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Abstract: Fiber optic sensors (FOSs) have transformed industrial applications with their high sen-
sitivity and precision, especially in real-time monitoring. This study presents a fiber optic sensor
based on multimodal interference (MMI) applied to detect honey adulteration. The sensor is built
using a non-core multimode fiber (NC-MMF) segment spliced between two standard single-mode
fibers (SMFs). We focus on reporting the detection of two main adulterants in honey that modify its
refractive index (RI): the presence of glucose and moisture content. Detailed testing was performed
with two commercially approved honey brands, named A and B. The sensor successfully detected
glucose concentrations from 1% to 5% and moisture content from 0% to 20% for both brands. For
glucose detection, we obtained sensitivity values −0.55457 nm/% for brand A and −2.61257 nm/%
for brand B. In terms of moisture content in honey, we observed a sensitivity around −0.3154 nm/%
and −0.3394 nm/% for brands A and B, respectively. Additionally, temperature tests were performed,
showing that the sensor works optimally up to 30 ◦C. The results were validated using a conventional
refractometer, showing a close agreement with the data obtained and confirming the reliability and
accuracy of the proposed sensor. Compared to other refractometers, the MMI sensor offers advan-
tages such as real-time monitoring, ease of assembly, cost-effectiveness, and minimal maintenance.
Furthermore, the sensor represents an alternative tool to guarantee the quality and authenticity of
honey, overcoming the limitations of conventional measurement techniques.

Keywords: fiber optic sensor; honey adulteration; multimodal interference

1. Introduction

Fiber optic sensors (FOSs) have emerged as a revolutionary technology in various
industrial applications due to their numerous advantages. The development of fiber op-
tic technology began in the 1970s with advancements towards low-loss optical fibers for
telecommunications. This led researchers to explore the potential of fiber optics as a novel
waveguide for fast data communication [1,2]. The integration of fiber optic communica-
tions and optoelectronics industries catalyzed the creation of fiber optic sensors, capable of
detecting changes in phase, intensity, wavelength, and external disturbances [3,4]. These
sensors offer high sensitivity and precision in detecting environmental changes, allowing
real-time monitoring of critical variables. Their ability to operate in hostile environments,
compact size, and flexibility enable easy integration into existing systems. Additionally,
their capacity to transmit signals over long distances without significant loss ensures ef-
ficient and accurate communication. These characteristics, along with low maintenance
and high durability, make fiber optic sensors an advanced and reliable solution for improv-
ing process control and safety in diverse industries [2,3]. Fiber optic sensors have been
developed in various geometries, structures, and platforms, including fiber Bragg gratings
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(FBGs) [5], long-period gratings (LPGs) [6], specialty fibers [7], tapered fibers [8], multi-
modal interference (MMI) phenomenon [9–11] and in-fiber surface plasmon resonance [12],
among others. These varied configurations highlight the versatility and adaptability of
FOS technology to meet different sensing requirements.

As already mentioned, fiber optic sensors have been used in multiple areas; in the food
industry, fiber optic sensors are particularly valuable for their ability to perform real-time
analysis [13]. This capability allows continuous and precise monitoring during production
processes, significantly enhancing the quality control and safety of food products. By
providing rapid and reliable detection of contaminants and adulterants, these sensors help
ensure that foods meet regulatory standards and consumer expectations, reducing the
risk of foodborne illnesses and improving trust in the supply chain [14,15]. An excellent
example of a food product that could greatly benefit from advanced tracking techniques
is honey. Widely consumed for its nutritional value and as a natural sweetener, honey is
particularly vulnerable to adulteration [16]. The main mechanisms used to alter honey
include dilution with water, the addition of cheap sugars or syrups, mixing with lower
quality honey or honey of unknown origin, or adding chemicals such as antibiotics or
pesticides to prevent fermentation and prolong shelf life [16,17]. Adulterating honey
with water increases its humidity content, potentially enabling the growth of yeasts and
other microorganisms, thereby reducing its shelf life and quality. Additionally, honey
adulterated with water has a higher risk of microbiological contamination, leading to
health issues such as gastrointestinal infections [18,19]. Similarly, adulteration with glucose
and other sugars not only degrades the nutritional quality of honey but also alters its
chemical and biochemical properties, affecting its taste and potentially harming consumer
health [20]. Ensuring the quality and authenticity of honey is essential for consumers to
enjoy its nutritional benefits. Various techniques have been developed to measure and
analyze the physicochemical parameters of honey, including water content and glucose.
Reported techniques include the use of refractometers [21], electrical conductivity [22],
spectroscopy [23], stable carbon isotope ratio analysis [24,25], chromatography [26,27],
Fourier transform (FT) Raman spectroscopy, and microscopic detection [28]. However,
most of these techniques demand a significant amount of manual work and were not
applied for practical honey quality assessment. In this way, they come with disadvantages
like being time-consuming processes to carry out intricate chemical separation procedures
and involving costly isotope testing, which is challenging to incorporate into regular
monitoring evaluations [29]. On the other hand, fiber optic sensors have shown satisfactory
results in detecting the adulteration of glucose in honey as reported in Reference [30] and
both fructose and glucose as detailed in References [31,32]. Additionally, fiber optic sensors
have been used to measure honey adulterated with distilled water through reflection
techniques, as is noted in References [33,34].

This paper presents a novel study that lies in the development and application of an
SMS-configured fiber optic sensor specifically designed to detect low levels of adulteration
in honey, particularly through the addition of glucose and moisture, with sensitivity
and stability compared to conventional methods. The sensor has a simple structure that
consists of a non-core multimode fiber (NC-MMF) segment spliced between two standard
single-mode fibers (SMFs). In this scheme, the medium surrounding the NC-MMF plays
the role of its coating, which makes the multimode interference taking place in the NC-
MMF sensitive to variations in the external refractive index (RI). This effect allows for the
detection and quantification of different concentrations of honey adulterated with water or
glucose standard optical equipment. An advantage with respect to the published sensors is
that their manufacturing does not require functionalization procedures, or the deposition
of materials, and does not require special care in handling. The proposed sensor was
tested on commercial honey brands, showing a linear response with respect to the level of
adulteration, thus demonstrating its potential for low-cost, real-time detection suitable for
online analysis in the food industry.
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2. Theoretical Description
2.1. Multimode Interference (MMI) Sensor Principle

A common geometry of multimode interference-based fiber detection device is known
as an SMS configuration. This configuration contains a segment of multimode fiber (MMF)
linked between two single-mode fibers (SMFs). If the MMF coating is removed or absent,
as in the case of an NC-MMF, then the structure can be used as a sensor of the surrounding
media [35], as shown in Figure 1.
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As the signal transitions from the SMF to the central portion of the fiber, various
modes are stimulated and interact while traversing the NC-MMF. Along the optical axis
of the fiber, specific locations generate self-images, which essentially replicate the initial
input field [36]. Due to the circular symmetry of the input field, only the linearly polarized
mode LP0m is excited within the central fiber [37–39]. The electric field at the entrance of
the MMF can be described as [36,39]:

E(r, 0) =
M

∑
0

bmψm(r) (1)

where m represents the mode number that is guided, ψm(r) stands for the electric field
within the NC-MMF for the mth mode, r denotes the radial position within the fiber’s
cross-section, M signifies the overall count of radial modes stimulated in the NC-MMF
segment, and bm indicates the mode expansion coefficient. This coefficient is determined by
the overlap integral between E(r, 0) and ψm(r), and the field at distance L of the NC-MMF
expressed by [40,41]:

E(r, L) =
M

∑
m=1

bmψm(r)e−iβm L (2)

In this context, βm represents the longitudinal propagation constant specific to the
LP0m mode within the NC-MMF. According to Equation (2), whenever the phase factor
βmL equals pπ, where p takes on integer values (1, 2, 3, etc.), the input field is replicated.
This replication point is essentially the result of constructive interference among the modes
as they propagate along the NC-MMF. The assessment of the transmission output power is
determined by [38,42]:

T(λ, L) =

∣∣∣∣∣ M

∑
m=1

b2
mψm(r)e−iβm L

∣∣∣∣∣
2

(3)

By Equation (3), the wavelength transmitted through the MMI filter is affected by both
the diameter and length of the NC-MMF. The NC-MMF length is meticulously selected to
correspond to a specific wavelength by the expression [39,43]:

LMMF = p
ne f f D2

e f f

λpeak
(4)
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where ne f f denotes the effective refractive index of the core, De f f represents the diameter
of the NC-MMF, LMMF is the length of the NC-MMF, and p is an integer indicating the self-
image order. The reader is referred to Refs. [39,44] for a detailed derivation of Equation (4)
within the context of the integrated MMI devices and to Ref. [11] for a simplified extension
to fiber-optic MMI devices.

The adjustment of the wavelength occurs through modifications in dimensions or re-
fractive index. The self-image position is influenced by the MMF dimension, and the wave-
length is propagated. When the NC-MMF length is precisely aligned with the self-image
point for a specific wavelength and spliced with the output SMF, maximum transmission
is achieved at that wavelength. However, for other wavelengths, self-image points may
fall either before or after the NC-MMF-SMF interface, resulting in reduced light coupling
to the SMF. Consequently, when a broadband spectrum passes through such a cascade
structure, it gives an MMI passband filter [41]. To reach genuine self-images and minimize
loss, most studies opt for the fourth self-image point when selecting the MMF length [45,46].
A detailed description of the multimodal interference effect can be consulted in the Refer-
ence [39]. Additionally, in Reference [11], an extensive review of this phenomena using an
optical fiber configuration, and its application as a sensor of physical variables is presented.

2.2. Rheological and Optical Characteristics of Honey

The optical and rheological properties of honey are essential for assessing its quality
and detecting adulteration. The rheological properties that describe honey’s behavior
as a fluid include viscosity, shear-thinning behavior, thixotropy, elasticity, temperature
dependence, Newtonian behavior, and storage modulus. These characteristics are influ-
enced by factors such as shear rate, stress, temperature, moisture content, floral source,
and processing conditions. For instance, viscosity decreases with rising temperature, while
shear-thinning behavior reduces apparent viscosity under increased shear rates. Under-
standing these properties is crucial for determining honey’s quality, authenticity, and
suitability for various applications in the food industry [47,48].

On the other hand, optical properties of honey, such as refractive index, birefringence,
optical rotation, absorption and scattering, optical path length variation, and polarization
properties, are critical for its interaction with light and for designing fiber optic sensors.
The refractive index, which ranges from approximately 1.4815 to 1.504 [49,50], varies with
solid content, temperature, and water content, making it a vital parameter for assessing
honey quality. It aids in determining moisture content, detecting adulteration, identifying
floral sources, and spotting dilution or blending of honey. Furthermore, the refractive
index’s sensitivity to moisture content helps estimate honey’s purity, while deviations from
standard values indicate potential adulteration [50]. Thus, we observe that honey exhibits
a complexity and whose complete description implies the incorporation of the mentioned
properties. However, the perspective of our study is focused on using a multimodal inter-
ference device to describe the optical characteristics of honey, specifically for identifying
adulteration with glucose and measuring moisture content through refractometric mea-
surements. In this sense, all procedures were carefully performed to ensure accuracy and
minimize errors.

3. Materials and Methods
3.1. Sensor Fabrication and Experimental Set-Up

The SMS device was constructed following the principles outlined in Equation (4).
These devices incorporate a length of Non-Core Multimode Fiber (NC-MMF) sandwiched
between two Single-mode Fibers (SMFs). The spectral response of the device was tailored
by simply modifying the length of the NC-MMF segment. The SMF used in this application
is SMF-28 (Thorlabs, Newton, NJ, USA), characterized by a cladding diameter of 125 µm
and a core diameter of 8 µm. The NC-MMF (FG125LA, Thorlabs, Newton, NJ, USA), with a
diameter De f f of 125 µm and a refractive index ne f f of 1.4445 at the operating wavelength
of 1550 nm. The sensor assembly was created using a straightforward method involving the
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splicing of the SMF to the NC-MMF. Subsequently, the NC-MMF length was determined
using a vernier caliper, with the splice serving as the zero-length reference point. After
marking the NC-MMF at the desired length, it was cleaved at the marked point, followed
by the splicing of the second SMF. All fiber segments were joined together using an arc
fusion splicer (Fujikura, San Jose, CA, USA, model FSM-60S).

Following the guidance provided by Equation (4) and opting for the fourth self-image
(p = 4), the length of the NC-MMF section was computed to fabricate the sensor targeting
a peak wavelength of λpeak = 1488 nm. Consequently, the calculated length of the NC-
MMF is approximately LMMF = 6.07 cm. Subsequently, the sensor head was fitted with
standard FC/PC connectors for the ease of handling and integration. The manufacturing
process is simple and resilient: through a basic variational examination of Equation (4), it
becomes evident that any deviation in the length of the MMF results in a change in the
peak wavelength [51]:

δλpeak =

(
∂λpeak

∂L

)
δL = −

(
p

ne f f D2
e f f

L2
MMF

)
δL (5)

Therefore, with p = 4, ne f f = 1.4445, De f f = 125 µm, LMMF = 6.07 cm, and factoring
in the standard resolution of a typical vernier caliper at ∂L = 0.05 mm, the deviation in the
peak wavelength amounts to approximately δλpeak ≈ 1.4 nm.

The experimental set-up was carried out to evaluate the SMS structure (Figure 2). In
this experimental set-up, a superluminescent diode (SLD, Thorlabs, Newton, NJ, USA,
model SLD1550S-A1) is employed to generate a wide spectral range spanning from 1420 nm
to 1650 nm. The generated signal is launched into the system through an FC/PC connection
cable. Subsequently, the signal propagates through the SMS device and is gathered by a
secondary patch cable; finally, its transmitted characteristics are assessed using an optical
spectrum analyzer (OSA, Anritsu, Morgan Hill, CA, USA, model MS9740A).
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3.2. Samples Preparation
3.2.1. Preparation of Samples Adulterated with Glucose

According to the CODEX Alimentarius and the NOM-004-SAG/GAN-2018 Official
Mexican Regulation of Honey Production and Specifications, the maximum permissible
concentration of glucose in honey is 5% (g/100 gr) [52,53]. Using this reference, the samples
were created using two distinct commercially available honey brands from Mexico, both
of which had their purity confirmed in compliance with Mexican regulations, revealing a
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glucose content of 0%. To simulate adulteration, we introduced commercial glucose for
both brands at varying levels of adulteration. This adulteration process started at 1% (w/w)
and escalated incrementally by 1% (w/w) up to a maximum of 5% (w/w), contingent upon
the weight fraction (w/w) [53].

The samples were maintained at room temperature to prevent the formation of any
crystalline substances and were gently agitated for 30 min to ensure uniformity and mitigate
potential complications arising from inherent fluctuations in glucose concentration. After
mixing, the refractive index of each sample was measured using a refractometer (Hanna
Instruments, Judetul Salaj, Romania, model HI96800). The refractometer was calibrated
prior to measurement following the manufacturer’s instructions.

3.2.2. Preparation of Honey Samples with Moisture Content

For this part of the study, the same commercially available honey brands used in
Section 3.2.1 were employed. According to NOM-004-SAG/GAN-2018 [53] and the Codex
Alimentarius [52], the maximum permissible moisture content in honey is 20%. To create
samples with varying moisture content, specific amounts of distilled water were added to
the pure honey. The adulterated honey samples were prepared with moisture concentra-
tions ranging from 20% to 0% in 5% increments based on the weight fraction (w/w).

The samples were mixed at room temperature for 30 min using a stirring device to ensure
uniformity. Similar to the glucose adulteration samples, the refractive index of each honey
sample was measured using the same refractometer, following the calibration procedure.

4. Results and Discussion

As a first step, we tested our SMS sensor to detect honey alteration by glucose’s
presence. In such a case, the experimental testing to validate the SMS sensor began with the
sensor in its initial state, safely placed inside a container and exposed to the surrounding air.
Subsequently, the sensor was completely immersed in a sample of 5% glucose with brand
A honey, ensuring that the NC-MMF section was fully immersed. For each sample, spectral
data of the resulting signal were captured using an optical spectrum analyzer (OSA). After
each measurement, the sensor underwent a thorough cleaning procedure using vinegar
and deionized water, followed by air drying. This ensured the reestablishment of identical
initial conditions for each subsequent test. The same sequence of steps was repeated for the
adulterated samples of brand B honey.

The next stage of our sequence of experiments was to test our SMS framework for
the detection of water content in honey. In this case, we used the set of honey samples
adulterated with distilled water described in the previous section. This procedure replicates
the moisture content in honey. The experimental tests were carried out in the same way as
for the honey samples adulterated with glucose, that is, we started by placing the sensor in
the initial condition (surrounded by air). The sensor was then immersed in the adulterated
honey sample containing 20% distilled water, and the spectrum of the signal obtained was
recorded using the OSA. After each measurement, the sensor was cleaned with vinegar
and deionized water and air-dried to ensure identical initial conditions for each test. This
process was repeated for each adulterated honey sample, from 20% to 0% adulteration, for
brand A and B honey.

Variations in the refractive index (RI) of the medium surrounding the NC-MMF
section modify the interference conditions, resulting in a spectral shift. Figure 3a displays
the spectral response when the SMS sensor is immersed in the brand A honey samples
adulterated with glucose. The same spectral response was observed for honey from brand
B. Similarly, Figure 3b shows the spectral response of the SMS sensor for all samples of
honey from brand A adulterated with water (simulating moisture content in honey) at
concentrations ranging from 20% to 0% in 5% increments. The spectrum of the sensor in
its initial condition (in air) is also included as a comparative reference. The same spectral
response was obtained for honey from brand B.
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Figure 3. Spectral response of the SMS sensor, as a reference the spectral response in the initial
condition is also represented, that is, when the sensor is surrounded by air. (a) Sensor response for
brand A honey mixtures with glucose adulteration. (b) Sensor response for brand A honey mixtures
with different moisture contents.

It is important to note that the spectral shift differs for samples adulterated with
glucose and water. This behavior is due to the refractive index of glucose being higher than
water. Therefore, when honey is mixed with water, the wavelength shifts are similar but of
different magnitudes.

To validate the sensor, the refractive index obtained from the refractometer (Hanna
Instruments, Judetul Salaj, Romania, model HI96800) for all honey samples adulterated with
both glucose and distilled water was used. Then, the spectral shift of the peak wavelength,
∆λ, was calculated as a function of the concentration of each adulterated honey sample.
This shift was determined by measuring the difference between the peak wavelengths when
the SMS structure was immersed in the sample and its position when measured in air. The
negative spectral shift is proportional to the adulteration concentration level of the sample.
This spectral shift was then compared with the refractive indices obtained from each sample
recorded with the refractometer, as presented in Figure 4. Specifically, Figure 4a,b show the
spectral shift for glucose-adulterated honey of brands A and B, respectively, compared to
the refractometer measurements. Similarly, Figure 4c,d illustrate the spectral change for
honey adulterated with distilled water, simulating moisture content, for brands A and B,
respectively, compared to the refractive index obtained from the refractometer.

By fitting the experimental data to a linear function, we obtained sensitivities of
−0.55457 nm/% and −0.0018 nm/% for brand A honey adulterated with glucose, using the
SMS sensor and the refractometer, respectively. For brand B honey adulterated with glucose,
the linearity values were −2.61257 nm/% for the SMS sensor and −0.00163 nm/% for the
refractometer. A similar response was observed for honey adulterated with distilled water.
The sensitivity was −0.3154 nm/% and −0.3394 nm/% for the SMS sensor for samples A
and B, respectively, and −0.00217 nm/% and −0.00214 nm/% for the refractometer for
samples A and B, respectively. Comparing the sensor response with the readings recorded
by the refractometer, we observed very similar behavior in both measurement systems.

Furthermore, considering the maximum resolution of the OSA instrument used in our
experiments (0.03 nm), the obtained sensitivities indicate that glucose levels as small as
0.054% and 0.011% can be detected for brands A and B, respectively. It is also possible for
the sensor to detect moisture levels in the honey of brands A and B at 0.095% and 0.088%,
respectively. In other words, variations in moisture and glucose levels of less than 1% can
be monitored. This suggests that our approach could be suitable for quality control in honey
production. Additionally, compared to the results obtained through a well-established
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measurement parameter, such as the refractometer, our proposed measurement technique
demonstrates both reliability and accuracy.
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Figure 4. Spectral shift of the maximum wavelength and refractive index (RI) relative to the initial
condition, based on the two types of adulteration analyzed: glucose and moisture content in honey
for the two honey brands examined. (a) Measurement of brand A honey adulterated with glucose
using the SMS sensor versus a refractometer. (b) Measurement of brand B honey adulterated with
glucose using the SMS sensor versus a refractometer. (c) Measurement of brand A honey adulterated
with distilled water (moisture content) using the SMS sensor versus a refractometer. (d) Measurement
of brand B honey adulterated with distilled water (moisture content) using the SMS sensor versus
a refractometer.

To evaluate the accuracy and repeatability of the measurements obtained from the
proposed sensor, we carefully selected representative samples of honey from brand A with
glucose adulterations in concentrations of 1%, 3%, and 5%. For each selected sample, we
meticulously measured the wavelength peaks, repeating the process three times. This
procedure included washing, cleaning, and drying the sensor between measurements. The
standard deviations resulting from these repetitions are detailed in Table 1. In the case
of the 5% concentration, we observed a variation likely attributed to the glucose level
approaching the saturation limit of the solution.
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Table 1. Standard deviations from sample concentrations of adulterated honey brand A.

% Glucose % Moisture Content Standard Deviation

1% 0.13856
3% 0.24
5% 0.59003

5% 0.14142
10% 0.21046
15% 0.24170

A similar process was carried out to determine the repeatability of the sensor when
measuring honey with moisture content. Three representative samples were selected with
adulteration concentrations of 5%, 10%, and 15%. These samples were measured three
times each, following the same measurement procedure described above, which included
cleaning with vinegar, deionized water, and air drying. The results obtained are shown
in Table 1.

We also investigated the influence of thermal effects. To explore this, measurements
were performed at different temperatures, starting with the sample containing 5% glucose
concentration for honey brand A. The MMI sensor was immersed in the sample, and
the vessel was placed on a heating plate (Cimarec, ThermoFisher Scientific, Waltham,
MA, USA, model SP1313225). The temperature was gradually raised from 25 ◦C to 45 ◦C
in 5 ◦C increments. The entire system was housed within a temperature chamber. At
each temperature, the sample was allowed to stabilize for 20 min before the spectrum
was recorded. We calculated a thermal sensitivity of 0.312 nm/◦C. A similar procedure
was performed to determine the sensor response at different temperatures for samples
adulterated with distilled water from brand A honey. The sensor behavior was similar,
emphasizing the need to maintain a constant temperature during measurements to avoid
small variations in the refractive index.

The results showed that increasing the temperature affects the sensor response due to
the rheological properties of honey, such as temperature-dependent viscosity and New-
tonian behavior. This effect produces a non-linear temperature response in the sensor.
Therefore, it is suggested to use the sensor to detect moisture in honey at a maximum
ambient temperature of 30 ◦C to ensure accurate measurements. It is important to mention
that there are strategies to athermalize MMI devices, such as partially coating the NC-MMF
with a polymeric material whose thermo-optical coefficient compensates for the thermal
effects of silica [54,55]. However, these strategies were not part of this experimental study.

5. Conclusions

This paper presents an experimental investigation of a proposed fiber optic sensor
using an SMS configuration to detect adulteration in honey by the two most common
mechanisms: by the addition of glucose and moisture content. The sensor demonstrated
its efficacy in detecting glucose adulteration at concentrations between 1% and 5% and in
detecting moisture content ranging from 0% to 20% using distilled water. Rigorous testing
involved two commercially approved honey brands complying with Mexican authenticity
laws. The sensor exhibits notable advantages, including simple fabrication, the use of
inexpensive conventional fibers, and a linear response, making it promising for quality
assessment in the food industry.

The results demonstrated the sensor’s sensitivity, with values around −0.55457 nm/%
for honey brand A and −2.61257 nm/% for honey brand B when detecting glucose adulter-
ation and −0.3154 nm/% and −0.3394 nm/% when detecting moisture adulteration for
honey brand A and B. The accuracy and reliability of the sensor were validated by com-
paring its measurements with those obtained from a conventional refractometer, showing
close agreement and an absence of bias.

The MMI device ensures effective performance when used at temperatures up to 30 ◦C,
crucial for maintaining measurement accuracy under normal honey processing and storage
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conditions. This feature significantly increases interest in the food industry as a robust
mechanism for effectively monitoring honey adulteration levels, thus safeguarding honey
product authenticity and quality in the market.

The proposed MMI sensor offers several advantages over traditional refractometers.
While refractometers are well-known for their high numerical sensitivity, this can make
them more susceptible to environmental noise and fluctuations, potentially complicating
measurements in real-world conditions. In contrast, the SMS sensor’s lower sensitivity
contributes to its superior stability and robustness in practical applications, allowing for
more reliable and continuous real-time monitoring without frequent recalibration or com-
plex maintenance. This is particularly beneficial in industrial settings where uninterrupted
monitoring is critical to ensure product quality and consistency. Additionally, the SMS
sensor’s design facilitates integration into automated systems, reducing operational costs
over time.

Moreover, the MMI sensor allows continuous and real-time monitoring, enhancing its
practicality for ongoing honey quality control in contrast with commercial refractometers
that provide only discrete measurements. The MMI sensors have a simple structure using
conventional optical fibers, making it a more cost-effective and accessible option. Its ability
to detect small levels of honey adulteration with high sensitivity further positions the MMI
sensor as an attractive alternative for ensuring honey quality.

Also, the MMI sensor has other significant advantages such as sensitivity to multiple
parameters, lower maintenance requirements, ease of integration into automated systems,
portability, versatility in applications, and faster response times. These attributes make the
MMI sensor a robust and flexible tool suitable for several industrial applications.

Despite the inherent complexity of honey, which typically exhibits Newtonian behav-
ior but can display non-Newtonian characteristics when adulterated, the sensor optimally
addressed the challenge of measuring adulterated honey. This highlights the sensor’s
capability to account for the intricate rheological and optical properties of honey. The
potential impact of this sensor is significant, given its ability to detect low-level adulter-
ation, user-friendly design, and real-time monitoring capabilities. Future work suggests
developing a model that incorporates the elastic, mechanical, and optical characteristics of
honey to provide a more comprehensive analysis.
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