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Abstract: Accurate traffic prediction is crucial for urban planning, especially in rapidly growing
cities. Traditional models often struggle to account for sudden traffic pattern changes, such as
those caused by the COVID-19 pandemic. Neural networks offer a powerful solution, capturing
complex, non-linear relationships in traffic data for more precise prediction. This study aims to
create a neural network model for predicting vehicle numbers at main intersections in the city. The
model is created using real data from the sensors placed across the city of Zilina, Slovakia. By
integrating pandemic-related variables, the model assesses the COVID-19 impact on traffic flow. The
model was developed using neural networks, following the data-mining methodology CRISP-DM.
Before the modelling, the data underwent thorough preparation, emphasising correcting sensor
errors caused by communication failures. The model demonstrated high prediction accuracy, with
correlations between predicted and actual values ranging from 0.70 to 0.95 for individual sensors
and vehicle types. The results highlighted a significant pandemic impact on urban mobility. The
model’s adaptability allows for easy retraining for different conditions or cities, making it a robust,
adaptable tool for future urban planning and traffic management. It offers valuable insights into
pandemic-induced traffic changes and can enhance post-pandemic urban mobility analysis.

Keywords: traffic prediction; neural networks; COVID-19 pandemic impact; urban mobility

1. Introduction

Managing the transportation system requires high-quality real-time data. As the
intensity and density of traffic flow increase, the demand for effective traffic interventions
also rises [1]. Intelligent transportation systems (ITS) use various technologies—wireless
networks, sensors, mobile phone data, and GPS. ITS empowers diverse components within
the transportation system—vehicles, roads, traffic lights, message signs, etc. [2]. Conse-
quently, this results in increased capacity of the transportation network and higher safety
and comfort [3]. In [4], the authors introduced an intelligent transportation system called
“Itssafe”, designed to enhance traffic safety and efficiency. The system aims to use modern
technologies and analytical tools for monitoring and managing traffic. It leads to reducing
the risk of traffic accidents and improving traffic flow. Suitable data collection methods are
crucial for such systems, often utilising various types of sensors.

Sensors are one of the essential components of intelligent transportation systems. They
help to obtain data in many areas of transportation, including traffic flow monitoring,
accident detection, emission monitoring, and other transportation aspects [5]. According
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to [6], sensors are also essential for adaptive traffic light control at intersections, monitoring
road surface conditions [7,8], and measuring the weight of moving vehicles [9].

The selection of an appropriate sensor type depends on the specific environmental
conditions of the application [10]. Typical systems for vehicle detection and classification
primarily utilise ultrasonic sensors [11], acoustic sensors [12], infrared sensors [13], ultra-
sonic sensors [14], inductive loops [15], magnetic sensors [16], video surveillance [17], laser
sensors [18], and microwave radars [19]. In the past, pneumatic sensors were also used to
measure the traffic flow characteristics using a hose placed on the road. Video detection or
other aforementioned sensors have already surpassed this outdated technology [20]. All
sensors measure physical characteristics, such as sound waves, light emissions, changes
in magnetic fields, etc. However, correct processing of these input variables determines
macroscopic data—speed, intensity, and traffic flow density [21]. These characteristics can
be obtained not only from traffic sensors but also, for example, from road users’ mobile
devices [22]. Apart from these fundamental characteristics, some cases require additional
information—vehicle classification, number of axles, vehicle weight, and car presence in
a parking space or in front of an intersection [23]. In some applications, the direction of
travel is also essential, especially for wrong-way vehicle detection systems [24].

The system must be capable of receiving information from multiple sensors at once.
Therefore, wireless sensor networks (WSNs) connect all sensors to one consistent network.
WSNs consist of remote sensor devices positioned at various locations within the road
network, communicating wirelessly with each other. These sensors collect crucial traffic
data, which is then processed and analysed to enhance traffic management, predict traffic
situations, optimise traffic flows, and improve road safety. WSNs in transportation provide
an effective tool for obtaining real-time information [25]. WSNs are used not only in
transportation for traffic optimisation [26] but also in many other sectors—military [27,28],
healthcare [29,30], and more. Figure 1 illustrates the basic diagram of WSN.
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Figure 1. The basic scheme of WSN.

The principle of operation of magnetic sensors is simple—they operate based on
detecting magnetic fields disrupted by metal parts of passing vehicles. It induces an
electrical current in the sensors as the magnetic field changes [31]. With proper system
calibration, magnetic sensors can measure speed, traffic flow intensity, and congestion [32]
and also categorise vehicles by length [33–35].

However, magnetic sensors also have disadvantages. There may be discrepancies in
the vehicle detection process because there is a problem with a blind zone of the geomag-
netic signal. This problem can occur between vehicle axles, specifically when the sensor
detects longer vehicles with extended chassis—trucks, buses, and SUVs. Consequently, mul-
tiple detections are also possible during low-speed manoeuvres. As illustrated in Figure 2,
the bus shows increased magnetic interference signals from its front and rear wheel areas.
Nevertheless, a blind zone between the front and rear axles within the magnetic signal may
lead to incorrect vehicle identification by the sensor.
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The suitability of using a specific type of sensor depends on many application con-
ditions. From the perspective of evaluating the measured data, it is necessary to find
procedures and algorithms that ensure the most accurate results [36].

The global outbreak of the COVID-19 pandemic has reshaped the dynamics of urban
life in unprecedented ways. Cities worldwide experienced significant disruptions in various
sectors, including transportation. The impact of the COVID-19 pandemic on mobility was
extensive, mainly due to the implementation of widespread lockdowns, social distancing
measures, and other anti-pandemic interventions. Quarantine measures, social distancing,
travel restrictions, and movement bans reduced mobility worldwide.

Like many others, the city of Zilina in Slovakia faced the intricate challenge of manag-
ing urban mobility during these extraordinary times. Understanding the impacts of the
pandemic on traffic and transportation systems is crucial for effective urban planning and
policymaking. This study delves into the nuances of traffic dynamics, with a particular
focus on the pandemic period. We will examine how traffic density changed during the
analysed period.

In response to urban traffic’s complex and dynamic nature, this research employs
advanced artificial intelligence models, specifically neural networks, to model and analyse
the intricate interplay between various factors influencing traffic. Neural networks have
proven invaluable tools in capturing and understanding complex relationships within large
datasets, making them well-suited for modelling the multifaceted aspects of urban mobility.

The study leverages real data from a network of sensors strategically placed through-
out Zilina, capturing the movements of vehicles across key intersections. This article
focuses exclusively on magnetic sensors integrated into WSN. These sensors provide real-
time information, allowing for a comprehensive analysis of traffic patterns. Importantly,
the study incorporates variables related to the COVID-19 pandemic, sourced from in-
ternational databases tracking government responses and public health measures. By
integrating pandemic-related variables into the neural network model, we aim to analyse
how anti-pandemic measures have influenced traffic flow. The study not only seeks to
clarify the pandemic impacts but also brings valuable insight for future urban planning in
a post-pandemic era.

This research also shows the potential of neural network models in modelling the
complexities of traffic dynamics. Beyond the immediate implications for Zilina, the findings
of this study may inform broader discussions on resilient and adaptive urban transportation
systems in the face of unforeseen challenges.

The following sections of the article correspond to the structure of a scientific study.
The Literature Review section captures the current state of knowledge in the research area.
The Methodology and Data section describes the data used in the study and the process of
its thorough preparation and also describes the research methodology and briefly explains
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the modelling techniques used in the study. In the Results section, some of the study’s
findings are presented. The Discussion section discusses the strengths and weaknesses of
the study and its potential future directions. The final section contains the conclusions.

2. Literature Review

Urban mobility is a critical aspect of modern cities, impacting transportation efficiency,
environmental sustainability, and overall quality of life. Understanding urban mobility
patterns becomes increasingly important as cities continue to grow and evolve. In recent
years, advancements in sensor technology and data collection have allowed researchers to
delve deeper into the dynamics of urban mobility.

To model traffic flow, researchers have turned to deep learning techniques. In [37], the
authors comprehensively reviewed the latest advancements in utilising neural network
algorithms to address various traffic forecasting issues, including road traffic flow, speed
prediction, and passenger flow estimation. The survey also examines the advantages and
disadvantages of graph neural networks compared to other deep learning models for traffic
forecasting. A study by [38] offers an overview of deep learning techniques used in traffic
flow prediction models and highlights the influence of various factors on the performance
of these models in different scenarios.

Thanks to the rapid evolution in deep learning and neural networks, better evaluation
of measured data, their interpretation, and future prediction should be achieved. However,
traditional machine learning models often struggle with the complex association features
between road sections, especially when dealing with the exponential growth in the number of
vehicles. In their study [39], the authors proposed a method for sharing information between
road segments and used it for their prediction model, which combines convolutional neural
networks and road segment grouping algorithms to predict traffic congestion more accurately.
Similarly, in [40], the authors explored neural network-based traffic-flow prediction models.
The authors used artificial neural networks to model traffic volume in major junctions in
Istanbul. In [41], the authors aimed their study at demonstrating machine learning algorithms’
ability to predict road traffic based on data from software traffic simulators in case of temporal
unavailability of real data from road sections. Unlike microscopic traffic simulation, these
neural network-based algorithms can work in real-time, making them suitable for applications
such as determining variable message road sign speeds.

In [42], the authors explored the possibilities of incorporating neural networks into
processing data from traffic sensors. The study aimed to optimise the monitoring system
and increase its efficiency and reliability in detecting and tracking vehicle movement on
roads. In [43], the authors introduced a vehicle detection algorithm capable of tracking
multiple vehicles simultaneously. They also developed a real-time vehicle tracking counter
that integrates vehicle detection and tracking algorithms to measure traffic flow accurately.
These models are based on deep learning algorithms and achieved an average accuracy of
92% with an average processing speed of nearly 38 frames per second. In [44], the authors
introduced automatic vehicle detection and classification using deep neural networks.
Their models are trained on the data from the Bangladeshi vehicle images dataset, achieve
an accuracy of over 83% and are highly usable in solving minor incidents on streets in
order to avoid collisions, accidents or even human fatalities. In their study [45], the authors
discussed using a wavelet neural network in traffic flow prediction tasks focused on the
prediction for weekdays and weekends separately. Their model achieves a lower level of
error in its predictions. In their study [46], the authors also considered temporal correlation
between the data used for traffic flow predictions. In their model, the authors developed
attention mechanisms to capture the spatiotemporal correlations of the data sequences to
achieve accurate traffic flow predictions and make more rational decisions.



Appl. Sci. 2024, 14, 7793 5 of 32

3. Methodology and Data
3.1. Data Used in the Study

The study is conducted using real data from sensors installed at intersections in the city
of Zilina. The data are publicly available from the website https://dashboards.clevernet.sk
(accessed on 1 February 2023), where, among other information, the numbers of vehicles
passing through individual installed sensors are provided. Nine areas along significant
streets in the city are monitored, all in both inbound (toward the centre) and outbound
(away from the centre) directions [47]. The list of monitored streets and the number of
sensors is detailed in Table 1.

Table 1. Number of sensors in the city.

Street Code in the Study Number of Sensors

1 2

2 2

3 2

4 2

5 2

6 4

7 2

8 5

9 5

In this study, we calculated the total vehicle numbers at each sensor within an inter-
section for simplification. Therefore, in the following text, when we refer to a “sensor”, we
mean the cumulative number of vehicles, and we will denote these sensors by the numbers
assigned to them in the first column of Table 1. The location of the sensors within the city is
illustrated in Figure 3.
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In the study, we utilised data from 6 June 2021 to 5 August 2022. This timeframe was
chosen to ensure that all sensors were already operational, as some were installed later or as
additional units, ensuring comparability of analyses. The end date of the analysed period was
selected as the most recent date for which data were available when the analysis commenced.

The number of vehicles passing each sensor is monitored in 5-min intervals. For
this study, we aggregated vehicle numbers into 15-min time intervals, resulting in a total
of 365,400 records for the observation period. Vehicles passing through the sensors are
categorised into four groups: cars, vans, trucks, and unknown. The type of vehicle is
automatically determined by the sensor based on its dimensions. The types of distinguished
vehicles are illustrated in Figure 4.

https://dashboards.clevernet.sk


Appl. Sci. 2024, 14, 7793 6 of 32

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 32 
 

The number of vehicles passing each sensor is monitored in 5-min intervals. For this 
study, we aggregated vehicle numbers into 15-min time intervals, resulting in a total of 
365,400 records for the observation period. Vehicles passing through the sensors are cate-
gorised into four groups: cars, vans, trucks, and unknown. The type of vehicle is automat-
ically determined by the sensor based on its dimensions. The types of distinguished vehi-
cles are illustrated in Figure 4. 

 
Figure 4. Types of vehicles detected by the sensors. 

Additionally, speeds at which vehicles pass through the sensors are recorded, distin-
guishing speeds into categories of up to 30 km/h, between 30 and 60 km/h, and above 60 
km/h. The lane through which the vehicle passes (left, middle, right, if such lanes exist at 
the given intersection) is also recorded. However, for this study, we did not differentiate 
between vehicle speeds or lanes. Therefore, vehicle numbers were only distinguished by 
vehicle type and direction, aggregated across all speeds and lanes. 

Therefore, the entire database for this analysis is composed of records from 9 sensors, 
each in two directions (in and out), for each of the four types of vehicles (cars, vans, trucks, 
unknown). Therefore, in total, the database contains 72 variables, which we consider de-
pendent (target) variables for this study. The list of target variables and their labels used 
in the study is in Table 2. 

Table 2. Target variables. 

Variable Name Characteristics 
cars_in Number of vehicles of the type cars in the direction to the city centre (direction in) 
vans_in Number of vehicles of the type vans in the direction to the city centre (direction in) 

trucks_in Number of vehicles of the type trucks in the direction to the city centre (direction in) 
unknown_in Number of vehicles of the type unknown in the direction to the city centre (direction in) 

cars_out Number of vehicles of the type cars in the direction from the city centre (direction out) 
vans_out Number of vehicles of the type vans in the direction from the city centre (direction out) 

trucks_out Number of vehicles of the type trucks in the direction from the city centre (direction out) 
unknown_out Number of vehicles of the type unknown in the direction from the city centre (direction out) 

In this study, we focus on creating a mobility model, specifically the model for pre-
dicting the number of vehicles moving at these key intersections in Zilina. The model is 
constructed using the method of neural networks, which is explained in more detail in the 
methodological section. The input variables for this model include variables whose names 
and explanations are provided in Table 3. 

  

Figure 4. Types of vehicles detected by the sensors.

Additionally, speeds at which vehicles pass through the sensors are recorded, distin-
guishing speeds into categories of up to 30 km/h, between 30 and 60 km/h, and above
60 km/h. The lane through which the vehicle passes (left, middle, right, if such lanes exist
at the given intersection) is also recorded. However, for this study, we did not differentiate
between vehicle speeds or lanes. Therefore, vehicle numbers were only distinguished by
vehicle type and direction, aggregated across all speeds and lanes.

Therefore, the entire database for this analysis is composed of records from 9 sensors,
each in two directions (in and out), for each of the four types of vehicles (cars, vans, trucks,
unknown). Therefore, in total, the database contains 72 variables, which we consider
dependent (target) variables for this study. The list of target variables and their labels used
in the study is in Table 2.

Table 2. Target variables.

Variable Name Characteristics

cars_in Number of vehicles of the type cars in the direction to the city centre (direction in)

vans_in Number of vehicles of the type vans in the direction to the city centre (direction in)

trucks_in Number of vehicles of the type trucks in the direction to the city centre (direction in)

unknown_in Number of vehicles of the type unknown in the direction to the city centre (direction in)

cars_out Number of vehicles of the type cars in the direction from the city centre (direction out)

vans_out Number of vehicles of the type vans in the direction from the city centre (direction out)

trucks_out Number of vehicles of the type trucks in the direction from the city centre (direction out)

unknown_out Number of vehicles of the type unknown in the direction from the city centre (direction out)

In this study, we focus on creating a mobility model, specifically the model for pre-
dicting the number of vehicles moving at these key intersections in Zilina. The model is
constructed using the method of neural networks, which is explained in more detail in the
methodological section. The input variables for this model include variables whose names
and explanations are provided in Table 3.

Table 3. Input variables used in the study.

Variable Name Variable Description Values

date Date 6 June 2021–5 August 2022

time Time given in 15-min intervals from 0:00 to 23:45 in 15-min intervals, recoded into
values 1–96
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Table 3. Cont.

Variable Name Variable Description Values

sensor Sensor number 1–9 (see Table 1)

working_day Indicator of working day 1 = working day, 0 = day of rest

weekend Indicator of weekend day 1 = Saturday or Sunday, 0 = Monday to Friday

national_holiday Indicator of holiday day 1 = holiday, 0 = not a holiday

vacation Vacation day 1 = vacation, 0 = not a vacation

day_of_week Day of the week 1 = Monday, 2 = Tuesday . . ., 7 = Sunday

day_of_week_cat Day of the week categorised 1 = Saturday or Sunday; 2 = Tuesday, Wednesday,
Thursday; 3 = Monday, Friday

stringency index SK Index of stringency of anti-pandemic measures,
a variable related to the COVID-19 pandemic 0–100

containment health index SK Health index, a variable related to the
COVID-19 pandemic 0–100

government response index SK Government response index, a variable related
to the COVID-19 pandemic 0–100

economic support index SK Economic support index, a variable related to
the COVID-19 pandemic 0–100

school closing SK School closures, a variable related to the
COVID-19 pandemic

0 (no measures), 1 (recommended closing),
2 (required closing)

workspace closing SK Closure of workplaces, a variable related to the
COVID-19 pandemic

0 (no measures), 1 (recommended closing),
2 (required closing for some sectors), 3 (required

closing for all)

cancel public events SK Cancellation of public events, a variable
related to the COVID-19 pandemic

(no measures), 1 (recommended cancellation),
2 (required cancellation)

restrictions on gatherings SK Restrictions on gatherings, a variable related to
the COVID-19 pandemic

0 (no restrictions), 3 (restrictions on gatherings
between 11–100 people), 4 (restrictions on

gatherings of 10 people and less)

close public transport SK Restriction of public transport, a variable
related to the COVID-19 pandemic

in Slovakia, only value 0 (no measures), this
variable has been omitted from the analyses

stay at home requirements SK Index of requirements to stay at home, a
variable related to the COVID-19 pandemic

0 (no measures), 1 (recommended not to leave the
house), 2 (required not to leave the house)

movement restrictions SK Movement restriction, a variable related to the
COVID-19 pandemic

in Slovakia, only value 0, this variable has been
omitted from the analyses

international travel SK International travel, a variable related to the
COVID-19 pandemic

0 (no measures), 1 (recommended restriction),
2 (restrict movement)

confirmed cases SK Number of confirmed cases, a variable related
to the COVID-19 pandemic real value

confirmed deaths SK Number of confirmed deaths, a variable
related to the COVID-19 pandemic real value

In Table 3, several variables are mentioned that we used to describe the situation
during the COVID-19 pandemic in Slovakia. These variables are internationally published
on the COVID-19 Government Response Tracker website [48], which seeks to quantify the
pandemic situation and the anti-pandemic measures implemented by various countries
worldwide using multiple indicators. This project has tracked anti-pandemic measures
since 1 January 2020, in more than 180 countries worldwide. In total, 21 indicators are
calculated, representing the scale of the implemented measures. These indicators were
published until the end of the year 2022. In the study, we used the values of these indices
for the entire Slovakia, as it is impossible to obtain values for smaller territorial units.

The indicators can be categorised into four primary groups:

• Restrictions and closures: These indicators capture data on policies related to restric-
tions and closures, including school shutdowns and movement limitations.
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• Economic policies: These indicators document economic measures, such as income
support for citizens and the provision of foreign aid.

• Healthcare system: This indicator tracks initiatives within the healthcare sector, such as
COVID-19 testing protocols, emergency healthcare investments, and vaccination strategies.

• Vaccination policies: These indicators record details on vaccination policies, including
the country’s priority list, eligible groups for vaccination, individual vaccination costs,
and the presence of a vaccination mandate.

For simplification, four main indices were created, cumulating various government
measures. These indices range from 0 to 100 and seek to quantify the number and degree
of measures adopted. The effectiveness of these measures is not evaluated. Since the onset
of vaccination, these indices also consider how anti-pandemic measures differ between
vaccinated and unvaccinated populations. The indices are defined as follows:

• Overall government response index: This index tracks the evolution of the government’s
response across all indicators in the database, reflecting changes in intensity during
the pandemic. It is derived from all ordinal indicators.

• Containment and health index: This index merges restrictions and lockdowns with
measures such as testing, contact tracing policies, short-term healthcare investments,
and vaccine investments. It uses all common indicators of containment, closure
policies, and healthcare system policies.

• Stringency index: This index measures the strictness of lockdown policies primarily
affecting people’s behaviour. It includes all common containment and closure policy
indicators as well as an indicator for public information campaigns.

• Economic support index: This index documents measures like income support and debt
policies, calculated using all common economic policy indicators.

Additionally, we considered the published numbers of confirmed COVID-19 cases
and deaths [49].

3.2. Methodology of the Study

This study aimed to create a predictive supervised model using a neural network that
could accurately predict the number of vehicles of different types entering and leaving
the city centre at each monitored sensor. To achieve this goal, we approached the task in
this study as a data mining project, utilising the CRISP-DM methodology (Cross Industry
Standard Process for Data Mining, publicly available on the CRISP-DM website [50]). This
methodology involves dividing the data mining task into six main phases outlined in the
following diagram, see Figure 5.
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As we consider creating a predictive model for vehicle numbers as a data mining task,
the dataset is the basic source of information for solving the task. Since this involves a



Appl. Sci. 2024, 14, 7793 9 of 32

large volume of automatically collected data that cannot be processed using conventional
methods, we consider it big data. Subsequently, the data mining project is divided into the
following six phases [50]:

1. Business (problem) understanding: In this phase, we define the problem to be solved
very specifically. We define the solution vision, criteria, and values the solution should
meet. We try to understand the ongoing processes captured in the data.

2. Data understanding: In this phase, we work with the data, beginning by identifying
suitable data sources, verifying the existence of appropriate data for solving the problem,
and their availability. The data used in this study are described in the next section.

3. Data preparation: In this phase, we integrate data from various sources and databases
and then proceed with their preparation until we prepare them into a modelling
matrix for creating the predictive model. These processes include cleaning, validating
values, calculating new variables, aggregation, filtering, and similar data operations.

4. Modelling: We apply machine learning methods to find the most suitable method
applicable to the given data for solving the defined problem. The output of this phase
is the created predictive model.

5. Evaluation: We check the created solution and assess its quality using evaluation
statistical metrics. We verify the fulfilment of the criteria defined for the solution in
the first phase.

6. Deployment: The final phase of the data mining project is deploying the created model into
practice and implementing it into the enterprise’s internal systems or other task issuers.

To predict mobility during the COVID-19 pandemic, we used the statistical software
IBM SPSS Statistics (version 26) for the data preparation phase and the data mining software
IBM SPSS Modeler (version 18.3) for the modelling and evaluation phases. IBM SPSS
Modeler operates on the principle of visual programming, and its significant advantage
lies in its data openness. Firstly, the created modelling streams can be utilised for newly
emerging or newly acquired datasets, thereby gaining new predictions. Additionally, the
created models can be adapted to changed circumstances. If, over time, we find that the
predictions generated by the model are no longer sufficiently accurate and do not meet the
established qualitative criteria, or if the circumstances of mobility in the city have changed
to the extent that it would be appropriate to capture the new situation using data in the
model, the models can be updated by retraining them on new data.

3.2.1. Methodology of Data Preparation

According to the CRISP-DM methodology, preparing a high-quality modelling matrix
containing data that will lead us to the solution before creating the predictive model is
essential. However, it is crucial for these data to be of the highest possible quality. This
means it is necessary to thoroughly check the data quality, correctness of values, relevance,
and admissibility of values and to eliminate or correct any errors in the data.

It is widely known that the data preparation phase is the most time-consuming in
the entire data mining project, possibly taking up more than 80% of the total project time.
Similarly, in the case of this study, after a thorough examination of the data, we found
errors likely caused by incorrect functioning or complete failure of communication from
the sensor (or sensors). Such communication failures resulted in data errors where the
sensor reported zero counts for all types of vehicles (cars, vans, trucks, and unknown)
for several consecutive 15-min time intervals, and subsequently, upon the restoration of
communication functionality, the sensor reported cumulative vehicles numbers for all the
missing time intervals. An example is provided in Figure 6. This specific communication
failure with the sensor lasted for 76 consecutive 15-min intervals, and the diagram displays
only a few zero-reported vehicle numbers. Subsequently, upon communication restoration,
the sensor reported cumulative values for individual types of vehicles for all the missing
time intervals, as is visible in the last displayed row.
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Since using such erroneously reported values during the sensors’ failures would lead
to a distortion of the predictive model being created, it was necessary to address these
values in more detail. The first step involved manually identifying individual outages of
all the sensors. This was not an automated task, as each case required expert evaluation
to determine whether it was a failure or an acceptable value. In this way, all 72 target
variables needed to be checked, and cases considered as communication failures needed to
be marked.

Subsequently, after identifying failures and incorrectly reported values, we proceeded
to decide on the next steps for handling these values in the analysis. One option for
dealing with incorrect values is to delete them from the dataset. However, in this case,
this would entail a significant loss of information as there were multiple communication
failures; moreover, omitting some observations would disrupt the temporal continuity
in the data. Therefore, only correcting the erroneous values, i.e., replacing them with
estimated corrected values, was considered. We aimed to utilise the information we had in
the rest of the dataset by using the cumulative vehicle numbers for all the time intervals
during the failure. These cumulative vehicle numbers thus needed to be distributed across
all the time intervals during the communication failure.

One of the options considered was replacing all zero values during the failure with the
average value obtained from the cumulative numbers of vehicles. However, this solution
would introduce inaccuracies into the subsequent model of mobility because, for example,
if the failure lasted during both day and night hours, the zero values reported during the
failure in the night hours, when vehicle numbers are naturally low and often zero, would
be replaced with the average value. Moreover, the same value would be estimated during
daytime hours, including peak traffic times. Therefore, we sought a more sophisticated
solution for replacing incorrect values during the sensors’ failures. Finally, we opted
for estimating these values by creating regression models using the information on the
cumulative numbers of vehicles.

For each sensor, vehicle type, and direction, a linear regression model of the depen-
dency of the vehicle numbers of that type on the specified explanatory variables (listed in
Table 3 above) was created. Thus, creating a total of 72 individual regression models was
necessary. Each model was initially created as a full model containing all explanatory vari-
ables. Then, the final model containing only statistically significant explanatory variables
and achieving the best quality was sought using the stepwise method. The quality of the
regression models was evaluated using the coefficient of determination R2, with values
ranging from 0 to 100%. The closer the value is to 100%, the better the model captures the
variability of the explained variable, making it more reliable. Associated with this is the test
of the significance of the overall regression model using Analysis of Variance (ANOVA),
which tests whether the model is statistically significant and whether the regression func-
tion was correctly chosen. Rejecting the null hypothesis of the model’s insignificance means
that the created model is statistically significant and, thus, suitable for predictions.
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The created regression models were subsequently used to predict missing values
during sensor failures. Based on the values of the input variables (day of the week,
time, holiday, vacation, variables related to the pandemic, etc., listed in Table 3 above as
explanatory variables) in a specific time interval, the models estimated the vehicle numbers
for all the vehicle types. The estimated values were carefully reviewed, and any negative
predictions were replaced with zero values.

However, it was necessary to adjust the predicted values so that their sum corresponded
to the cumulative number of vehicles of the respective type reported by the sensor after the
failure and communication restoration. To preserve this cumulative number, each predicted
value was adjusted by an individually determined correction coefficient, calculated as the ratio
of the actual to the estimated cumulative vehicle numbers during the outage. In cases where
the correction coefficient could not be calculated (specifically when the estimated values were
summed to zero), the missing corrected values were replaced with values corresponding to
the average obtained from the cumulative vehicle numbers after the communication failure
ended. All corrected values were then rounded to integer values.

To verify the accuracy of this procedure for correcting incorrect values during sensor
communication failures, we calculated the accuracy of the estimates using statistical char-
acteristics (mean, mode, median, standard deviation, maximum, minimum, and sum of
values). Additionally, we quantified the deviations of the predicted corrected values from
the actual values, both in absolute numbers of vehicles and as a percentage. The results for
sensor 1, vehicle types, and directions are provided in Section 4.

3.2.2. Methodology of Modelling—Artificial Neural Networks

The concept of artificial neural networks, one of the most commonly used tools
in machine learning, was developed at the beginning of the 1950s, but it gained more
attention from researchers only in the last decades due to a significant increase in computer
technologies. The authors aimed to imitate the learning process in a biological neural
network, which consists of approximately 86 billion neurons interconnected by more than
1014 synaptic connections. Neurons are designed for transmitting, processing, and storing
information, with information being transmitted between neurons via electrical signals. The
basic parts of a neuron are the cell body and two types of processes: dendrites and axons.
Dendrites are short processes representing the signal input site into the neuron’s cell body.
The place where a signal is transmitted from one neuron to another is called a synapse. In a
synapse, the signal can be amplified (excitation) or weakened (inhibition) before entering
the cell body. All incoming signals from surrounding neurons are aggregated in the cell
body, creating the neuron’s internal potential. If this potential exceeds a certain threshold,
the neuron generates an output signal, which exits the neuron through a single output
process called an axon.

The so-called Hebbian rule is utilised in the learning process of artificial neural net-
works. Put simply, the input neuron’s activity leads to the neuron’s activity on the output
side. The essence of the learning process is the formation of connections, thus creating
so-called memory traces. The forgetting process is represented by the interruption of synap-
tic connections that could excite the neuron. In the mathematical model of an artificial
neuron, this rule is reflected in synaptic weights (w), which control the influence of input
on excitation (positive weight values) or inhibition (negative weight values) of the neuron.
Adjusting these weights during learning is crucial for achieving good results in artificial
neural networks. The mathematical model of the most commonly used artificial neuron is
depicted in the following figure (Figure 7).

Several types of formal models of artificial neurons exist, but the most commonly used
one is the perceptron, designed by Frank Rosenblatt in 1958 [53,54]. The essence of the
perceptron is the computation of the artificial neuron’s internal potential, which is given as
the weighted sum of inputs. This potential is further processed by an activation function,
typically one of the S-shaped curves. The most commonly used is a sigmoid function, given
by the following equation:
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f (x) =
1

1 + e−x .

However, the perceptron can only be used to solve linearly separable problems. The
solution involves using multiple perceptrons arranged into several layers for more complex
tasks. The learning process then takes place in the so-called hidden layers. Thus, the net-
work contains one or more layers of neurons that are neither input nor output. Multi-layer
perceptron networks (MLPs) are the most widely used type of artificial neural networks
in predictive analysis. These networks can tackle more complex problems by utilising
each hidden layer to extract features and recognise patterns, enabling them to effectively
perform intricate classification or regression tasks.
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MLP networks are, therefore, suitable for solving any problem whose essence is
predicting the values of the modelled (output) variable. However, it is important to set
or search for the correct topology of this network. Specifically, this involves setting the
number of hidden (computational) layers and the (maximum) number of neurons in them,
as well as choosing a suitable activation function, which can be the sigmoid mentioned
above but also other functions such as the hyperbolic tangent or the ReLU function. The
goal is effective learning of the neural network on the training dataset, especially its good
generalisation ability, i.e., its use of data outside the training dataset. A common problem
with MLP neural networks is overfitting, or “over-adaptation to the data” from the training
dataset. This problem is typical for most machine learning tools.

To eliminate the problem of overfitting, the dataset is divided into a training and testing
part. The data cases from the training set are used to validate the predictive ability of the
neural network. The remaining data cases (training set) are presented to the neural network as
learning patterns. The network learns to create connections between neurons on these patterns
so that its response, i.e., outcomes, closely approximates the actual or desired outcome. The
neural network must then be able to generate responses based on the acquired knowledge for
cases that were not a part of the learning process. And this is precisely the generalisation ability
verified on the validation (testing) set. The training process ends if the resulting prediction
error is approximately the same and sufficient for both sets. However, suppose the prediction
error on the validation set is significantly lower and/or insufficient. In that case, another
iteration (epoch) of learning follows, using the knowledge gained in the previous epochs to
adjust the network (especially synaptic weights). This iterative learning process ends when the
network achieves the desired generalisation ability on the validation set. The gradient descent
method was used to find synaptic weights, minimising the error function (prediction error)
at each step of the solution search. Finding the global minimum of the error function using
this iterative method significantly depends on the so-called learning rate η. With relatively
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large values of this parameter, we risk “skipping” the sought global minimum, and on the
other hand, with small values of this parameter, we risk slow convergence to this minimum.
Therefore, the optimal value of this coefficient is also determined in individual steps of neural
network learning.

Finally, the model is deployed on the testing set, i.e., on cases not used in the learning
process, and the resulting predictive evaluation metrics are determined.

Neural network models generated predictions for the number of vehicles across all
cases in the dataset, including those in the testing subset. Predictions for the testing data
were produced using a model that had not been trained on them, allowing for an inde-
pendent evaluation of the model’s quality by comparing these predictions with actual
outcomes. Consequently, this study presents the model quality assessment results exclu-
sively for the testing data. With sufficient cases in the dataset, the division into training
and testing subsets was done randomly at a 50:50 ratio.

The models in this study were developed as ensemble models using neural networks.
Ensemble models typically fall into two categories: bagged and boosted. Boosting entails
training a series of models sequentially, where each subsequent model is trained to correct
the errors of the previous one. Bagging, on the other hand, involves training multiple
models independently on different subsets of the training data, with their individual
predictions aggregated. Combining the predictions from these model sequences generates
a final prediction that is more accurate and robust than the predictions of any single model.

Combining individual models into a composite model can be achieved through several
methods. The most commonly used techniques include:

• Stacking: This method involves training multiple models and then using a meta-model
to combine their predictions. The meta-model uses the predictions from each base
model as explanatory variables to generate the final prediction.

• Competition: In this approach, the prediction with the highest reliability (confidence) is
selected from the individual predictions of each model for each case in the data.

• Voting: This method combines individual models by averaging their predictions.
• Weighted voting: Similar to voting, this approach averages predictions from each model

but assigns weights to them based on a specific metric, such as reliability.

Combining models is an effective technique for enhancing the accuracy and robustness
of predictive models. By leveraging the strengths of multiple models, composite models
often outperform individual models, providing more reliable predictions.

In this study, we used the boosting method to create an ensemble model to enhance
the models’ accuracy. Specifically, for each type of vehicle, we developed an ensemble
model composed of several neural network component models. Each ensemble’s maximum
number of these component models was set to 10. Each component model was built using a
multi-layer perceptron (MLP) neural network. The number of hidden layers and the size of
each MLP component model (i.e., the number of synapses) were determined automatically
by the software. After creating the component models, the final ensemble model was
formed by combining them through a voting technique that averaged their predictions.
Using this methodology, we created eight ensemble models—one for each type of vehicle
and one of both directions—and an additional model that combined all vehicle types and
directions, each containing up to ten component models.

Due to the computational complexity involved in manually designing and fine-tuning
the neural network models, we opted for the automatic creation of the models. This
decision was made to optimise the process and avoid the complexities and potential
biases associated with manually selecting the number of neurons. Manually building each
model would have had an unwanted level of error in determining the optimal architecture,
including the number of layers, nodes, and connections, and would have been extremely
time-consuming. It was more important to obtain accurate predictions from the model. By
relying on automatic model creation, we ensured a more efficient and systematic approach
to generating well-optimised models, allowing us to focus on the analysis and interpretation
of results rather than on the intricate details of model configuration. This approach also
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provided a consistent and unbiased method for determining the best-performing model
architecture across different vehicle types and directions.

For all statistical tests in this study, a significance level of 0.05 was used. Therefore,
even if not directly mentioned, the tests’ conclusions were always formulated using this
significance level.

3.2.3. Methodology of Model Evaluation

After creating neural network models, evaluating the quality of the obtained predic-
tions is important. Current machine learning models are very sophisticated and capable of
memorising input data perfectly, leading to overestimated evaluation statistics obtained
from such models because predictions are checked on the same data on which the model
was created. To verify the model’s true predictive power, we randomly divided the dataset
into training and testing sets. The second part of the data, the testing set, is used for model
validation. Predictions (estimated numbers of vehicles of various types) are made on these
testing cases in data and then compared to the actual values of the vehicle numbers. Since
the model did not know the testing data, it was not trained on them; this comparison can
be considered as the true predictive ability of the model without overestimation [55,56].

The predictive ability of the model can be evaluated using several evaluation statistics [56]:

• Minimum error, maximum error, and mean error, which means a comparison of the
predicted and actual vehicle numbers;

• Mean absolute error, calculated from the absolute differences between predicted and
actual vehicle numbers;

• The standard deviation of the differences between predicted and actual values of
vehicle numbers;

• Linear correlation is a coefficient expressing the strength of linear dependence between
predictions and reality.

When comparing the accuracy of models, it is advisable to focus on one of these
evaluation statistics. The most commonly used are mean absolute error (which should be as
small as possible) and the correlation coefficient (the closer the value is to 1, the more accurate
predictions the model generates). In this study, we mainly used the correlation coefficient
to evaluate the models, although, in the Results section, we provide all the mentioned
evaluation statistics of the created partial models for individual types of vehicles and their
directions and the comprehensive model for all types and directions.

Finally, the precision of the predictions made by the neural network ensemble models
is compared with that of four models created using other data mining techniques. For
this purpose, we chose two decision trees: CART (Classification and Regression Tree) and
CHAID (Chi-square Automatic Interaction Detection), as well as the Nearest Neighbours
method and Multivariate Linear Regression. To ensure comparability of model perfor-
mance, all these comparative models were also created as ensembles, following a similar
procedure to that used for the neural network models, with up to ten component mod-
els combined by averaging their predictions into a final meta-model. After the learning
procedure, the predictions for the cases in the training sample were compared with the
actual values of the number of vehicles of individual types. Finally, the performance of
these models was evaluated using the correlation coefficient mentioned above.

For brevity, we do not provide a detailed explanation of the methodology used for the
four comparative models here, but it can be found, for example, in [55,57–59].

4. Results
4.1. Results of Data Preparation

In the Methodology of Data Preparation section, we emphasised the importance of
thorough verification and adjustment of vehicle numbers reported by sensors, especially
in the case of inaccurately reported values during sensor failures. For this purpose, we
developed individual regression models that helped us correct erroneous values. These
were further adjusted to ensure the consistency of cumulative vehicle counts after the sensor
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connection interruption was resolved. Additionally, we had to address some unacceptably
high values, which were corrected by replacing them with values predicted from linear
regression models.

Table 4 presents the results of corrections compared to the actual values for sensor 1.
The main statistical characteristics of the actual and corrected values for all four types of
vehicles and both directions are provided. At the end of the table, the absolute and relative
differences between the actual vehicle numbers and the numbers corrected by the proposed
method are quantified.

The last three rows in each sensor’s table (both for in and out directions) demonstrate
that the proposed procedure for correcting values during sensor communication failures
accurately replaced the error values. The percentage errors of these corrections, caused by
rounding the estimated vehicle numbers to integer values, are quantified in the last row
of the table. Some sensors (e.g., sensor 6 in the direction “in” or sensor 9) exhibit higher
correction errors because, apart from failures, these sensors also had erroneously reported
values that were not caused by communication failures. These erroneous values manifested
as reporting an unreasonably high number of vehicles in a given 15-min interval. Since the
source of this error could not be identified, these values were only replaced with predicted
values from the created regression models, and they could not be corrected using the
correction procedure mentioned above, as the correct value is unknown. This resulted in a
higher error in the sum of corrected values compared to the total actual number of vehicles
of a particular type for the entire observation period.

The data, adjusted in this way and prepared into the final form of the modelling
matrix, can also be described using a graphical representation. The number of vehicles
of different types in the direction toward the city centre (direction “in”) is illustrated in
the following histogram (Figure 8). The histogram depicts the course of vehicle numbers
during the day, where the height of each bar represents the average number of vehicles of
a specific type at a particular time of the day. The graph shows the overall average (total
height of the bar) regardless of the sensor, and the individual sensors are colour-coded,
with the height of the bars in each indicating the average number of vehicles of a specific
type at a given time on a specific sensor.
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Table 4. Statistical characteristics and evaluation of precision of correction error values during the communication failures in sensor 1.

Se
ns

or
no

.

direction direction in

se
ns

or
1

vehicle type cars_in vans_in trucks_in unknown_in

Variable name cars_in cars_in_ corrected vans_in vans_in_ corrected trucks_in trucks_in_ corrected unknown_in unknown_in_ corrected

Mean 22.94 22.94 25.47 25.47 2.11 2.11 1.48 1.48

Median 16 18 17 19 1 2 1 1

Mode 0 1 0 1 0 0 0 0

Std. Dev 52.66 20.44 51.41 23.50 5.63 2.7 5.00 1.74

Min 0 0 0 0 0 0 0 0

Max 6698 182 3894 167 513 18 486 44

Sum 938,324 938,267 1,041,461 1,041,474 86,486 86,408 60,712 60,674

Absolute difference from the actual value −57 13 −78 −38

Precision of corrections (%) 99.9939 100.0012 99.9098 99.9374

Error in corrections (%) 0.0061 −0.0012 0.0902 0.0626

direction direction out

vehicle type cars_out vans_out trucks_out unknown_out

Variable name cars_out cars_out_ corrected vans_out vans_out_ corrected trucks_out trucks_out_ corrected unknown_out unknown_out_ corrected

Mean 28.01 28.01 8.79 8.79 0.90 0.90 4.23 4.23

Median 17 20 4 6 0 1 2 2

Mode 0 0 0 0 0 0 0 0

Std. Dev 0 0 0 0 0 0 0 0

Min 3460 205 4591 98 955 144 1433 34

Max 1,145,449 1,145,325 359,554 359,517 36,882 36,984 173,170 172,990

Sum 93,8324 93,8267 1,041,461 1,041,474 86,486 86,408 60,712 60,674

Absolute difference from the actual value −124 −37 102 −180

Precision of corrections (%) 99.9892 99.9897 100.2766 99.8961

Error in corrections (%) 0.0108 0.0103 −0.2766 0.1040
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Figure 9 illustrates the vehicle numbers in the direction from the city centre (direction
out), colour-coded according to the individual sensors.
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The total number of vehicles in the inward and outward directions is depicted using
boxplots in Figure 10. The boxplots are differentiated by individual sensors and represent
statistical characteristics: the inner line in the box is the median vehicle number, and the
upper and lower edges of the box are the upper and lower quartiles of the vehicle number.
Additionally, the boxplot highlights outliers (circles) and extreme values (crosses), which
are vehicle numbers that differ from the typical numbers. These correspond to traffic peaks
and can indicate which sensors typically record such high vehicle numbers.
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The following figures describe the relationships between selected two COVID-19
pandemic-related variables and the number of vehicles. Figure 11 depicts the boxplots
showing the relationship between school closing and the number of vehicles of different
types. On the left side are the boxplots for direction in, and on the right side the direction
out. The scale of the vertical axis has been adjusted for better visibility of the range of
values; therefore, not all values marked as outliers are visible.

The exact values of statistical characteristics shown in Figure 11 are listed in Table 5. The
median values show that the level of school closing measures impacted the number of vehicles.

A similar dependence is depicted in Figure 12 for the numbers of vehicles and
workspace closures measure levels.

The exact values of characteristics shown in Table 6 present the various numbers of
vehicles for individual levels of the measure. The differences can be seen mainly in the
values of medians.
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Table 5. Values of statistics from the boxplots showing the dependence of the number of vehicles on school closing measures.

Direction cars_in vans_in trucks_in unknown_in total_in

School closing
measure level 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Mean 26.5 27.8 23.4 17.6 16.7 14.0 1.8 1.8 1.5 5.2 4.5 3.3 51.1 50.8 42.2

Median 17.0 17.0 14.0 9.0 8.0 6.0 1.0 1.0 1.0 2.0 2.0 2.0 34.0 32.0 26.0

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 255 297 300 192 225 253 35 49 256 148 216 260 470 453 628

Interquartile range 35 38 32 26 25 21 3 3 2 6 6 4 73 74 58

Direction cars_out vans_out trucks_out unknown_out total_out

School closing
measure level 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Mean 29.6 31.8 27.4 14.6 12.9 10.4 2.0 1.7 1.5 4.1 4.0 3.3 50.3 50.5 42.6

Median 16.0 18.0 13.0 7.0 6.0 4.0 1.0 0.0 0.0 2.0 2.0 2.0 31.0 30.0 23.0

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 249 300 299 300 300 300 39 144 291 216 183 300 587 831 759

Interquartile range 39 42 34 20 18 15 2 2 2 7 6 5 71 73 58

Table 6. Values of statistics from the boxplots showing the dependence of number of vehicles on workspace closing measure.

Direction cars_in vans_in trucks_in unknown_in total_in

Workspace Closing
measure level 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Mean 27.1 26.2 24.8 24.6 17.3 16.0 13.9 13.5 1.8 1.7 1.5 1.5 5.1 3.7 4.1 4.3 51.2 47.6 44.2 43.9

Median 17.0 17.0 15.0 13.0 8.0 8.0 6.0 5.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 33.0 31.0 27.0 24.0

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 297 300 199 256 192 253 133 123 35 256 26 24 216 260 52 66 470 628 322 398

Interquartile range 36 36 33 34 26 24 19 20 3 3 2 2 6 5 5 5 73 66 61 63

Direction cars_out vans_out trucks_out unknown_out total_out

Workspace closing
measure level 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Mean 30.2 30.9 28.6 28.1 14.3 11.9 10.1 9.9 1.9 1.6 1.4 1.4 4.2 3.6 3.9 3.8 50.5 48.0 44.0 43.1

Median 17.0 17.0 15.0 13.0 7.0 5.0 4.0 4.0 1.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 30.0 28.0 24.0 22.0

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 300 299 255 291 300 300 115 126 69 291 35 31 216 300 34 38 831 759 335 387

Interquartile Range 40 39 37 37 20 17 14 13 2 2 2 1 7 5 6 6 72 67 62 62
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4.2. Results of Modelling

As mentioned earlier, the mobility model during the COVID-19 pandemic period was
created using the neural network. We constructed the modelling stream in the IBM SPSS
Modeler software, presented in Figure 13.
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Each “yellow diamond” in the figure represents one neural network model for a given
type of vehicle. Additionally, on the left side, there is a comprehensive model containing
all types of vehicles and both directions. The models are not constructed separately for
individual sensors but include the sensor as one of the explanatory variables.

Since a neural network model is generally considered a “black box”, it is impossible
to precisely interpret the model results in terms of relationships between input data, neural
network layers, and the model’s output in the form of predictions. It would be possible to
describe the strength of the relationship, but there are many such relationships in a neural
network, leading to a loss of clarity in interpreting the results. An example of a neural network
model is shown in Figure 14, representing a model for cars entering the city centre (cars_in).

Therefore, instead of interpreting each relationship, we focused on the importance of
predictors (explanatory variables) in the created models [39,60]. This information is crucial
for demonstrating the pandemic’s impact and implementing anti-pandemic measures on
city mobility. In each neural network model, it is possible to illustrate the importance
of predictors along with their significance in the model. Figure 15 shows the predictor
importance for the comprehensive mobility model. The model includes other explanatory
variables apart from those depicted, but for the figure, we have only included those that
are significant in the model at the chosen significance level. The importance is calculated so
that the cumulative importance of all the explanatory variables used in the model is one.
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Figure 15. Predictor importance in the comprehensive mobility model.

Among the most important variables (in the order of importance) in the model are
the following:

• Sensor number (variable name sensor) was used as one of the explanatory variables
to avoid creating a model for each sensor separately; this variable has the highest
importance in the model.

• Month of the year (variable name month); its presence among the important variables
suggests changes in mobility throughout the year.

• Day of the week (variable name day of the week); its presence suggests changes in
mobility throughout the week.

• Time (variable name time) divided into 15-min intervals during the day; the presence of this
variable in the model confirms that vehicle numbers vary significantly throughout the day.
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• Number of confirmed deaths during the COVID-19 pandemic (variable name confirmed
deaths), cancellation of public events during the pandemic (variable name cancel public
events), number of confirmed cases (variable name confirmed cases), containment health
index during the pandemic (variable name containment health index), and restrictions
on gatherings during the pandemic (variable name restrictions on gatherings).

The presence of the variables mentioned above related to the COVID-19 pandemic
in the model demonstrates the significant impact of the pandemic and the implemented
anti-pandemic measures on vehicle numbers in the city. The neural network model created
in this way, with the automatic selection of variables with the greatest impact on vehicle
numbers, has shown that mobility was significantly influenced by the course of the pan-
demic and the level of implemented measures. There are still other variables in the model,
but they are not of such importance, so they are not included in the previous figure.

We also created individual neural network models for each type and direction of
the vehicle. These models achieve high prediction accuracy as they were developed
using the boosting method, which aims to increase the model’s predictive ability. Each
of these boosted models is composed of up to ten models, where each subsequent model
aims mainly at the incorrectly predicted cases of the previous model, striving to improve
predictions for them.

The difference between the comprehensive model presented in Figure 11 and the
partial models for individual directions and types of vehicles lies in the fact that the partial
models are additionally created using boosting, resulting in more accurate predictions.
Using this method for the comprehensive model is impossible because it cannot handle
multiple dependent variables.

These individual models are also difficult to describe or illustrate with figures because
each is an ensemble model from a series of models. However, each of these boosted models
generates predictions for the number of vehicles of a specific type, which are more accurate
due to the complexity of the model. An example of a composite model for predicting the
number of cars_in is shown in Figure 16.
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After creating the models, we further ensured the validity of the generated predicted
values. Since no boundary conditions are specified during model creation, the model can
generate values of the dependent variable within the interval of real numbers. However,



Appl. Sci. 2024, 14, 7793 24 of 32

from a substantive point of view, negative predicted values are unacceptable. Therefore,
we recoded all negative predicted values to zero, enhancing the accuracy of predictions.
On the other hand, allowing excessively high predicted values for the number of vehicles
is not suitable. Therefore, we set the maximum permissible value to 300, which was also
used as the maximum allowable value during the data preparation phase.

4.3. Model Evaluation

As mentioned in the study’s methodological part, the data were randomly divided
into training and testing sets to avoid overestimation. The above-described models were
created on the training data, while the resting testing data were used for model evaluation.
In Table 7, we present the evaluation characteristics of the created models on the testing
part of the data. We also supplemented the table with statistical characteristics of the actual
number of vehicles in the testing part of the data and the corresponding predicted number.
By comparing the rows on the left side of the table, we can claim that the predictions, on
average, correspond to the real numbers of vehicles.

Figure 17 presents the graphical evaluation of the predictions from individual models
for vehicle types. Each scatter-dot graph presents the dependence of predictions and the real
values. The values close to the diagonal (yellow line) mean the model’s high performance.
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Table 7. Evaluation statistics of the created models.

Vehicle Type_Direction Testing Part Min Max Mean Std. Dev Min Error Max Error Mean Error Mean Abs. Error Std. Dev of Error Linear Correlation

in
di

vi
du

al
m

od
el

s

ca
rs

_
in

actual 0 300 26.36 29.11
−111 245 −0.33 7.09 11.38 0.93

prediction 0 133 28.31 27.67

va
ns

_
in

actual 0 253 16.19 19.35
−67 221 −0.44 4.77 7.87 0.92

prediction 0 89 18.03 18.22

tr
uc

ks
_

in

actual 0 26 1.73 2.68
−11 235 −0.07 0.99 1.90 0.73

prediction 0 13 1.98 2.05

un
kn

ow
n_

in

actual 0 260 4.36 6.63
−27 259 −0.12 1.81 3.25 0.88

prediction 0 31 4.69 6.06

ca
rs

_
ou

t actual 0 300 30.22 36.45
−138 240 −0.31 8.68 14.10 0.93

prediction 0 164 33.42 34.70

va
ns

_
ou

t actual 0 300 12.63 16.15
−64 297 −0.23 4.22 6.92 0.91

prediction 0 69 14.29 14.88

tr
uc

ks
_

ou
t actual 0 291 1.70 3.31

−16 291 −0.01 1.00 2.10 0.80
prediction 0 17 1.92 2.80

un
kn

ow
n_

ou
t

actual 0 300 3.86 4.97
−13 230 −0.05 1.83 2.88 0.80

prediction 0 14 4.29 3.80

ca
rs

_i
n actual 0 300 26.36 29.11

−99 252 −0.35 8.09 12.83 0.90
prediction 0 106 28.00 26.92

va
ns

_i
n actual 0 253 16.19 19.35

−60 217 −0.40 5.47 8.79 0.90
prediction 0 67 18 17.63

tr
uc

ks
_

in

actual 0 26 1.73 2.68
−7 236 −0.01 1.05 2.02 0.70

prediction 0 8 2.00 1.96
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Table 7. Cont.

Vehicle Type_Direction Testing Part Min Max Mean Std. Dev Min Error Max Error Mean Error Mean Abs. Error Std. Dev of Error Linear Correlation

co
m

pr
eh

en
si

ve
m

od
el

un
kn

ow
n_

in

actual 0 260 4.36 6.63
−24 260 −0.14 2.06 3.55 0.86

prediction 0 27 5.00 5.80

ca
rs

_o
ut actual 0 300 30.22 36.45

−125 245 −0.52 9.98 15.81 0.91
prediction 0 142 33.49 33.78

va
ns

_
ou

t actual 0 300 12.63 16.15
−52 300 −0.29 4.87 7.71 0.89

prediction 0 56 14.35 14.34

tr
uc

ks
_

ou
t actual 0 291 1.70 3.31

−13 291 −0.03 1.07 2.21 0.78
prediction 0 15 2.00 2.67

un
kn

ow
n_

ou
t

actual 0 300 3.86 4.70
−13 230 −0.01 2.04 3.15 0.75

prediction 0 14 4.00 3.62
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If we evaluate the accuracy of predictions using the correlation between predicted
and actual vehicle numbers, we can say that the created neural network models generate
very accurate predictions. The lowest correlation is in the individual models, with 0.73 for
trucks_in, and in the comprehensive model, with 0.69 for trucks_in. This lower predictive
accuracy of the model is due to the low variability of truck numbers of this type, which
range from 0 to 26 vehicles every 15 min. The best-performing models are for predicting
cars (cars_in and cars_out) and vans (vans_in and vans_out), where the correlation ranges
from 0.92 to 0.93 in individual models and from 0.89 to 0.91 in the comprehensive model.
Therefore, predictions generated by these neural network models are considered very
accurate, as the dependency between estimated and actual numbers of vehicles of a given
type is very strong.

4.4. Comparison with Other Methods

In this section, we compare the results of predicting the number of vehicles using
ensemble neural network models with those generated by models created using different
techniques. As mentioned in the methodology section, we employed four methods suitable
for solving regression data mining tasks: decision trees of the CART and CHAID types,
nearest neighbours, and multivariate linear regression. To ensure comparability with the
ensemble neural networks, all these models were created also as ensembles, containing
up to ten component models. The predictions of these models for the testing data were
compared with the actual values, and their performance was evaluated using correlation
coefficients. Table 8 presents a comparison of these models with the neural network models.
The nearest neighbour technique did not provide a solution for some types of vehicles due
to the data dimensionality and the memory demand on computations (denoted as “NA”
in the table). The correlations of actual and predicted values show the ensemble neural
network models’ high performance compared to the other used methods.

Table 8. Evaluation statistics of comparison models.

Model cars
_in vans_in trucks_in unknown_in cars_out vans_out trucks_out unknown_out

CART 0.87 0.86 0.7 0.83 0.87 0.86 0.78 0.72
CHAID 0.87 0.87 0.71 0.80 0.87 0.86 0.77 0.75

Nearest neighbour 0.41 0.45 0.39 NA NA NA NA NA
Regression 0.52 0.56 0.50 0.57 0.58 0.58 0.60 0.54

MLP neural network
individual models 0.93 0.92 0.73 0.88 0.93 0.91 0.80 0.80

MLP neural network
comprehensive model 0.90 0.90 0.70 0.86 0.91 0.89 0.78 0.75

5. Discussion

As we mentioned in the Literature review section, neural networks are widely used
machine learning techniques for modelling traffic and predicting the number of vehicles. In
this study, we also created a functional model for the traffic in the city of Zilina in Slovakia,
considering the situation during the COVID-19 pandemic. The impact of the pandemic on
the number of vehicles was described by using the respective variables publicly available
for each country. Therefore, the methodology described in this study applies to any other
city worldwide. Thus, the study’s contribution lies in the ease of updating the created
neural network models using newly emerging data, thereby adapting mobility prediction
to any changes in the situation after the pandemic ends or the circumstances in any other
city. This opens up the possibility of further research, where the actual impact of the
pandemic on mobility in the city can be quantified by comparing data from the pandemic
and post-pandemic periods.

As a strength of this study, we consider the fact that predictive models of mobility
in the city of Zilina during the COVID-19 pandemic were created based on real data
from sensors installed at intersections in the city, providing real information about vehicle
numbers moving in the city. This dataset covers a sufficiently long period of the year,
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allowing us to capture changes in mobility not only throughout the day but also across
different periods of the year. These data were thoroughly checked, and all errors were
identified and corrected. The erroneous data were corrected using a sophisticated statistical
approach through regression modelling to preserve the most accurate information about
mobility in the city.

Another strength of the study is the use of modern machine learning methods, which
achieve high accuracy in their predictions. Moreover, the models were created using the
boosting method to enhance their predictive ability. The study not only describes the
predictions obtained by the model but also interprets the impacts of the most important
input variables used for mobility modelling. This demonstrated the impact of the pandemic
and the implemented anti-pandemic measures on mobility in the city.

However, this study also has its weaknesses. One can be identified that the COVID-19
pandemic is quantified using variables that are admittedly internationally recognised and
published for all countries worldwide for comparability purposes. However, on the other
hand, they capture the nationwide situation. They are not region-specific, which introduces
a certain bias in modelling their relationship with the vehicle numbers in the city. It would
be more precise to use variables that accurately reflect the situation during the pandemic,
specifically in the individual city. However, mainly due to the unavailability of such data,
we opted to use these variables.

Another limitation of the study is the inability to compare traffic patterns with the
pre-pandemic period up to 2019. Data from this period are not available because the
WSN was not yet installed at that time. The entire network, along with the publicly
accessible interface, was developed as part of the INTERREG V-A SK-CZ/2019/11 project
CLEVERNET—“Deploying innovative sensor networks in cross-border regions”. The main
activities of the project commenced in January 2021. Over time, it will be possible to analyse
data without the impact of the pandemic, and increasingly accurate data will be available
as the network is constantly troubleshooting and calibrating sensors. Further analysis and
applications for using such a network will be the subject of future studies.

The data from the sensors is still publicly available; it can be viewed, compared, and
downloaded practically without restrictions in a user-friendly environment. However, the
truth is that in practice, it still has no other function than a presentational—informational
one. However, while the current usage of the sensor data is limited to informational and
presentational purposes, there is significant potential for its future application. For example,
city planners and policymakers could use the data to make informed decisions about traffic
management, public transportation improvements, and infrastructure development. The
data could also be valuable for researchers studying urban mobility patterns, environmental
impacts, and smart city technologies.

Furthermore, businesses and entrepreneurs might find innovative ways to leverage
the data to create or enhance existing services. For instance, companies involved in logistics
and transportation could optimise their routes and operations based on real-time traffic
information. Similarly, startups could develop applications that provide residents and
visitors with up-to-date information on traffic conditions, helping them to choose the most
efficient travel routes.

Apart from the mentioned usage of the publicly available data from the sensors, we
can mention that the usability of data from the sensors is very wide and understanding
the inputs and outputs of traffic flow values provides several significant benefits that
can enhance various aspects of traffic management, optimisation of road networks and
intersections and planning new roadways, expanding existing ones, and designing effective
traffic management strategies or optimising public transportation routes and schedules.

Moreover, analysing traffic flow data helps optimise traffic signal timings at intersections.
By understanding traffic patterns and congestion levels, traffic signals can be adjusted to
improve vehicle throughput, reduce delays, and enhance overall traffic flow. Data-driven
insights enable the implementation of adaptive traffic signal systems that adjust signal timings
in real-time based on current traffic conditions, leading to more efficient traffic management.
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From the macroscopic point of view, traffic flow values are used to create and refine
models that simulate overall traffic patterns and congestion in a city. These models help
in understanding traffic dynamics and in planning infrastructure improvements. On the
other hand, from the microscopic point of view, detailed traffic flow data supports models
that simulate individual vehicle interactions and movements. These models are useful for
studying the effects of specific roadway changes or traffic management strategies.

Finally, real-time traffic flow data help in detecting incidents such as accidents or
road closures. This allows for timely responses and implementation of alternative routing
strategies to minimise disruption.

In summary, the benefits of analysing traffic flow values are extensive and impact
various facets of traffic management, urban planning, and transportation efficiency. By
leveraging these insights, cities can enhance their traffic systems, improve safety, and
provide better services to residents and travellers.

In summary, while the immediate application of the sensor data in the city of Zilina
may be limited, its potential for future use is vast. Continued investment in data quality,
user interface improvements, and community engagement will be essential in unlocking
the full benefits of this valuable resource.

6. Conclusions

The aim of this study was to create a model of mobility able to predict the vehicle
numbers at intersections in the city of Zilina during the COVID-19 pandemic using artificial
intelligence methods (machine learning). The method of neural networks was employed
to build this model, whose main advantage is its high prediction accuracy. In this study,
we achieved correlations between the prediction results and actual values ranging from
approximately 0.70 to 0.95 for individual sensors and types of vehicles. In interpreting
the study results, we focus not only on the predictions but also on interpreting how
the pandemic affected mobility in the city. By examining the importance of individual
variables in the created model, we found that the pandemic, quantified using internationally
acknowledged variables describing its status and governmental responses in the form of
implemented anti-pandemic measures, significantly impacted vehicle numbers in the city.

Individual types of vehicles, directions, and sensors are predicted separately, capturing
the overall mobility in the city. By aggregating the predicted vehicle numbers, the total
vehicle numbers can be easily obtained regardless of their type or the sensor through which
they pass. Moreover, since the task was approached using a data-mining approach and the
models were created using data-mining software IBM SPSS Modeler, the created solution
is easy to update. The model captures mobility in the city during the pandemic but is
easily adaptable and updatable, which we consider its significant advantage. The model is
data-open and can make new predictions after importing new data.

Additionally, with new data, the model can be easily retrained to predict the number of
vehicles under normal circumstances in a situation without a pandemic. This will subsequently
enable quantifying the impact of the pandemic ex-post. Finally, the model should be easily
adapted for predicting mobility in any other city, as it can be retrained on a new training
sample containing the variables describing mobility circumstances specific to that city.
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