C.; Alves, M.J.; Lau, T.; Najomi, L.; Souza, M. In situ evaluation of orthodontic elastomeric chains. Braz. Dent. J. 2012, 23, 394–398. [Google Scholar] [CrossRef]
- Mattos, F. Avaliação Da Deformação de Cadeias Elásticas Submetidas a Diferentes Meios de Descontaminação São Paulo (SP); Universidade São Paulo: São Paulo, Brazil, 2013. [Google Scholar]
- Araujo, F.; Ursi, W. Estudo da degradação da força gerada por elásticos ortodônticos sintéticos. Rev. Dental Press. Ortod. Ortop. Facl. 2006, 11, 52–61. [Google Scholar] [CrossRef]
- Rock, W.P.; Wilson, H.J.; Fisher, S.E. A laboratory investigation of orthodontic elastomeric chains. Br. J. Orthod. 1985, 12, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Halimi, A.; Benyahia, H.; Doukkali, A.; Azeroual, M. A systematic review of force decay in orthodontic elastomeric power chains. Int. Orthod. 2012, 10, 223–240. [Google Scholar] [CrossRef]
- Eliades, T.; Eliades, G.; Silikas, N.; Watts, D. Tensile properties of orthodontic elastomeric chains. EJO 2004, 26, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Aldrees, A.; Al-Foraidi, S.; Murayshed, M. Color stability and force decay of clear orthodontic elastomeric chains: An in vitro study. Int. Orthod. 2015, 13, 287–301. [Google Scholar] [CrossRef] [PubMed]
EC Brand | t0 | Toothpaste | t28 | ΔTS (t28 − t0) | Loss % |
---|---|---|---|---|---|
3M Unitek® | 3.287 ± 0.143 | Colgate Total® | 1.448 ± 0.014 | −1.84 b,c (±0.55) | −55.93 |
Colgate Max White® | 1.484 ± 0.026 | −1.80 b,c (±0.56) | −54.86 | ||
Dr Organic® | 1.406 ± 0.014 | −1.88 a,b,c (±0.58) | −57.23 | ||
Ormco® | 3.327 ± 0.092 | Colgate Total® | 1.718 ± 0.021 | −1.61 c (±0.35) | −48.37 |
Colgate Max White® | 1.739 ± 0.030 | −1.59 c (±0.38) | −47.73 | ||
Dr Organic® | 1.584 ± 0.013 | −1.74 b,c (±0.37) | −52.39 | ||
Ortho Classic® | 3.717 ± 0.111 | Colgate Total® | 1.454 ± 0.017 | −2.26 a,b (±0.40) | −60.89 |
Colgate Max White® | 1.318 ± 0.018 | −2.40 a (±0.45) | −64.54 | ||
Dr Organic® | 1.543 ± 0.038 | −2.17 a,b (±0.50) | −58.48 |
EC Brand | T0 | Toothpaste | T28 | ΔRP (t28 − t0) | Lose % |
---|---|---|---|---|---|
3M Unitek® | 36.352 ± 0.604 | Colgate Total® | 35.674 ± 0.309 | −0.68 b (±2.35) | −1.87 |
Colgate Max White® | 35.517 ± 0.264 | −0.84 a,b (±2.40) | −2.30 | ||
Dr Organic® | 36.343 ± 0.232 | −0.01 b (±2.61) | −0.63 | ||
Ormco® | 42.628 ± 0.213 | Colgate Total® | 42.782 ± 0.643 | 0.15 b (±2.46) | ±0.36 |
Colgate Max White® | 41.604 ± 0.663 | −1.02 a,b (±2.46) | −2.4 | ||
Dr Organic® | 38.155 ± 1.885 | −4.47 a (±7.47) | −10.49 | ||
Ortho Classic® | 31.323 ± 0.210 | Colgate Total® | 31.945 ± 0.138 | 0.62 b (±0.81) | ±1.98 |
Colgate Max White® | 31.404 ± 0.187 | 0.08 b (±1.34) | ±0.26 | ||
Dr Organic® | 31.907 ± 0.214 | 0.58 b (±1.32) | ±1.86 |
EC Brand | Toothpaste | ΔE (t28 − t0) | Min.–Max. |
---|---|---|---|
3M Unitek® | Colgate Total® | 0.67 a (±0.48) | 0.14–1.71 |
Colgate Max White® | 0.66 a (±0.48) | 0.22–1.91 | |
Dr Organic® | 0.92 a (±0.69) | 0.14–2.79 | |
Ormco® | Colgate Total® | 1.47 a,b (±1.00) | 0.14–3.26 |
Colgate Max White® | 2.06 a,b (±1.15) | 0.77–5.09 | |
Dr Organic® | 2.55 b (±1.16) | 1.16–4.74 | |
Ortho Classic® | Colgate Total® | 1.87 a,b (±1.99) | 0.30–7.72 |
Colgate Max White® | 1.55 a,b (±1.93) | 0.14–6.24 | |
Dr Organic® | 2.66 b (±2.10) | 0.66–6.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariano Pereira, P.; Bugiaghis, I.; Do Carmo, M.I.; Proença, L. The Effects of Activated Carbon Toothpastes on Orthodontic Elastomeric Chains—An In Vitro Study. Appl. Sci. 2024, 14, 7791. https://doi.org/10.3390/app14177791
Mariano Pereira P, Bugiaghis I, Do Carmo MI, Proença L. The Effects of Activated Carbon Toothpastes on Orthodontic Elastomeric Chains—An In Vitro Study. Applied Sciences. 2024; 14(17):7791. https://doi.org/10.3390/app14177791
Chicago/Turabian StyleMariano Pereira, Pedro, Iman Bugiaghis, Mariana Isidro Do Carmo, and Luis Proença. 2024. "The Effects of Activated Carbon Toothpastes on Orthodontic Elastomeric Chains—An In Vitro Study" Applied Sciences 14, no. 17: 7791. https://doi.org/10.3390/app14177791
APA StyleMariano Pereira, P., Bugiaghis, I., Do Carmo, M. I., & Proença, L. (2024). The Effects of Activated Carbon Toothpastes on Orthodontic Elastomeric Chains—An In Vitro Study. Applied Sciences, 14(17), 7791. https://doi.org/10.3390/app14177791