
Citation: Goelz, C.; Vieluf, S.;

Ballhausen, H. A Secure Median

Implementation for the Federated

Secure Computing Architecture. Appl.

Sci. 2024, 14, 7891. https://doi.org/

10.3390/app14177891

Academic Editor: Gianluca Lax

Received: 24 July 2024

Revised: 20 August 2024

Accepted: 21 August 2024

Published: 5 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Secure Median Implementation for the Federated Secure
Computing Architecture
Christian Goelz 1,* , Solveig Vieluf 1,2,† and Hendrik Ballhausen 3,†

1 Department of Medicine I, LMU University Hospital, LMU Munich, 81377 Munich, Germany
2 DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance,

80336 Munich, Germany
3 Department of Radiation Oncology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
* Correspondence: christian.goelz@med.uni-muenchen.de
† These authors contributed equally to this work.

Abstract: In Secure Multiparty Computation (MPC or SMPC) , functions are evaluated in encrypted
peer-to-peer networks without revealing the private inputs of the participating parties. The median is
a non-trivial computation in MPC and is particularly relevant in fields like medicine and economics.
Here, we provide an MPC implementation of the median for the Federated Secure Computing (FSC)
framework. It is tested on synthetic datasets with varying sizes (N = 102 to N = 107) and number of
participants (M = 2 to M = 10) across different network environments and hardware configurations.
Using minimal networking and computational resources on a commercial hyperscaler, we evaluated
real-world performance with breast cancer (N = 569) and heart disease (N = 920) datasets. Our
results showed effective scaling up to N = 106 entries with runtime between 1 and 4 s, but runtime
exceeded 15 s for 107 entries. The runtime increased linearly with the number of parties, remaining
below one minute for up to M = 10 parties. Tests with real-world medical data highlight significant
network overhead, with runtime increasing from 16 to 17 s locally to over 800 s across hyperscaler
regions, emphasizing the need to minimize latency for practical deployment.

Keywords: privacy; secure multiparty computation; federated secure computing; kth-ranked element

1. Introduction

Collaborating on sensitive data is crucial for driving digital transformation, yet it intro-
duces a complex interplay of conflicting interests. On the one hand, there is a clear benefit
in driving digital transformation through improved data availability. On the other hand,
sharing data openly clashes with various interests in the protection of sensitive information,
such as the protection of business secrets in companies or the fundamental right to privacy
of individuals. A prime example can be found in biomedical research, where rigorous
regulation (e.g., General Data Protection Regulation, GDPR or Health Insurance Portability
and Accountability Act, HIPAA) surrounding patient data frequently impedes collabora-
tion among stakeholders. Strict privacy enforcement may hamper progress and endanger
the capacity to access sufficiently large datasets essential for accurately addressing clinical
inquiries. Fortunately, Privacy-Preserving Computation (PPC) techniques have emerged as
promising approaches to data federation that both protect participant interests and stake-
holder privacy while still enabling collaboration on federated datasets across institutional
borders. These techniques allow insights to be derived from distributed datasets, known
as federated analytics, or enable the training of machine learning models without sharing
data, as in federated learning, which is increasingly used, for example, in medical research
or industrial settings [1,2]. In particular, Secure Multiparty Computation (MPC or SMPC) is
a fundamental building block and is considered a gold standard technique in PPC, enabling
distributed parties to jointly compute a function without revealing any private data [3]. The
use of MPC techniques in real-world applications is growing as complex technology stacks

Appl. Sci. 2024, 14, 7891. https://doi.org/10.3390/app14177891 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177891
https://doi.org/10.3390/app14177891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0536-1481
https://orcid.org/0000-0002-5532-8690
https://orcid.org/0000-0003-4733-1926
https://doi.org/10.3390/app14177891
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177891?type=check_update&version=2

Appl. Sci. 2024, 14, 7891 2 of 15

become more manageable and increased computing resources are available. Expertise and
cryptography knowledge also play a significant role in the dissemination of the technology
[4]. Estimating the costs and benefits of theoretically proven algorithms is often the first
step for the application of MPC solutions in fields such as biomedical research.

Our use case is predominantly focused on university medicine applications. Multicen-
tric clinical trials are the gold standard for the development of new diagnostic tools and
therapies. The exact understanding of physiological and pathological features on all scales,
from epidemiology to personalized medicine, requires the pooling of large patient numbers.
Classically, this approach requires data sharing and centralized evaluation. However, in
terms of GDPR, health data records are particularly sensitive data, and patient advocates
demand better protection of patient privacy. New applications in e-health also require
active and dynamic consent by the user as dominion over data shifts from centers to indi-
viduals. For these reasons, decentralized approaches to digital health have recently received
much interest. COVID proximity warning apps were a recent success on a massive scale.
Similarly, e.g., the German Medical Informatics Initiative considers semi-decentralized tools
like DataSHIELD as an alternative to open data sharing [5]. We are particularly interested
in Federated Secure Computing (FSC), a propaedeutic framework that offers an easy-to-use
API to develop distributed applications [6]. In particular, the SIMON (SImple Multiparty
ComputatiON) microservice offers pre-made statistical functions to be evaluated by MPC.
Among them, the median is one of the most used metrics in any medical descriptive
statistics. Patient cohorts are commonly characterized by median age, median tumor size,
median therapeutic dose, and so forth. Of course, the median, as one of the most basic
statistical functions, also has a wide use outside of medicine in areas as diverse as finance,
economy, psychology, media, and IoT applications in automotive and smart home.

In this paper, we describe the implementation of the secure median for FSC/SIMON.
We also provide benchmarks for real-world computation of rank-based statistics across a
wide range of parameters and situations.

1.1. Related Work

There are several protocols for computing rank-based statistics, which differ in their
proposed architecture (clients, server), privacy guarantees (input privacy, output privacy),
and core technologies (Homomorphic Encryption, pure MPC, differential privacy; for an
introduction to these fundamental building blocks, see [3]). For example, Tueno et al. [7]
and Chandran et al. [8] describe solutions for computing rank-based statistics in a star
network, i.e., a large number of clients communicating with one or only a few central
untrusted servers on which the evaluation is carried out while preserving the privacy of
each client using garbled circuits or homomorphic encryption. In addition, Böhler and
Kerschbaum [9], proposes a differential privacy approach that involves the use of both
garbled circuits and secret-sharing schemes to protect individual privacy, additionally using
an exponential mechanism to mask the true output value and thus a security accuracy
trade-off. In contrast, Aggarwal et al. [10] aims to determine the exact value of a distributed
dataset. For this purpose, the authors designed an efficient algorithm for jointly computing
rank-based statistics while keeping individual data inputs private (see Section 2 for details).
Although their algorithm is described theoretically, practical implementations and real-
world benchmarking are lacking.

The real-world implementation and benchmarking of MPC have become increasingly
prominent due to advancements in efficient solutions, better hardware availability, and
software improvements that reduce the computational overhead of this technology [11].
This trend is particularly noticeable in biomedical research, including genome-wide associ-
ation studies, diagnostics [12,13], and drug screening [14]. In 2019, von Maltitz et al. [15]
conducted the first MPC with real oncology patient data in Germany, using a Kaplan-Meier
estimator. However, such implementations typically require extensive cryptographic knowl-
edge, as most software tools and frameworks like MP-SPDZ [16], FRESCO [17], or ABY [18]
require complex technical setups and the manual implementation of MPC functions using

Appl. Sci. 2024, 14, 7891 3 of 15

specific cryptographic primitives or protocols (see [11] for a detailed overview). More user-
friendly solutions are limited, with notable examples being the industry-level platforms,
e.g., Sharemind MPC (Cybernetica AS, Tallinn, Estonia) [19] and Carbyne (Robert Bosch
GmbH, Stuttgart, Germany) [20], as well as no-code tools like EasySMPC [21]. Recently,
Federated Secure Computing [6] introduced an accessible architecture that shifts the burden
of complex cryptographic processes to the server and provides a simple API.

1.2. Our Contribution

In this study, we present the implementation and real-world benchmarking of an
algorithm for computing rank-based statistics, specifically the median, as outlined by
Aggarwal et al. [10]. Our primary motivation was to bridge the gap between theoretical
advances in MPC and their practical application and evaluation, focusing on a real-world
medical setting. We focused on a concrete statistical function with high demands in
biomedicine, i.e., the median, from a protocol for which benchmarking and real-world
evaluation was lacking. Implementing and utilizing MPC protocols can be challenging and
requires a high level of cryptographic expertise. Our work addresses this by providing
a comprehensive guide and evaluation in the context of FSC. By exploring this aspect,
we aimed to demonstrate the practical application of MPC in medical research, offering
insights into cost-benefit trade-offs and suggesting avenues for future development based
on the architecture used.

1.3. Overview

The paper is structured as follows: Section 2 introduces the preliminaries. We provide
a brief description of the MPC protocol for rank-based statistics that our implementation
is based on, along with the computational framework and topology on which we rely.
Section 3 describes the implementation details and the experimental setup we used to
benchmark our implementation. The performance evaluation is presented in Section 4. In
Section 5, we contextualize our findings within the broader landscape of MPC implementa-
tions of rank-based statistics, discussing their implications.

2. Preliminaries

In the following, we provide preliminaries for MPC (for a detailed introduction,
see [3]). We consider a scenario where m parties, denoted as P = P1, . . . , Pm, each possess a
private dataset Di ⊆ F, with a domain size M. Collectively, these individual datasets Di
merge into a comprehensive dataset D of size n.

2.1. Secure Multiparty Computation

In MPC, a set of two or more parties participate in an encrypted peer-to-peer network
to jointly compute a function y = f (D1, . . . , Dm) without revealing each party’s private
input. That means that each party only receives the exact result y of that function and
nothing more (see Figure 1). The function considered in this work is the identification of
the kth-ranked element in a dataset. In other words, in an ordered set S ⊂ F the value
x ∈ S which has rank k. Specifically, we are interested in the median value, i.e., finding the
value that is ranked k = ⌈|S|/2⌉. To achieve this goal, MPC relies on protocols defining a
set of rules and procedures for the parties involved to follow. These protocols are designed
to ensure that the parties can interact with each other securely and reliably, even in the
presence of adversaries. By following the protocol, the parties can compute the desired
function while preserving the privacy of their inputs and maintaining the security and
integrity of the computation.

Appl. Sci. 2024, 14, 7891 4 of 15

Figure 1. Illustration of Secure Multiparty Computation (MPC) —A set of two or more parties
participate in an encrypted peer-to-peer network to jointly compute a function without revealing
each party’s private input. This ensures that each party only receives the exact result of that function
and nothing more.

2.2. Threat Model

The threat model considered here is the semi-honest adversary also called “honest
but curious”. They are meant for generally trustworthy parties who will not maliciously
deviate from the protocol but rather cooperate to protect the privacy of their input data.
The purpose is to provide some level of data privacy for the parties involved rather than
data security against outside attackers or corrupted inside parties.

2.3. Protocol for the kth-Ranked Element

Aggarwal et al. [10] propose a multiparty protocol for computing the exact median
that requires only a logarithmic number of secure computations for the size M of the
domain F from which the data set D is drawn. Each party initializes the search range to
the range of D and the candidate value to the midpoint of the range. Parties iteratively
refine the search range based on securely aggregated counts of elements in their datasets
less than or equal to the candidate value. This process continues until the range collapses
to the true kth-ranked value. The protocol ensures data confidentiality and scalability in
MPC scenarios and is presented in Algorithm 1.

This minimizes the cryptographic overhead to just two comparisons and two secure
summations per round. Achieving this is possible through widely applicable protocols, like
additive secret sharing. Essentially, additive secret sharing divides shares of a secret among
participants, enabling them to calculate sums without disclosing the actual values [22].
Consequently, they can obtain the desired result while safeguarding individual contribu-
tions. Algorithm 2 provides a concrete exemplary protocol demonstrating how parties
collaboratively compute the sum of their private values while preserving privacy using
random numbers.

Appl. Sci. 2024, 14, 7891 5 of 15

Algorithm 1 Secure kth-Ranked Element (Aggarwal et al. [10], Protocol 3)

Input: Data D1, . . . , Dm held by parties P1, . . . , Pm, rank k, sizes of each Di, data range
[α, β]
Output: kth-ranked element in D1 ∪ · · · ∪ Dm.

1: Initialize a← α, b← β, n← ∑ |Di|
2: repeat

Each Pi:
3: µ← ⌈ (a+b)

2 ⌉
4: li ← |{x | x ∈ Di, x < µ}|, gi ← |{x | x ∈ Di, x > µ}|

Secure computation between parties:
5: if ∑m

i=1 li ≤ k− 1 and ∑ gi ≤ n− k then
6: done
7: end if
8: if ∑m

i=1 li ≥ k then
9: b← µ− 1

10: end if
11: if ∑m

i=1 gi ≥ n− k + 1 then
12: a← µ + 1
13: end if
14: until done

Algorithm 2 Secure summation protocol utilizing additive secret sharing

Input: Values ai held by parties P1, . . . , Pm
Output: Sum of the values ∑m

i=1 ai.

Distribute random numbers between parties:
1: for i = 1 to m do
2: Party Pi generates a random number ri.
3: if i = m then
4: Party Pi sends ri to P1.
5: else
6: Party Pi sends ri to Pi+1.
7: end if
8: end for

Add randomness:
9: for i = 1 to m do

10: if i = 1 then
11: Party P1 computes adjusted value a′1 ← a1 − r1 + rm.
12: else
13: Party Pi computes adjusted value a′i ← ai − ri + ri−1.
14: end if
15: end for

16: Parties share adjusted values a′i and calculate: sum← ∑m
i=1 a′i

17: return sum

2.4. Secure Computing Framework

A framework, in this context, refers to the structural foundation or the underlying
structure within which a protocol operates. It provides a systematic way to design, analyze,
and implement secure multiparty computation protocols. FSC is a recently developed
free and open-source framework offloading complex cryptographic tasks to a server while

Appl. Sci. 2024, 14, 7891 6 of 15

providing an easy-to-use API to develop distributed applications (see Ballhausen and
Hinske [6] for a detailed description of the framework). In this architecture, every party
runs its own server in a secure peer-to-peer network. By offloading the cryptography
server side, the client side is free of dependencies and simple to program. The Framework
provides microservices exposed through a RESTful API (The entire codebase is freely
available at https://github.com/federatedsecure, last accessed: 20 August 2024).

One of these microservices, SIMON, provides MPC functionality. Unlike monolithic
MPC frameworks, SIMON does not provide a universal runtime for arbitrary bytecode.
Instead, distinct functions must be individually implemented. Typically, these are provided
server-side and run ‘stage’ per stage with message passing between parties happening
between stages. The messages are stored and aggregated in ‘caches’. The next stage
proceeds once all necessary inputs have been received in their respective caches. For
example, a (not secure) computation of the sum of the inputs of M parties is displayed in
Listing 1.

Listing 1. Examplary (not secure) computation of the sum in SImple Multiparty ComputatiON
(SIMON).

1 class MicroprotocolSum(Microprotocol):
2

3 def __init__(self , microservice , properties , myself):
4 super ().__init__(microservice , properties , myself)
5

6 # there are m parties in the network
7 self.m = self.network.count
8

9 # there is one generic input cache
10 self.register_cache(’input’, Cache())
11

12 # the result cache aggregates the sum of all messages it
13 # receives
14 # it is ’ready’ once a message from all m parties have been
15 # received
16 self.register_cache(’result ’, CacheAdditive(minimum=self.m))
17

18 # stage_0 starts once the input has been received
19 self.register_stage (0, [’input’], self.stage_0)
20

21 # stage_1 starts once the result cache is ready
22 self.register_stage (1, [’result ’], self.stage_1)
23

24 def stage_0(self , args):
25

26 # in the first stage everyone broadcasts their input to
27 # everybody
28 self.network.broadcast(args[’input’], ’result ’)
29

30 # then , continue with the next stage (1)
31 return 1, None
32

33 def stage_1(self , args):
34

35 # after all messages have been broadcasted and received ,
36 # the result is already stored in the result cache
37 # exit the microprotocol (-1) and return the result
38 return -1, {’result ’: args[’result ’]}

Figure 2 illustrates this example for two parties. Each party submits its input to the
input cache. In stage 0, these inputs are broadcast and stored in the result cache, where
they are automatically aggregated. Once all inputs have been received, the protocol moves
to stage 1, where the final aggregated result is retrieved and returned.

https://github.com/federatedsecure

Appl. Sci. 2024, 14, 7891 7 of 15

Figure 2. Example of (not secure) computation of the sum in SImple Multiparty ComputatiON
(SIMON) for two parties with inputs 3 and 5. Each party sends its input to the input cache. In stage 0,
these inputs are broadcast to the result cache, where they are summed (3 + 5). When both inputs are
received, the protocol proceeds to stage 1, where the final result (8) is retrieved and returned.

Please note that this example demonstrates a non-secure protocol for illustrative
purposes. However, this staged approach ensures orderly execution, with each stage de-
pending on the completion of the previous one, allowing the implementation of sequential
protocols such as the secure summation protocol (see Algorithm 2), which is the basis for
the secure kth-ranked element protocol (see Algorithm 1).

3. Materials and Methods

By abstracting networking for function development and integrating intuitive staging
logic, SIMON facilitates function development and provides flexible and core functionality
for the implementation of MPC protocols such as the one described in this work. In the
following, we describe this implementation as well as the experimental setup for testing.

3.1. Implementation

The original protocol, as detailed in Section 2, has been converted into the staging logic
within SIMON, which is described previously (see Listing 2). Specifically, we implemented
the Python class MicroprotocolKthElement (Available under https://github.com/federated
secure/service-simon/blob/main/src/federatedsecure/services/simon/microprotocols
/microprotocol_kth_element.py, last accessed: 20 August 2024). After first initialization
of the search range and required caches, the main part encapsulates a stage that can be
iteratively initialized and called. Similar to the staged approach shown in Figure 2, the
stages are iteratively executed, narrowing the search range until the exact kth-ranked value
is found (see pseudocode in Listing 2).

Listing 2. Pseudocode for main stage in MicroprotocolKthElement. The variable naming follows the
definition in Algorithm 1.

1

2 def stage_n ():
3

4 # define a candidate value mu in the range of the data [a,b]
5 mu = ceil((a+b)/2)
6

7 # compute the number of samples bigger (g) and smaller (l) than
8 # candidate value in my dataset
9 l,g = compute_lg ()

10

11 # participate in secure summation to the sum of l and g over all
12 # parties

https://github.com/federatedsecure/service-simon/blob/main/src/federatedsecure/services/simon/microprotocols/microprotocol_kth_element.py
https://github.com/federatedsecure/service-simon/blob/main/src/federatedsecure/services/simon/microprotocols/microprotocol_kth_element.py
https://github.com/federatedsecure/service-simon/blob/main/src/federatedsecure/services/simon/microprotocols/microprotocol_kth_element.py

Appl. Sci. 2024, 14, 7891 8 of 15

13 L, G = secure_sum ()
14

15 # check conditions
16 if L <= k-1 and G <= n-k
17 # initialize final stage for termination of protocol
18 register_stage(final , caches , stage_final)
19

20 if L >= k
21 # redefine upper bound of search space
22 b = mu - 1
23

24 if G >= k
25 # redefine lower bound of search space
26 a = mu + 1
27

28 # start next stage , i.e., next iteration of stage_n
29 register_stage(n+1, caches , stage_n)

3.2. Experimental Setup

The experimental setup is visualized in Figure 3. In this setup, each party runs its own
federated secure compute server instance and provides input data.

Figure 3. Experimental setup for testing the implementation. Federated Secure servers were deployed
either on localhost or in the cloud. Datasets Di included both synthetic data (random numbers with
various sizes and open real-world datasets (breast cancer and heart disease). Various numbers of
parties m were tested.

3.2.1. Server Setup

To evaluate the implementation, we deployed FSC servers either locally or on AWS
EC2 instances across various regions. Local deployment ensures precise execution time
measurement, free from network latency interference. Conversely, AWS deployment allows
assessing the influence of network overhead on performance. Moreover, leveraging AWS
EC2 instances across various regions effectively replicates real-world scenarios, which is
particularly beneficial when parties are globally dispersed. There are a few minimum hard-
ware requirements; we were using an office laptop with an Intel Core i5-1235U processor
and 8GB RAM for local deployment. AWS EC2 instances were configured using t2.micro or
t3.micro tiers, i.e., Intel Xeon processors and 1GB RAM, depending on regional availability.
FSC facilitates easy server setup. For example, Listing 3 lists the commands to start two
local servers:

Appl. Sci. 2024, 14, 7891 9 of 15

Listing 3. Exemplary commands to initiate two local servers.

1 pip install federatedsecure -server
2 pip install federatedsecure -simon
3 pip install connexion[flask ,uvicorn ,swagger -ui]
4 git clone https :// github.com/federatedsecure/webserver -connexion
5 cd webserver -connexion/src
6 python __main__.py port =55500 &
7 python __main__.py port =55501 &

3.2.2. Client Setup

Client setup is easily implementable in Python and for two parties, a function to
compute the median is displayed in Listing 4 (The full client-side code used here is available
under https://github.com/federatedsecure/publications/tree/main/secure-median, last
accessed: 20 August 2024).

Listing 4. An exemplary client script for computing the secure median. Each party has to call this
function, providing their respective data as an array and the corresponding member index.

1 import federatedsecure.client
2

3 def secure_median(my_data , my_index)
4 # there are two Federated Secure Computing servers
5 SERVER_PARTY_1 = "http ://127.0.0.1:55500"
6 SERVER_PARTY_2 = "http ://127.0.0.1:55501"
7

8 # the peer -to-peer network is defined by the nodes and
9 # by a unique identifier for this particular calculation

10 SHARED_NODES = [SERVER_PARTY_1 , SERVER_PARTY_2]
11 SHARED_UUID = "c54beb59 -b780 -4878 -96a7-b0867dca6635"
12

13 # each client connects to ’their’ node
14 # here , my_index is either 0 or 1
15 my_node = SHARED_NODES[my_index]
16 my_network = {’nodes’: SHARED_NODES ,
17 ’uuid’: SHARED_UUID ,
18 ’myself ’: my_index}
19

20 # the client connects to the API of their node
21 api = federatedsecure.client.Api(my_node)
22

23 # the client requests Simon , an MPC microservice
24 microservice = api.create(protocol="Simon")
25

26 # the server is asked to compute the median
27 # using the "SecureMedian" microprotocol
28 result = microservice.compute(
29 microprotocol="SecureMedian",
30 data=my_data ,
31 network=my_network)
32

33 # the result of the computation is downloaded to the client and
34 # printed
35 print(api.download(result))

3.2.3. Test Data

Input data comprised synthetic data of varying sizes as well as two open datasets
available in the UC Irvine Machine Learning Repository [23].

Synthetic Data

We generated synthetic data as arrays of varying sizes and data ranges by systemat-
ically varying the size from 102 to 107 and the range from 101 to 103 using Pythons own
random.randint() function while ensuring the inclusion of both the lower and upper bounds
of the respective range.

https://github.com/federatedsecure/publications/tree/main/secure-median

Appl. Sci. 2024, 14, 7891 10 of 15

Public Dataset on Breast Cancer

We utilized a publicly available breast cancer dataset obtained from the University of
Wisconsin Hospital, Madison, WI, USA. This dataset, comprising 569 samples, includes
features related to breast cancer diagnosis, such as radius, texture, perimeter, area, smooth-
ness, compactness, concavity, symmetry, and fractal dimension. Specifically, we focused on
the “Radius1” feature for our evaluation. To simulate a dual-centric study, we divided the
dataset into two portions, each containing 284 and 285 samples, respectively.

Public Dataset on Heart Disease

Similarly, to simulate a multicentric study, we utilized a public heart disease dataset.
This dataset encompasses a total of 920 patients in four databases recorded in four univer-
sity hospitals: the Cleveland Clinic in Cleveland, OH, USA (303 patients), the Hungarian
Institute of Cardiology in Budapest, Hungary (294 patients), the Veterans Administration
Medical Center in Long Beach, CA, USA (200 patients) and the University Hospitals in
Zurich and Basel, Switzerland (123 patients). The dataset features a variety of attributes,
including age, sex, chest pain type, resting blood pressure, serum cholesterol levels, maxi-
mum heart rate achieved during exercise, and the presence of specific electrocardiographic
abnormalities. We focused our analysis primarily on the “age” column.

4. Results

The following results are based on both local deployment to eliminate networking over-
head and AWS EC2 instances deployed in several regions to simulate a real-world scenario.

4.1. Compute Time as a Function of the Size of the Data

The running times as a function of varying dataset sizes and data ranges are illustrated
in Figure 4. The setup involved a local deployment on a consumer-grade laptop, with two
parties each running a server on localhost. For dataset sizes up to 106, the runtimes are
consistent, typically between 1 and 4 s, and grow slightly with the data range. However,
for datasets larger than 106, the runtime grows exponentially. This exponential growth is
evident in datasets containing 107 entries, where runtimes exceed 15 s.

Figure 4. Runtime as a function of the size of the data on a laptop with 2 parties in local deployment.

4.2. Compute Time as a Function of the Number of Parties

The runtime as a function of the number of parties is illustrated in Figure 5. This
experiment was also conducted locally on a standard laptop, with each party running
a server on localhost. In Figure 5a, the dataset size was fixed at 102, while in Figure 5b,
the input range was set to 102. Notably, the runtime shows a linear growth pattern as
the number of parties increases. Additionally, the effect of the data range becomes more
significant as the number of parties increases, while there seems to be no systematic increase
in running time due to increasing data size up to 106, as observed in the previous analysis.

Appl. Sci. 2024, 14, 7891 11 of 15

Figure 5. Runtime as a function of varying number of parties for datasets of differing range with
fixed size of 102 (a) and differing size with fixed range 102 (b) on a laptop with local set up.

4.3. Networking Overhead

To assess the networking overhead, we conducted a series of experiments utilizing
AWS EC2 instances. Specifically, we evaluated the computational performance across
six regions covering Europe (Frankfurt: eu-central-1, Zurich: eu-central-2), Asia-Pacific
(Tokyo: ap-northeast-1, Mumbai: ap-south-1), and Northamerica (N-California: us-west-1,
Ohio: us-east-2). We tested both within each continent and across continents to capture the
impact of varying round-trip times (RTT) on runtimes. Here, we set both the data range
and dataset size to 102. Our measurements revealed an RTT ranging from approximately
7 ms to 200 ms between each pair of AWS regions. Notably, as the RTT increased, so did
the runtime. While the runtime remained around 2 s in the local setup, it grew to over 100 s
between Frankfurt and Tokyo. See Table 1.

Table 1. Round trip time (RTT) and duration values between different AWS regions as well as two
parties running on localhost. The data size and range were set to 102.

Party 1 Party 2 RTT [ms] Duration [s]

Frankfurt (eu-central-1) Tokyo (ap-northeast-1) 222.77 128.00
N-California (us-west-1) Frankfurt (eu-central-1) 149.80 96.69
Tokyo (ap-northeast-1) N-California (us-west-1) 106.05 61.58
Mumbai(ap-south-1) Tokyo (ap-northeast-1) 129.33 85.81
Ohio (us-east-2) N-California (us-west-1) 50.98 34.64
Zurich (eu-central-2) Frankfurt (eu-central-1) 7.16 6.07
AWS-localhost AWS-localhost <0.1 2.04
Localhost Localhost <0.1 1.87

4.4. Real-World Dataset

For a real-world evaluation, we utilized two datasets. We evaluated the split breast
cancer dataset using two AWS EC2 instances located in Frankfurt (eu-central-1) and Tokyo
(ap-northeast-1). For the heart disease dataset, we leveraged the inherent grouping and
selected AWS regions closest to the original recording sites: Ohio (us-east-1), Northern
California (us-west-1), Zurich (eu-central-2), and Frankfurt (eu-central-1). To estimate
networking overhead, we also conducted a local setup with two and four parties, respec-
tively. For the breast cancer dataset, the runtime ignoring networking overhead (local
deployment) was approximately 4 s. However, networking overhead between Europe
and Japan extended the runtime to over 260 s. Similarly, for the heart disease dataset, the
runtime on a local deployment was around 16–17 s. With networking, this increased to
over 800 s. See Table 2.

Appl. Sci. 2024, 14, 7891 12 of 15

Table 2. Comparison of durations for different datasets and configurations.

Dataset
Duration [s]

Parties Localhost AWS-Localhost AWS-Regions

breast-cancer 2 3.55 4.12 261.09
heart-disease 4 15.64 16.91 804.81

5. Discussion

In our research, we have successfully implemented and performed a real-world bench-
marking of a specialized protocol for the computation of rank-based statistics, with a focus
on the median, as developed by Aggarwal et al. [10]. We have provided much-needed
benchmarking and real-world evaluation of this protocol, demonstrating its viability and
effectiveness in practical applications, a prerequisite for real-world settings, including
medical research.

In particular, we show that the protocol scales well with increasing data size up to
106 entries, maintaining runtimes between 1 and 4 s, ignoring network overhead. However,
for larger datasets (>107 entries), the exponential growth in runtime (>15 s) highlights the
need for optimization when dealing with very large datasets. Possible solutions include
parallelization of processes running locally within each stage on each server or increasing
computing resources. Moreover, our analysis indicates a linear growth in runtime as the
number of parties increases, evident in both fixed-size and fixed-range experiments. This
suggests that the protocol’s efficiency remains manageable even with additional parties,
as the runtime consistently remains below one minute for scenarios involving up to ten
parties. Such settings are common in fields like biomedical research, e.g., where a few
hospitals contribute to a multicentric study and jointly want to compute statistics over
their databases without revealing individual inputs. However, for scenarios involving
a larger number of parties with only a few data points, a central server model, such as
the star network described in [7,8], may be more suitable. This model involves all parties
communicating with a central party, reducing communication costs and offloading complex
computations to the central untrusted party. Notably, Chandran et al. [8] demonstrated that
for 100 parties, each holding one data point, the runtime can be reduced to under a minute,
provided the central party has sufficient computing power (32 GB RAM in their example).

Nevertheless, the runtime in our experiments using AWS EC2 instances was domi-
nated by networking overhead. The instances kept minimal and unoptimized were limited
to AWS free tier (EC2 t2.micro), classified as “low to moderate” by AWS [24]. This is
evident from the measured RTT of up to 222 ms between AWS instances, highlighting the
importance of minimizing latency in distributed MPC setups. Böhler and Kerschbaum [9]
demonstrated significantly lower runtimes of 1 to 2 s for their differentially private me-
dian algorithm with RTTs of 12–25 ms, though comparisons are challenging due to their
purpose-optimized implementation.

Additionally, we benchmarked our implementation using real-world datasets to
demonstrate its practical applicability in medical research. Networking overhead sig-
nificantly increases runtime, especially for the heart disease dataset (from 16 to 17 s locally
to over 800 s with AWS regions), highlighting the need for strategic resource selection.
Despite this, the protocol’s performance on real-world data shows its deployment potential,
particularly when network latency is minimized.

5.1. Security Analysis

The security of the underlying secure median algorithm has been demonstrated
by Aggarwal et al. [10]. They address both semi-honest parties, who adhere to the protocol
but seek to gain additional information and malicious adversaries, who may deviate from
the protocol and provide fabricated inputs. While they propose additional steps to extend
security to the malicious case, our implementation currently supports only the semi-honest
case. A primary weakness in our setting occurs when one of two parties, or all but one

Appl. Sci. 2024, 14, 7891 13 of 15

of several parties, provides empty input to the computation. Generally, this issue cannot
be entirely prevented, as empty or extreme values might be valid inputs. For use cases
where such inputs are not expected, parties should impose additional constraints on input
data, such as a minimum number of input elements or a specified input range. They
should also verify the validity of inputs in the initial stage of the protocol and check their
plausibility between stages. Apart from these measures, our implementation does not
introduce any additional communication between the parties compared to the original
protocol. Consequently, parties do not gain any extra information from each other, and the
security analysis of the original algorithm remains valid.

While the datasets remain hidden, in general, revealing the exact kth-ranked value,
e.g., the median, reveals one data point and thus the exact value of one individual, which
could be used to compromise data of targeted individuals [25]. One solution to additionally
protect the output of the computation is to use additional differential privacy techniques,
either adding noise to the output or randomly selecting a value from a probabilistic distribu-
tion of possible values [9,26,27]. Despite concerns about increased computational overhead,
Pettai and Laud [26] argue that this overhead is minimal, while Böhler and Kerschbaum [9]
demonstrate the remarkable efficiency of a specific protocol.

5.2. Limitations

This study has several limitations that should be noted. Our benchmarking was con-
ducted in a semi-honest setting, meaning our implementation does not address scenarios
involving malicious actors. While Aggarwal et al. [10] describe additional measures for
handling malicious settings and commercial solutions like Sharemind MPC [4] as a backend
to FSC offer protections against such threats, these models were outside the scope of our
baseline implementation.

Additionally, our performance evaluation used synthetic datasets to explore various
sizes and participant counts. Although this approach provides insights into computational
scaling, it may not fully capture the complexities and variability of real-world data. To
address this, we incorporated two medical datasets, which, while limited to the healthcare
domain, offer insights into the computational scaling of real-world data irrespective of
the domain. The medical context, though, is a particularly interesting application domain
due to the sensitivity of patient information, highlighting the need for privacy-preserving
techniques in practical applications.

Additionally, we chose not to minimize network latencies in our experiments to
demonstrate a range of possible computation times with real datasets. We also conducted
experiments using hyperscalers in various regions to cover the spectrum of network la-
tency. In practice, parties could replicate their data privately within the same region,
allowing secure peer-to-peer computations to be performed in a low-latency environment,
thus achieving computation times closer to the lower end observed in our experiments
in local deployment.

6. Conclusions

The application of methods of MPC offers solutions to various challenges of col-
lective research. In our study, we bridge the gap between theoretical advancements in
MPC and their practical deployment in medical research, offering the implementation
and real-world benchmarking of a theoretical protocol tailored for rank-based statistics
within the framework of FSC. By analyzing real-world datasets, we provide a concrete
use case demonstrating the applicability of our approach in cloud environments. Our
research not only demonstrates the scalability, efficiency, and real-world applicability of the
protocol but also identifies key aspects to consider when using MPC solutions in distributed
environments. By highlighting the importance of optimizing for a high number of parties
as well as reduced networking overhead, we pave the way for more effective and efficient
collaborative research endeavors in fields such as biomedical research.

Appl. Sci. 2024, 14, 7891 14 of 15

Author Contributions: Conceptualization: C.G.; Methodology: C.G. and H.B.; Software: C.G. and
H.B.; Validation: C.G.; Formal analysis: C.G.; Investigation: C.G.; Resources: H.B.; Data Curation:
C.G.; Writing—original draft preparation: C.G.; Writing—review and editing: C.G., S.V. and H.B.;
Visualization: C.G.; Supervision: S.V. and H.B.; Project administration: H.B.; Funding acquisition:
H.B.; All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Stifterverband grant number H110 5114 5132 36534. The funder
played no role in the study design, data collection, analysis and interpretation of data, the writing of
this manuscript, or the decision to publish.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: This article does not contain any studies with human or animal
subjects performed by any of the authors.

Data Availability Statement: The public test datasets are available from the UC Irvine Machine
Learning Repository (breast cancer dataset: https://archive.ics.uci.edu/dataset/17/breast+cancer
+wisconsin+diagnostic (last accessed: 20 August 2024), heart disease dataset: https://archive.ics.uci.
edu/dataset/45/heart+disease (last accessed: 20 August 2024). The source code is available as free
and open-source software (FOSS) under the MIT license at https://github.com/federatedsecure (last
accessed: 20 August 2024).

Acknowledgments: The authors acknowledge administrative and technical support from LMU
Munich and LMU University Hospital Munich. The authors are grateful for extensive mentoring
and guidance by Stifterverband and Project Together during the competition phase. The authors
thank individuals from GitHub, Amazon Web Services, and Max Planck Institute for Innovation and
Competition for fruitful discussion and support during grant application. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of GPU hardware.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GDPR General Data Protection Regulation
HIPAA Health Insurance 24 Portability and Accountability Act
PPC Privacy-Preserving Computation
RTT Round-trip time
(S)MPC Secure Multiparty Computation
FSC Federated Secure Computing
SIMON SImple Multiparty ComputatiON

References
1. Chen, H.; Wang, H.; Long, Q.; Jin, D.; Li, Y. Advancements in Federated Learning: Models, Methods, and Privacy. ACM Comput.

Surv. 2024. [CrossRef]
2. Elkordy, A.R.; Ezzeldin, Y.H.; Han, S.; Sharma, S.; He, C.; Mehrotra, S.; Avestimehr, S. Federated analytics: A survey. APSIPA

Trans. Signal Inf. Process. 2023, 12. [CrossRef]
3. Zhao, C.; Zhao, S.; Zhao, M.; Chen, Z.; Gao, C.Z.; Li, H.; Tan, Y. Secure Multi-Party Computation: Theory, practice and applications.

Inf. Sci. 2019, 476, 357–372. [CrossRef]
4. Bogdanov, D.; Kamm, L.; Laur, S.; Pruulmann-Vengerfeldt, P. Secure Multi-Party Sata Analysis: End User Validation and Practical

Experiments. Cryptology ePrint Archive, Paper 2013/826, 2013. Available online: https://eprint.iacr.org/2013/826 (accessed on
20 August 2024).

5. Gaye, A.; Marcon, Y.; Isaeva, J.; LaFlamme, P.; Turner, A.; Jones, E.M.; Minion, J.; Boyd, A.W.; Newby, C.J.; Nuotio, M.L.; et al.
DataSHIELD: Taking the analysis to the data, not the data to the analysis. Int. J. Epidemiol. 2014, 43, 1929–1944. [CrossRef]
[PubMed]

6. Ballhausen, H.; Hinske, L.C. Federated Secure Computing. Informatics 2023, 10, 83. [CrossRef]
7. Tueno, A.; Kerschbaum, F.; Katzenbeisser, S.; Boev, Y.; Qureshi, M. Secure Computation of the kth-Ranked Element in a Star

Network. In Proceedings of the Financial Cryptography and Data Security—FC2020, Kota Kinabalu, Malaysia, 10–14 February
2020; Bonneau, J., Heninger, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 386–403. [CrossRef]

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/45/heart+disease
https://archive.ics.uci.edu/dataset/45/heart+disease
https://github.com/federatedsecure
http://doi.org/10.1145/3664650
http://dx.doi.org/10.1561/116.00000063
http://dx.doi.org/10.1016/j.ins.2018.10.024
https://eprint.iacr.org/2013/826
http://dx.doi.org/10.1093/ije/dyu188
http://www.ncbi.nlm.nih.gov/pubmed/25261970
http://dx.doi.org/10.3390/informatics10040083
http://dx.doi.org/10.1007/978-3-030-51280-4_21

Appl. Sci. 2024, 14, 7891 15 of 15

8. Chandran, G.R.; Hazay, C.; Hundt, R.; Schneider, T. Comparison-Based MPC in Star Topology. In Proceedings of the 19th
International Conference on Security and Cryptography—SECRYPT, Lisbon, Portugal, 11–13 July 2022; De Capitani di Vimercati,
S., Samarati, P., Eds.; SCITEPRESS: Setúbal, Portugal, 2022; pp. 69–82. [CrossRef]

9. Böhler, J.; Kerschbaum, F. Secure Sublinear Time Differentially Private Median Computation. In Proceedings of the Network and
Distributed System Security Symposium 2020, San Diego, CA, USA, 23–26 February 2020; The Internet Society: Reston, VA, USA,
2020; pp. 1062–1079. [CrossRef]

10. Aggarwal, G.; Mishra, N.; Pinkas, B. Secure Computation of the Median (and Other Elements of Specified Ranks). J. Cryptol.
2010, 23, 373–401. [CrossRef]

11. Hastings, M.; Hemenway, B.; Noble, D.; Zdancewic, S. SoK: General Purpose Compilers for Secure Multi-Party Computation. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, 19–23 May 2019; IEE: Red Hook,
NY, USA, 2019; pp. 1220–1237. [CrossRef]

12. Stammler, S.; Kussel, T.; Schoppmann, P.; Stampe, F.; Tremper, G.; Katzenbeisser, S.; Hamacher, K.; Lablans, M. Mainzelliste
SecureEpiLinker (MainSEL): Privacy-preserving record linkage using secure multi-party computation. Bioinformatics 2020,
38, 1657–1668. [CrossRef] [PubMed]

13. Kamm, L.; Bogdanov, D.; Laur, S.; Vilo, J. A new way to protect privacy in large-scale genome-wide association studies.
Bioinformatics 2013, 29, 886–893. [CrossRef] [PubMed]

14. Shimizu, K.; Nuida, K.; Arai, H.; Mitsunari, S.; Attrapadung, N.; Hamada, M.; Tsuda, K.; Hirokawa, T.; Sakuma, J.; Hanaoka, G.;
et al. Privacy-preserving search for chemical compound databases. BMC Bioinform. 2015, 16, S6. [CrossRef] [PubMed]

15. Von Maltitz, M.; Ballhausen, H.; Kaul, D.; Fleischmann, D.F.; Niyazi, M.; Belka, C.; Carle, G. A Privacy-Preserving Log-Rank
Test for the Kaplan-Meier Estimator With Secure Multiparty Computation: Algorithm Development and Validation. JMIR Med.
Inform. 2021, 9, e22158. [CrossRef] [PubMed]

16. Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In Proceedings of the CCS ’20: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 9–13 November 2020; ACM:
New York, NY, USA, 2020; pp. 1575–1590. [CrossRef]

17. Alexandra Institute. FRESCO—A FRamework for Efficient Secure COmputation. Available online: https://github.com/aicis/fre
sco (accessed on 20 August 2024).

18. Demmler, D.; Schneider, T.; Zohner, M. ABY—A Framework for Efficient Mixed-Protocol Secure Two-Party Computation. In
Proceedings of the Network and Distributed System Security Symposium 2015, Reston, VA, USA, 8–11 February 2015; The
Internet Society: Reston, VA, USA, 2020; pp. 497–511. [CrossRef]

19. Bogdanov, D.; Laur, S.; Willemson, J. Sharemind: A Framework for Fast Privacy-Preserving Computations. In Proceedings of
the 13th European Symposium on Research in Computer Security—ESORICS 2008, Málaga, Spain, 6–8 October 2008; Jajodia, S.,
Lopez, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 192–206. [CrossRef]

20. Becker, S.; Duplys, P.; Graf, J.; Graffi, K.; Grassi, A.; Greven, D.; Grewe, J.; Jain, S.; Klenk, T.; Matyunin, N.; et al. Carbyne Stack.
Available online: https://carbynestack.io (accessed on 20 August 2024).

21. Wirth, F.N.; Kussel, T.; Müller, A.; Hamacher, K.; Prasser, F. EasySMPC: A simple but powerful no-code tool for practical secure
multiparty computation. BMC Bioinform. 2022, 23, 531. [CrossRef] [PubMed]

22. Cramer, R.; Damgård, I.B.; Nielsen, J.B. Secure Multiparty Computation and Secret Sharing; Cambridge University Press: New York,
NY, USA, 2015. [CrossRef]

23. Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository (2023). Available online: https://archive.ics.uci.
edu (accessed on 20 August 2024).

24. Amazon Web Services. Amazon ElastiCache Pricing. Available online: https://aws.amazon.com/de/elasticache/pricing/
(accessed on 3 June 2024).

25. DeMillo, R.A.; Dobkin, D.; Lipton, R.J. Even data bases that lie can be compromised. IEEE Trans. Softw. Eng. 1978, 4, 73.
[CrossRef]

26. Pettai, M.; Laud, P. Combining Differential Privacy and Secure Multiparty Computation. In Proceedings of the 31st Annual
Computer Security Applications Conference, New York, NY, USA, 7–11 December 2015; ACM: New York, NY, USA, 2020;
pp. 421–430. [CrossRef]

27. Goryczka, S.; Xiong, L. A Comprehensive Comparison of Multiparty Secure Additions with Differential Privacy. IEEE Trans.
Dependable Secur. Comput. 2017, 14, 463–477. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5220/0011144100003283
http://dx.doi.org/10.14722/ndss.2020.24150
http://dx.doi.org/10.1007/s00145-010-9059-9
http://dx.doi.org/10.1109/SP.2019.00028
http://dx.doi.org/10.1093/bioinformatics/btaa764
http://www.ncbi.nlm.nih.gov/pubmed/32871006
http://dx.doi.org/10.1093/bioinformatics/btt066
http://www.ncbi.nlm.nih.gov/pubmed/23413435
http://dx.doi.org/10.1186/1471-2105-16-S18-S6
http://www.ncbi.nlm.nih.gov/pubmed/26678650
http://dx.doi.org/10.2196/22158
http://www.ncbi.nlm.nih.gov/pubmed/33459602
http://dx.doi.org/10.1145/3372297.3417872
https://github.com/aicis/fresco
https://github.com/aicis/fresco
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.1007/978-3-540-88313-5_13
https://carbynestack.io
http://dx.doi.org/10.1186/s12859-022-05044-8
http://www.ncbi.nlm.nih.gov/pubmed/36494612
http://dx.doi.org/10.1017/CBO9781107337756
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://aws.amazon.com/de/elasticache/pricing/
http://dx.doi.org/10.1109/TSE.1978.231469
http://dx.doi.org/10.1145/2818000.2818027
http://dx.doi.org/10.1109/TDSC.2015.2484326
http://www.ncbi.nlm.nih.gov/pubmed/28919841

	Introduction
	Related Work
	Our Contribution
	Overview

	Preliminaries
	Secure Multiparty Computation
	Threat Model
	Protocol for the kth-Ranked Element
	Secure Computing Framework

	Materials and Methods
	Implementation
	Experimental Setup
	Server Setup
	Client Setup
	Test Data

	Results
	Compute Time as a Function of the Size of the Data
	Compute Time as a Function of the Number of Parties
	Networking Overhead
	Real-World Dataset

	Discussion
	Security Analysis
	Limitations

	Conclusions
	References

