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Abstract

:

Featured Application


(1) The concept of trip assignment probability was used to simulate passenger behavior of selecting different HSR stations in a zone, unlike the existing all-or-nothing-based optimal strategy algorithm. (2) By optimizing the trip assignment probability using a backpropagation-based algorithm, the accuracy and time efficiency of long-term HSR demand forecasting were improved compared with the existing calibration process using a trial-and-error approach. (3) The estimation accuracy of the backpropagation-based algorithm was especially superior when applied to an area with multiple accessible HSR stations, such as the Seoul metropolitan area, as well as non-metropolitan areas with a single accessible HSR station.




Abstract


In Korea, decisions for high-speed railway (HSR) construction are made based on long-term demand forecasting. A calibration process that simulates current trip patterns is an important step in long-term demand forecasting. However, a trial-and-error approach based on iterative parameter adjustment is used for calibration, resulting in time inefficiency. In addition, the all-or-nothing-based optimal strategy algorithm (OSA) used in HSR trip assignment has limited accuracy because it assigns all trips from a zone with multiple accessible stations to only one station. Therefore, this study aimed to develop a backpropagation-based algorithm to optimize trip assignment probability from a zone to multiple accessible HSR stations. In this algorithm, the difference between the estimated volume calculated from the trip assignment probability and observed volumes was defined as loss, and the trip assignment probability was optimized by repeatedly updating in the direction of the reduced loss. The error rate of the backpropagation-based algorithm was compared with that of the OSA using KTDB data; the backpropagation-based algorithm had lower errors than the OSA for most major HSR stations. It was especially superior when applied to areas with multiple HSR stations, such as the Seoul metropolitan area. This algorithm will improve the accuracy and time efficiency of long-term HSR demand forecasting.
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1. Introduction


High-speed railway (HSR) networks are significantly expanding on a global level. The length of HSRs was about 44,000 km in 2017, increasing by more than 30% to about 59,000 km in 2022 [1]. The HSR network in Korea has also expanded to about 893 km since it opened in 2004, as shown in Figure 1 [2], and the number of passengers has increased from 37,394 thousand persons in 2009 to 89,420 thousand persons in 2019 [3]. HSRs are used for operations of at least 250 km/h by UIC [4], but in Korea they have a maximum speed of over 300 km/h. In response to increasing demand, projects to build several HSR lines have been undertaken by the Korean Government. The impacts of these projects need to be evaluated using preliminary feasibility studies to secure part of the national budget, and the impacts are quantified based on long-term demand-forecasting results.



The standard procedure for long-term demand forecasting in preliminary feasibility studies is included in a guideline published by the Korea Development Institute, which is a national research institute [5]. According to the guideline, the long-term demand for HSR is predicted based on the premise that the current trip patterns will be maintained in the future. Therefore, the calibration process to simulate the current trip patterns is one of the most important steps in the long-term demand forecasting procedure. However, the guideline does not provide a specific methodology for calibration; therefore, analysts apply a trial-and-error approach to correct the error between the observed volume and estimated volume using a trip assignment model. This approach causes a large amount of time loss in long-term demand-forecasting analysis. Therefore, it is necessary to develop a time-efficient long-term demand-forecasting algorithm.



A variety of machine learning (ML)-related algorithms have been used to improve accuracy and time efficiency. In railway demand forecasting, ML is mainly focused on short-term forecasting. Short-term demand forecasting estimates the daily/hourly demand and establishes train operation plans. It aims to improve service quality and to reduce operating costs by adjusting operation plans. The most recent research on short-term passenger flow prediction has used the long short-term memory (LSTM)-based model or a combined model to capture the spatiotemporal features of historical passenger flow data in Chinese urban railway networks [6,7,8,9,10,11,12,13,14,15,16]. Han et al. proposed a novel deep-learning-based passenger flow (inflow and outflow) volume prediction approach using graph convolutional neural networks to capture spatiotemporal dependencies [17]. Hao et al. proposed a sequence-to-sequence model with an embedded attention mechanism to predict the alighting passenger volume at each Singapore metro station in the near future given the boarding passenger volume at each station in the last few short-term periods [18]. Wang et al. predicted the weekly periodicity and nonlinearity characteristics of short-term (5 min) ridership using a support vector machine (SVM) combined online model at two stations of the Nanjing Metro [19]. Roos et al. forecasted short-term passenger flows in the urban rail network of Paris with incomplete data based on dynamic Bayesian networks [20]. Sun et al. proposed a novel hybrid model Wavelet-SVM to predict different kinds of passenger flows (high frequency and low frequency) in the Beijing subway [21]. Wei and Chen developed a hybrid EMD-BPN forecasting approach that combines empirical mode decomposition (EMD) and backpropagation neural networks (BPNs) to predict short-term passenger flow in Taipei’s rapid transit [22]. In addition, several research works have predicted abnormal or irregular congested passenger flow [23,24,25,26], and a few scholars have established models to predict short-term HSR demand. Zhao and Mi proposed a hybrid model that predicts short-term demand for an HSR by combining singular spectrum analysis, a convolutional neural network (CNN), and support vector regression [27]. Jiang et al. developed a hybrid approach combining the ensemble empirical mode decomposition (EEMD) and gray support vector machine (GSVM) for the short-term prediction of HSR flows [28]. When planning and constructing a new railway line or station, the influencing factors of demand become the variables for long-term demand forecasting. Du et al. proposed several factors affecting long-term passenger flow in rail transit, constructing a prediction model based on a class neural network [29]. Lin et al. focused on investigating the relationship between the built environment around the station and its passenger flow, developing a passenger flow prediction model using a multilayer perceptron (MLP) that could be applied to new railway stations without historical passenger flow data [30]. Lin et al. used mathematical and neural network methods to predict metro passenger flow based on land use around stations [31]. Yu et al. divided a city into multiple regions with similar internal traffic properties and a moderate spatial size to obtain more accurate factors affecting passenger flow, proposing a new prediction model based on the fuzzy processing method and Xgboost [32]. He et al. proposed a passenger flow prediction model based on station attributes affecting passenger flow regularity and predicted the passenger flow of a new line or station using its own attributes [33]. Cao et al. presented a new system with deterministic and probabilistic forecasting capacities based on residual component disposing for HSR demand forecasting [34]. Using long-distance elasticities, Börjesson investigated the prediction performance of two state-of-the-art Swedish HSR demand-forecasting models: the nested logit-based Sampers long-distance model and the newly developed Box-Cox transformation-based model [35]. Thus, a large number of researchers are engaged in this topic on all continents.



The optimal strategy algorithm has been widely used not only academically but also practically in railway trip assignment models [36,37]. This algorithm assigns origin–destination (O/D) trips to the route that minimizes passenger travel time among various route options. The procedure is as follows [38]:




	
Define a departure node (station or stop);



	
Move to and board the vehicle that arrives first at the departure node among the competing routes;



	
Get off at the intermediate node (station or stop) that was determined according to the optimal strategy;



	
End if the passenger arrives at their destination; otherwise, define the alighting node as the departure node and repeat from step 1.








This approach is limited when simulating access trip patterns from each zone to diverse railway stations because this algorithm is based on an all-or-nothing trip assignment approach assigning all trips to only one railway station that minimizes the generalized cost. Tavassoli et al. proposed a practical procedure that automatically calibrates and validates large-scale transit assignments based on the optimal strategy [36]. They used smart card data and adopted a particle swarm optimization (PSO) algorithm as an optimization technique. De Cea and Fernandez [39] and Wu et al. [40] improved the optimal strategy algorithm to simulate congestion and delay by considering capacity constraints in the optimal strategy, but they did not overcome other limitations.



There are many access modes to HSR stations, and those selected by passengers will vary depending on the preferred access modes in a zone. Furthermore, in an HSR trip, the proportion of access time compared with in-vehicle time in the total travel time is higher than that of other public transportation. Therefore, it is necessary to develop a trip assignment algorithm that can reflect the diverse passenger preferences for accessibility to HSR stations.



In this study, we developed a backpropagation-based algorithm to optimize trip assignment probability from each zone to accessible HSR stations. This improves the accuracy and time efficiency of long-term HSR demand forecasting by reflecting the various access patterns of HSR passengers and using an optimization-based calibration algorithm.



The remainder of this paper is organized as follows: Section 2 reviews the standard long-term HSR demand forecasting methodology in Korea. Section 3 explains the trip assignment probability and optimizing algorithm for HSRs. Section 4 describes the data used and discusses the case study results. Section 5 presents conclusions and ideas for future research.




2. Standard Long-Term HSR Demand-Forecasting Methodology in Korea


This section introduces the standard long-term HSR demand-forecasting method in Korea. A preliminary feasibility study is a system in which government agencies review the feasibility of a project in advance. A preliminary feasibility study must be conducted for projects costing USD 35 million (KRW 50 billion) or more. The guideline for a preliminary feasibility study presents a long-term demand-forecasting methodology. The guideline provides a conventional four-step method of trip generation, trip distribution, mode split, and trip assignment for long-term demand forecasting, as shown in Figure 2 [5]. The O/D trip and network data included in the Korea Transport Database (KTDB) are used in this process. Since the KTDB includes O/D data by mode, the first three steps (trip generation, trip distribution, and mode split) in the conventional four-step method are omitted when predicting long-term demand. Therefore, the accuracy of the long-term demand forecasting varies according to the trip assignment algorithm. An optimal strategy algorithm without capacity constraints is applied for long-term railway demand forecasting using macrosimulations, such as Emme or TransCAD. To simulate the current trip pattern of a trip assignment algorithm, a calibration process based on a trial-and-error approach is iteratively performed to correct the error between the volume estimated by the algorithm and the observed volume. After the calibration process, the long-term demand is predicted by applying the calibration results to the future network.



The calibration reference value in railway trip assignment is the error rate between the estimated and observed boarding/alighting volumes at major stations, calculated as Equation (1) [5]. The guideline suggests that the error rate must be under 30% for stations but does not provide specific calibration methods. Accordingly, the analyst repeats the calibration process, such as by adjusting the network parameter, to satisfy the 30% critical error rate; however, there are limits to improving this accuracy due to the temporal inefficiency and limitations of the all-or-nothing-based optimal strategy algorithm:


  Error   rate   ε   %   = 100 ×        f   e s t   −   f   o b s       f   o b s       



(1)




where     f   e s t     is the estimated number of passengers at each station using the trip assignment model, and     f   o b s     is the observed number of passengers at each station.




3. Methods


3.1. Trip Assignment Probability


The trip assignment probability is calculated by extracting the accessible HSR stations for each zone by route. The trip assignment probability concept is shown in Figure 3. Unlike the optimal strategy algorithm, this method can simulate the passenger behavior of selecting different HSR stations in a zone. For zone i, stations     s   A     and     s   B     within the accessible distance are considered accessible stations, and station     s   C     is excluded because it is outside the accessible distance. Thus, the HSR trips from zone i are assigned to     s   A     and     s   B    . The passengers are assigned in the same way for the departure and arrival zones. If the departure and arrival stations are on the same line, then X = 1; otherwise, X = 0, and the passenger volume between the two stations equals zero. For example, in Figure 3,     X     s   A   →   s   D     = 1  , but     X     s   A   →   s   C     = 0  . The inter-station passenger volume,     V     s   A   →   s   D      , is equal to the sum of all stations multiplied by     P   i   s   A      , the probability of using station     s   A     in zone i;     P   j   s   D      , the probability of using station     s   D     in zone j; and     T   i j    , the O/D trips from zone i to zone j. If     s   A     and     s   D     are not connected on the same line (    X     s   A   →   s   D     = 0  ),     V     s   A   →   s   D       becomes 0.



Passengers can access different stations, even within the same zone, based on impedances experienced in traveling to the station or the service level of the station. Yao and Morikawa found that induced demand increases with decreased travel time, travel costs, and access time, and increased service frequency [41]. Choi et al. used walking distance to the station as an influential factor for metro ridership [42]. Moreover, the vehicle frequency of public transportation is the most crucial factor of the trip assignment in the optimal strategy algorithm [38]. Therefore, we considered     d   i s    , the Euclidean distance from zone i to station s, to be a travel impedance factor, and     f   s l    , the train frequency at station s, to be a travel attractiveness factor.




3.2. Optimization Algorithm


The HSR trip assignment model outputs the predicted demand for each station when influencing factors are input. An artificial neural network algorithm that has recently been used in many ways owing to its high prediction performance could be applied to this problem. This algorithm learns the relationship between inputs and outputs based on collected data and then highly accurately outputs the results by optimizing the weight using a backpropagation algorithm [43]. The backpropagation algorithm optimizes the weight to minimize loss, which is the error margin between a prediction and the actual target value. After a gradient is obtained for each weight, the weight is updated in the opposite (negative) direction. In this study, we used the trip assignment probability concept, but the probability could not be used as an output in the modeling because of limitations in data acquisition. When we applied backpropagation to this problem, the trip assignment probability could be recognized as the weight optimized in the artificial neural network. In other words, it could be approached as an optimization problem: finding a trip assignment probability that minimizes loss, that is, the difference between the estimated volume based on this probability and the observed volume. Therefore, the trip assignment probability was estimated using an optimization technique based on backpropagation.



In addition, considering that accessible stations may vary depending on the line, the trip assignment probability was estimated using a combination of zones and lines, not just zones. We assumed that there were n accessible stations for each combination of zones and lines; thus, n probabilities for each combination were estimated using the optimization algorithm. If there were N combinations and n accessible stations for each combination, (N × n) probabilities needed to be estimated. The sum of the probabilities for n accessible stations is 1. The trips provided as a combination of zones and lines were assigned to each accessible station, along with their probabilities, and the assigned trips were added up for each station to calculate the boarding/alighting volume at each station.



However, to apply this backpropagation concept, the loss calculation process must be differentiable. In this study, PyTorch 1.11 [44] was used, a deep learning framework used for artificial neural network learning, and it provided the loss value using only differentiable calculations. Backpropagation is the basic principle for weight updates, and several optimization algorithms exist depending on how backpropagation is applied. In this study, the AdamW algorithm [45] was applied as the optimization algorithm, and MSELoss (mean squared error loss) was used as the loss function as shown in Figure A1. The procedure is shown in Figure 4, and its detailed codes are presented in Figure A2 for readers to better analyze and repeat the experiment.



The optimization calculation process is explained based on an example with a smaller dataset than the actual dataset used. The initial value of the trip assignment probability weight was constructed to be inversely proportional to the square of the Euclidean distance from zones to stations and proportional to the train frequency at the station, with reference to the gravity model [46]. The accessible stations were set to the three nearest stations.



First, to obtain the trip assignment probability weight tensor of only accessible stations, the probability weight tensor for all stations (    T   a    ) with each combination of zones and lines is multiplied by the accessible station tensor (    T   b    ), where each entry has a value of 1 if the station is accessible; otherwise, it is 0 (a tensor refers to any data structure with a scalar, vector, matrix, or more dimensions). Accordingly, a trip assignment probability weight tensor (    T   c    ) with only three accessible stations in its combinations remains, and the probability weights for all other stations become 0, as shown in Figure 5. This allows only three accessible stations for each combination to be included in the loss calculation and the probability weight updating process.



Since the probability weight tensor does not represent a probability, it must be converted into one using a normalization process, as shown in Figure 6. A row of the probability weight tensor (    T   c    ) represents a combination of zones and lines, and a probability weight sum tensor (    T   d    ) is created by extending a row-wise sum of the probability weight tensor. A probability tensor (    T   e    ) is calculated by dividing the previous two tensors.



The following is the step used to assign the total trip from each combination of zones and lines to each station using the probability. The total trip tensor (    T   f    ) is a tensor that contains the total trip information for each combination, and it is multiplied by the probability tensor (    T   e    ) to obtain the assigned trip tensor (    T   g    ) for the accessible stations. This is represented in Figure 7.



The boarding/alighting volume for each station must be estimated using the assigned trip tensor to calculate the loss compared with the observed volume. This is calculated by adding the entries in each column in the assigned trip tensor, as shown in Figure 8.



The difference between the assigned sum trip tensor and the observed trip tensor is calculated with a predefined loss function. Finally, by calculating the gradient using backpropagation to reduce the loss, the probability weight tensor is updated until the end of the algorithm as shown in Figure A3. The optimization codes were implemented based on Python 3.8 and PyToch 1.11, and the PC specifications were CPU: Intel Core i5 11400 (2.60 GHz), memory: 32 GB, and GPU: NVIDIA GeForce RTX 2070 SUPER.





4. Case Study


4.1. Data Description


In Korea, the Korea Transport Institute (KOTI), a government-funded institute, periodically distributes KTDB data, including O/D trip and network data, to increase public confidence in long-term demand predictions. The KTDB data consist of 250 zones defined by local governments, and 247 zones were used in this study, as shown in Table 1; Jeju, Seogwipo, and Ulleung were excluded since they are islands that do not have HSR lines, and thus have zero trips.



The O/D trip frequency in Korea’s HSR was 225,495 trips/day in 2018, and the number of inter-region (16 metropolitan local governments) O/D trips is shown in Table 2. There were no O/D trips between Gangwon and North/South Chungcheong, North/South Jeolla, and North/South Gyeongsang, as well as between North/South Jeolla and North/South Gyeongsang, in the KTDB. This is because travel between these regions is not directly connected by HSR, and thus travel time and distance between these regions is so long. Therefore, it was assumed that there was no transfer demand in the HSR network and only trips between stations connected by the same line.



The HSR network consists of railway stations and lines. There are 51 HSR stations and three major lines in Korea: Gyeongbu (Seoul–Busan), Honam (Seoul–Gwangju), and Gangneung (Seoul–Gangneung). Figure 9 shows HSR network data schematized using EMME, where the pink boxes represent the zones (centroids), and the blue lines represent the HSR lines.



Two influential variables, namely the access distance from the zones to stations and the train frequency at the stations, were considered in this study. The access distance from zones to stations was calculated using the Euclidean distance from the centroid (a point representing each zone) to the station node. The KTDB network data used a local coordinate system (Bessel ellipsoid, Korean 1985 datum) to express the geographical location, and the coordinate system unit was in meters. Therefore, the Euclidean distance from zones to stations was calculated using Equation (2) [47]. The Euclidean distances were calculated by extracting only the information of the 51 HSR station nodes and 247 centroids in the KTDB network data.


    d   i s   =        x   i   −   x   s       2   +       y   i   −   y   s       2     



(2)







Here,




	
i: zone (  ∀  i   ∈   Z);



	
s: HSR station (  ∀  s   ∈   S);



	
    d   i s    : Euclidean distance from zone i to station s;



	
x, y: x-coordinate and y-coordinate.








Sets



	
Z: The set of zones;



	
S: The set of HSR stations.






The train frequencies at the HSR stations were calculated by extracting the stop stations for each HSR train from the transit line data in the KTDB. Although both the skip and stop stations were presented in the transit line data, skip stations were excluded in the train frequency calculation, and the daily train frequency by line at the stations was calculated based on information for the line to which the train belonged.




4.2. Results


The trip assignment probability weight was updated 2000 times with a learning rate of 0.01 in the backpropagation-based algorithm. The loss had a downward trend with each update, and dropped sharply within about 200 iterations, as shown in Figure 10. Furthermore, it almost converged to the final value after about 200 iterations. When the probability weight was updated once, the loss was 36,624,504, and the final value decreased to 97,344 after 2000 iterations. This means that the difference between the estimated volume using the backpropagation-based algorithm and the observed volume significantly decreased.



The trip assignment results for each HSR station using the backpropagation-based algorithm are presented in Table 3. The results for major HSR stations with more than 1000 passengers are presented by dividing the regions into the Seoul metropolitan area, which had a relatively high concentration of HSR stations, and non-metropolitan areas, which did not. To verify the algorithm’s prediction performance, we compared the results found using the optimal strategy algorithm based on the volume at each HSR station. Moreover, the error rate presented in Equation (1) and the mean absolute error (MAE) and mean absolute percentage error (MAPE), expressed as Equation (3) [48], were chosen as the key performance indicators.


  M A E =      ∑  i   n        f   e s t   −   f   o b s         n    ,         M A P E =      ∑  i   n          f   e s t   −   f   o b s         f   o b s     × 100     n     



(3)







Here,




	
i: HSR station (  ∀  i   ∈   Z);



	
n: the number of HSR stations;



	
    f   e s t    : the estimated number of passengers at each station using the trip assignment model;



	
    f   o b s    : the observed number of passengers at each station.








The trip assignment results from the backpropagation-based algorithm show that all stations had an error rate of less than 30%, the reference value stated by the guideline. However, the results from the optimal strategy algorithm show that many stations had an error rate exceeding 30%. The backpropagation-based algorithm results presented a very low error rate, less than 2% for the major stations with more than 10,000 passengers and less than 10% for the minor stations with less than 10,000 passengers. The high error rate at Gangneung Station could be attributed to the PyeongChang Olympic Winter Games. During the Winter Olympics, additional temporary trains that directly connected Incheon International Airport to Gangneung were operated. Accordingly, the observed volume at Gangneung Station was higher than usual; thus, the predicted demand was underestimated because it used the KTDB O/D trip data, estimated based on the average weekday trips.



The estimation accuracy using the backpropagation-based algorithm was relatively high compared with the estimation results from the optimal strategy algorithm for stations in both areas, i.e., the Seoul metropolitan area and the non-metropolitan area. However, the results for the Seoul metropolitan area show that the backpropagation-based algorithm’s accuracy was overwhelmingly higher than the optimal strategy algorithm’s accuracy. In the optimal strategy algorithm, the trip distribution among the adjacent stations was unbalanced, resulting in a large error rate. For example, in the Seoul metropolitan area, an error rate of more than 40% was found for Seoul, Cheongnyangni, and Haengsin Stations. Furthermore, in the non-metropolitan area, the demand that should have been assigned to Singyeongju Station was assigned to Ulsan Station, so the error rates were 19.2% and −42.2%, respectively, because the optimal strategy algorithm based on the all-or-nothing trip assignment was able to simulate the diverse access trip patterns of passengers in areas with multiple HSR stations, such as the Seoul metropolitan area. Therefore, after the initial assignment from the optimal strategy algorithm, it was necessary to reduce the error rate within the reference value using a parameter calibration process by adjusting the network parameters. The analyst’s arbitrary judgment was involved in this process, and much time and effort were required.



For stations in the Seoul metropolitan area, the MAE and MAPE indicators were 153 and 3.5%, respectively, when using the backpropagation-based algorithm, and those when using the optimal strategy algorithm were 3310 and 53.6%, respectively. Moreover, for the stations in the non-metropolitan area, the MAE and MAPE values were 123 and 1.8%, respectively, when using the backpropagation-based algorithm, and those when using the optimal strategy algorithm were 831 and 10.0%, respectively. Therefore, the estimation accuracy of the backpropagation-based algorithm developed in this study was superior to that of the optimal strategy algorithm.





5. Conclusions


We developed a backpropagation-based algorithm to optimize the trip assignment probability, and probability simulations of the access trip pattern from each zone to accessible HSR stations were undertaken. Backpropagation was used when training the artificial neural network; in this problem, the probability could be recognized as the weight optimized in the artificial neural network. Accordingly, the initial value in the backpropagation-based algorithm was a function of the access distance from zones to accessible HSR stations and the train frequency at HSR stations for each zone and line combination. The difference between the estimated volume from the probability and the observed volume was defined as the loss in the optimization process, and the weight was updated in the direction of minimizing this loss. To apply this backpropagation concept, we obtained the loss value using only differentiable calculations provided by PyTorch, a deep learning framework used for artificial neural network learning.



To verify the prediction performance of the backpropagation-based algorithm, its trip assignment results were compared with those of an optimal strategy algorithm using network and O/D trip data from the KTDB. A total of 225,495 trips/day generated from 247 zones were assigned to 51 stations on the three HSR lines. The results for 19 major HSR stations with more than 1000 passengers were presented by dividing the regions into the Seoul metropolitan area, which had a relatively high concentration of HSR stations, and a non-metropolitan area, which did not. The backpropagation-based algorithm results show that all stations had an error rate of less than 30%, the reference value stated in the guideline. Furthermore, the results present a very low error rate, less than 2% for major stations with more than 10,000 passengers and less than 10% for minor stations with less than 10,000 passengers. On the other hand, the optimal strategy algorithm results show that many stations had an error rate exceeding 30%. For the stations in the Seoul metropolitan area, the MAE and MAPE indicators found using the backpropagation-based algorithm were 153 and 3.5%, respectively, and those found using the optimal strategy algorithm were 3310 and 53.6%, respectively. This means that the backpropagation-based algorithm was especially superior when applied to an area with multiple HSR stations, simulating the passenger access trip pattern from each zone to multiple stations. Therefore, the backpropagation-based algorithm will improve the accuracy and time efficiency of long-term HSR demand forecasting.



A limitation of this study was that the access distance from each zone to the HSR stations was calculated using the Euclidean distance, which was used owing to data acquisition issues and the complexity problem of calculating using input data, such as applying the shortest path algorithm. If it were possible to obtain access distance or time data for each access mode to HSR stations, the algorithm’s accuracy would be improved by reflecting more realistic conditions. Lastly, it is necessary to examine the extendibility of the backpropagation-based algorithm by applying it to various HSR networks with different conditions from those in Korea.
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Appendix A


The main codes for optimizing the trip assignment probability weight are presented below. They consist of two steps: (1) variable initialization and (2) optimization.








	(1)

	
Variable initialization











[image: Applsci 14 07880 g0a1] 





Figure A1. The code for variable initialization. 






Figure A1. The code for variable initialization.
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Line 105: “opt_target_tensor” is the tip assignment probability weight tensor for all stations (    T   a    ) in Figure 5.



	
Line 106: “prob_mask_tensor” is the accessible station tensor (    T   b    ) in Figure 5.













	(2)

	
Optimization
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Figure A2. The code for optimizing the trip assignment probability weight. 






Figure A2. The code for optimizing the trip assignment probability weight.
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Line 119: “z_masked” is the trip assignment probability weight tensor (    T   c    ) in Figure 5.



	
Line 126–128: A normalization process in Figure 6.



	
Line 130: “t_1” is the assigned trip tensor (    T   g    ) in Figure 7.



	
Line 131: “t_2” is the assigned sum trip tensor (    T   h    ) in Figure 8.
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Figure A3. The code for saving the optimized results after the last updating process. 






Figure A3. The code for saving the optimized results after the last updating process.
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Figure 1. The HSR network in Korea [2]. 
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Figure 2. Standard long-term HSR demand-forecasting procedure in Korea. 
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Figure 3. The trip assignment probability concept. 
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Figure 4. The backpropagation-based optimization algorithm in this study. 
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Figure 5. Calculation of probability weight tensor (    T   c    ). 
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Figure 6. Calculation converting the probability weight to the probability. 
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Figure 7. Calculation used to assign the total trip values for each station using their respective probabilities. 
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Figure 8. Calculation of the boarding/alighting volume by stations. 
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Figure 9. HSR network data in the KTDB. 






Figure 9. HSR network data in the KTDB.



[image: Applsci 14 07880 g009]







[image: Applsci 14 07880 g010] 





Figure 10. The loss changes in the backpropagation-based algorithm by iteration. 
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Table 1. Summary of zones in the KTDB data used in this study.
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	Region
	No. of Zones
	Region
	No. of Zones
	Region
	No. of Zones
	Region
	No. of Zones





	Seoul
	25
	Gwangju
	5
	Gangwon
	18
	Jeonnam
	22



	Busan
	16
	Daejeon
	5
	Chungbuk
	14
	Gyeongbuk
	24



	Daegu
	7
	Ulsan
	5
	Chungnam
	16
	Gyeongnam
	22



	Incheon
	10
	Gyeonggi
	42
	Jeonbuk
	15
	Sejong
	1










 





Table 2. Inter-region O/D trips in KTDB data.
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	O/D
	Seoul
	Busan
	Daegu
	Incheon
	Gwangju
	Daejeon
	Ulsan
	Gyeonggi



	Seoul
	16
	10,480
	7938
	237
	4493
	7529
	2865
	1418



	Busan
	10,030
	15
	1849
	712
	0
	1724
	656
	4220



	Daegu
	7953
	2021
	0
	593
	0
	1461
	956
	3311



	Incheon
	729
	737
	585
	0
	295
	570
	243
	2



	Gwangju
	4511
	0
	0
	295
	0
	30
	0
	1761



	Daejeon
	7597
	1925
	1527
	577
	38
	0
	681
	2527



	Ulsan
	2939
	741
	844
	251
	0
	678
	55
	1329



	Gyeonggi
	1324
	4468
	3404
	3
	1763
	2619
	1292
	304



	Gangwon
	3406
	0
	0
	128
	0
	0
	0
	573



	North Chungcheong
	2467
	339
	250
	185
	179
	220
	113
	754



	South Chungcheong
	4766
	905
	742
	364
	329
	1241
	423
	1538



	North Jeolla
	3882
	0
	0
	286
	500
	94
	0
	1393



	South Jeolla
	3886
	0
	0
	328
	324
	66
	0
	1386



	North Gyeongsang
	3914
	547
	1244
	340
	0
	992
	119
	1437



	South Gyeongsang
	2482
	55
	817
	261
	0
	593
	0
	868



	Sejong
	2642
	363
	268
	198
	191
	40
	121
	808



	O/D
	Gangwon
	North

Chungcheong
	South

Chungcheong
	North

Jeolla
	South

Jeolla
	North

Gyeongsang
	South

Gyeongsang
	Sejong



	Seoul
	3435
	2385
	5141
	3811
	3847
	3876
	2419
	2554



	Busan
	0
	320
	801
	0
	0
	517
	47
	343



	Daegu
	0
	244
	679
	0
	0
	1318
	781
	262



	Incheon
	118
	187
	411
	287
	333
	338
	256
	200



	Gwangju
	0
	169
	299
	509
	438
	0
	0
	181



	Daejeon
	0
	10
	1231
	128
	93
	1049
	559
	275



	Ulsan
	0
	114
	403
	0
	0
	117
	0
	122



	Gyeonggi
	594
	782
	1787
	1373
	1388
	1496
	871
	838



	Gangwon
	531
	0
	0
	0
	0
	0
	0
	0



	North Chungcheong
	0
	0
	208
	216
	194
	127
	83
	0



	South Chungcheong
	0
	144
	101
	390
	397
	355
	312
	64



	North Jeolla
	0
	213
	317
	702
	816
	0
	0
	228



	South Jeolla
	0
	194
	326
	755
	257
	0
	0
	208



	North Gyeongsang
	0
	137
	334
	0
	0
	97
	84
	147



	South Gyeongsang
	0
	58
	222
	0
	0
	78
	239
	62



	Sejong
	0
	10
	0
	232
	208
	136
	89
	0










 





Table 3. Trip assignment results for the major HSR stations.
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Region

	
HSR Station

	
Observed

Volume

(Persons/Day)

	
The Backpropagation-Based

Algorithm

	
Optimal Strategy

Algorithm




	
Estimated

Volume

(Persons/Day)

	
Error Rate

(%)

	
Estimated

Volume

(Persons/Day)

	
Error Rate

(%)






	
Seoul

metropolitan

area

	
Seoul

	
37,867

	
38,907

	
0.6

	
21,103

	
−44.3




	
Suseo

	
19,509

	
19,742

	
1.2

	
22,743

	
16.6




	
Yongsan

	
13,488

	
13,720

	
1.7

	
15,092

	
11.9




	
Gwangmyeong

	
12,867

	
13,096

	
1.8

	
12,709

	
−1.2




	
Dontan

	
3682

	
3916

	
6.4

	
4933

	
34.0




	
Cheongnyangni

	
2617

	
2847

	
8.8

	
8478

	
224.0




	
Hangsin

	
2111

	
2239

	
6.1

	
5567

	
163.7




	
Suwon

	
1598

	
1735

	
8.6

	
1100

	
−31.2




	
Jije

	
1546

	
1411

	
−8.7

	
1428

	
−7.6




	
MAE (MAPE)

	
-

	
153

	
3.5

	
3310

	
53.6




	
Non-

metropolitan

area

	
Busan

	
24,062

	
24,066

	
0.0

	
21,690

	
−9.9




	
Dongdaegu

	
23,564

	
23,246

	
−1.3

	
22,856

	
−3.0




	
Daejeon

	
17,634

	
17,500

	
−0.8

	
19,025

	
7.9




	
Cheonan-

Asan

	
11,568

	
11,430

	
−1.2

	
11,283

	
−2.5




	
Osong

	
10,061

	
9925

	
−1.4

	
10,218

	
1.6




	
Gwangju-Songjeong

	
9474

	
9496

	
0.2

	
9184

	
−3.1




	
Ulsan

	
6770

	
6776

	
0.1

	
8073

	
19.2




	
Iksan

	
5461

	
5403

	
−1.1

	
4704

	
−13.9




	
Gangneung

	
4478

	
3922

	
−12.4

	
3914

	
−12.6




	
Singyeongju

	
4396

	
4401

	
0.1

	
2541

	
−42.2




	
Gimcheon-Gumi

	
3182

	
3284

	
3.2

	
3463

	
8.8




	
Pohang

	
3057

	
3057

	
-

	
3050

	
−0.2




	
MAE (MAPE)

	
-

	
123

	
1.8

	
831

	
10.0
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for _

in range(n_iter):

optimizer.zero grad()

z masked = opt target tensor * prob mask tensor

z masked relued = F.relu(z_masked)

all neg row mask = torch.all(z masked <= 0, dim=1).reshape(zc, 1)

all neg row mask = all neg row mask.expand(-1, sc)
