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Abstract: The advent of the Internet of Things (IoT) has revolutionized numerous sectors, with
healthcare being particularly significant. Despite extensive studies addressing healthcare challenges,
two persist: (1) the need for the swift detection of abnormalities in patients under medical care
and timely notifications to patients or caregivers and (2) the accurate diagnosis of abnormalities
tailored to the patient’s condition. Addressing these challenges, numerous studies have focused on
developing healthcare systems, leveraging technologies like edge computing, which plays a pivotal
role in enhancing system efficiency. Fog computing, situated at the edge of network hierarchies,
leverages multiple nodes to expedite system processes. Furthermore, the wealth of data generated
by sensors connected to patients presents invaluable insights for optimizing medical care. Data
mining techniques, in this context, offer a means to enhance healthcare system performance by
refining abnormality notifications and disease analysis. In this study, we present a system utilizing
the K-Nearest Neighbor (KNN) algorithm and Raspberry Pi microcomputer within the fog layer for a
diabetic patient data analysis. The KNN algorithm, trained on historical patient data, facilitates the
real-time assessment of patient conditions based on past vital signs. A simulation using an IBM SPSS
dataset and real-world testing on a diabetic patient demonstrate the system’s efficacy. The results
manifest in prompt alerts or normal notifications, illustrating the system’s potential for enhancing
patient care in healthcare settings.
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1. Introduction

Healthcare is a fundamental concern globally, where errors in health systems can
have profound and irreversible consequences [1]. Among the myriad of health conditions,
diabetes stands out as a particularly perilous disease, with any lapse in addressing ab-
normalities potentially leading to severe complications, including diabetic coma or even
death. More than half a billion people are living with diabetes worldwide, affecting men,
women, and children of all ages in every country, and that number is projected to more
than double to 1.3 billion people in the next 30 years, with every country seeing an increase.
This disease ranks among the most pervasive and deadly diseases, generating vast amounts
of healthcare data daily. However, much of these data remains untapped, lacking analysis
or actionable insights. Herein lies the opportunity for technologies such as data mining
to unravel the myriad threats and disorders associated with diabetes, enabling timely
interventions and informed decision-making. Advancements in data mining algorithms
offer a glimmer of hope in enhancing the detection of abnormalities in diabetic patients,
particularly by analyzing blood sugar levels to glean deeper insights into the patient’s
physiological state. While traditional diabetes control systems are available, the integration
of fog computing offers distinct advantages, particularly in improving response times.
Incorporating local data mining not only strengthens system reliability but also reduces
dependence on cloud-based services, potentially leading to cost savings and enhanced
operational efficiency. To focus this study, we make the following assumptions:
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a. A local analysis enhances the reliability of diabetic patient monitoring systems by
minimizing reliance on external networks and enhancing data processing efficiency.

b. Fog computing and local data mining technologies accelerate information transmis-
sion and processing, resulting in decreased response times for detecting blood sugar
abnormalities.

c. Data mining techniques enable the detection of abnormalities tailored to each pa-
tient’s unique biological profile, thereby improving the effectiveness of alert mecha-
nisms.

In alignment with the above assumptions, our primary research question is as follows:

“How can we optimize diabetic patient monitoring systems by leveraging local analysis to
enhance reliability, utilizing fog computing and local data mining to expedite information
transmission and processing for reduced response times, and employing data mining to
detect abnormalities tailored to the patient’s biological profile?”

In this study, a novel IoT healthcare system leveraging fog computing and data mining
techniques is proposed, focusing on diabetes management. The research addresses two
major challenges in healthcare: the timely detection of abnormalities and accurate diagnosis
tailored to individual patient conditions. By utilizing fog computing, which processes
data at the network edge, and the KNN algorithm for data analysis, the system enhances
response times and reliability. Through simulations and real-world testing with diabetic
patient data, the study demonstrates the system’s effectiveness in providing prompt alerts
and accurate notifications. This approach highlights the potential for improving patient care
by integrating advanced technologies to optimize monitoring and intervention processes.

The motivation behind this study stems from the urgent need to enhance diabetes
management and patient care through advanced technology. Diabetes is a widespread
chronic condition requiring continuous monitoring and timely intervention to prevent
severe complications. Traditional healthcare systems often struggle with delayed responses
and generalized treatment approaches that may not cater to individual patient needs. By
integrating fog computing and data mining techniques, this study aims to address these
challenges by enabling real-time data processing and personalized analysis. The goal is to
improve the accuracy of diagnoses, speed up response times, and ultimately provide more
effective and timely care for diabetic patients, potentially reducing healthcare costs and
improving quality of life.

With the described motivation, the main contributions of this paper are listed as
follows:

• Integration of IoT and Fog Computing: This study presents a novel integration of
IoT and fog computing technologies within healthcare systems, specifically targeting
the management of chronic conditions like diabetes. The approach enhances real-time
data analysis and decision-making at the edge of the network, enabling more proactive
and personalized patient care.

• Implementation of Raspberry Pi in Fog Layer: The research showcases the practical
implementation of Raspberry Pi microcomputers within the fog layer. By employing
the KNN algorithm on these devices, the system effectively analyzes patient data,
providing timely alerts and insights for healthcare providers.

• Experimental Validation: The proposed system was experimentally tested and evalu-
ated using an IBM SPSS dataset real-world data. The results validated the system’s
efficiency, demonstrating its potential to improve healthcare outcomes through prompt
abnormality detection and notification.

The upcoming sections of this paper unfold as follows: The following section offers an
in-depth exploration of the existing literature on healthcare and data mining, providing a
comprehensive overview. Subsequently, we outline the proposed methodology and the
necessary systems for implementation. The succeeding section is dedicated to conducting
simulations and executing the proposed approach. Finally, the concluding section encapsu-
lates our findings and conclusions and provides recommendations for future research.
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2. Literature Review

The pervasive influence of emerging technologies on our daily lives underscores the
belief that there exists an Information Technology (IT) solution for nearly every societal
challenge. One such solution gaining increasing prominence is the Internet of Things
(IoT) [2].

As described in an IEEE special report, the IoT embodies a self-configuring, adaptive,
and intricate network through which “things” communicate via standard protocols. These
interconnected entities possess sensing and activation capabilities, programmability, and
unique detectability [3].

The IoT represents a groundbreaking concept where physical objects, ranging from
wearables to vehicles and from the literature to environments, can be interconnected,
addressed, and managed remotely. Advancements in technologies like radio frequency
identification (RFID) sensors have accelerated the evolution of the IoT [1].

This transformative technology has permeated various domains, including healthcare,
transportation, computing, and manufacturing [4]. Among its most critical and compelling
applications lies pharmacovigilance and healthcare. The IoT holds the potential to revolu-
tionize facets of healthcare delivery, including telehealth, fitness monitoring, chronic disease
management, and eldercare. It facilitates remote patient monitoring, enhances reporting
mechanisms, and streamlines homecare services. Through IoT-enabled healthcare solu-
tions, medical costs stand to decrease, quality of life to improve, and user experiences to be
enhanced. Moreover, for healthcare providers, the IoT enables remote device management,
potentially reducing downtime and facilitating rapid equipment replacement [5].

Due to the continuous and advanced technology transformation phase, healthcare
industries are still migrating their legacy and outdated eHealth systems and applications
to provide a better scope of experiences to their customer/patient [6].

The healthcare sector, characterized by its unpredictable nature and critical time-
sensitive scenarios, demands swift and accurate communication and localization during
emergencies. Cloud-based mechanisms often struggle to deliver timely notifications during
emergencies [7].

Traditional cloud servers are unable to meet the low latency requirements of IoT
medical equipment and consumers. Because of IoT data transfer, it is therefore vital to
reduce network latency, computation delay, and energy consumption. Using FC, data can
be stored, processed, and analyzed. Cloud computing data are located at a network edge
to reduce high latency [8]. In scenarios where a sensor-to-cloud architecture is impractical
or prohibited, a reliable healthcare system capable of real-time patient monitoring becomes
imperative. One such solution is fog computing [9].

Fog computing, an IoT-based architecture, leverages established technologies such as
cloud computing, distributed control systems, cloudlets, and wireless networks. Unlike
traditional IT architectures where intelligence resides either in the cloud or at the endpoint,
this architecture offers edge computing capabilities, enabling low latency, geographic
distribution, and real-time analytics [10,11]. Despite its potential, the vast amounts of
data generated by IoT devices pose challenges and opportunities alike. Data mining
emerges as a pivotal technique to extract actionable insights from large datasets, thereby
enhancing IoT systems’ intelligence [12]. Nowadays, big data have become an increasingly
popular domain in various fields that are associated with society, technology, science, and
engineering. A huge amount of data is recorded and produced from diverse sectors, from
distinct resources like sensor networks, mobile applications, high throughput instruments,
and streaming machines and also in other fields like the healthcare industry [13].

In the realm of healthcare, the IoT has garnered significant attention, particularly in dis-
ease management. Among these, diabetes stands out as a focal point. Diabetes, a metabolic
disorder characterized by high glucose levels and inadequate insulin, poses severe health
risks, including blindness, organ failure, and cardiovascular complications. While existing
systems focus on monitoring glucose levels, they often fall short in addressing other vital
signs’ fluctuations and associated risks. Leveraging IoT data analytics, however, holds
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promise in mitigating these risks and improving patient outcomes. By analyzing sensor
data in real time, healthcare providers can make informed decisions promptly, potentially
averting critical health incidents [14].

In 2023, Yuqian Yang et al. [15] proposed a fault–tolerant control protocol that dynami-
cally addresses fault data during system operation in multi-agent systems. These studies
have made the use of multiple sensors and agents more reliable in healthcare fields.

Recent technological advancements such as radio frequency identification (RFID)
and web development have facilitated machine-to-machine communication through the
Internet, resulting in the emergence of the Internet of Things (IoT). This global network
facilitates ubiquitous processing, enabling entities to sense their environments, interact
with others, and make decisions. Healthcare systems have embraced the IoT, with care
beds equipped with sensors that relay various information to clinicians.

2.1. Healthcare Systems

In 2015, Islam et al. [5] categorized IoT-based healthcare services into single-state and
multi-state groups, addressing either a specific disease or multiple diseases. Key categories
include Ambient Assisted Living (AAL), utilizing artificial intelligence for eldercare, and M-
IoT, leveraging 4G networks for mobile healthcare. Semantic Medicine involves analyzing
big data using established rules from relevant concepts and sciences. This study presents
the following categories presented in Figure 1 below. These categories considered a wide
range of healthcare systems of different groups, ages, and conditions. Tele-healthcare can
be a combination of medical sensors and computing and communication technologies.
Elder healthcare systems extend life with services like medication control. Drug Reaction
Investigation systems sense the compatibility of the health records of patient and pharma-
ceutical information. In addition, wearable devices play a vital role in healthcare systems.
Infant healthcare can have services to improve nutritional habits and emergency health
systems have a critical role in nature disasters and human errors with a bundle of solutions,
like notifications based on data collected from the environment.
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Intriguingly, IoT-generated data in healthcare often traverses the cloud, prompting
studies on the relationship between wearable devices, the cloud, and big data [14]. Yin
Zhang et al. [16] introduced a cyber–physical system, “Health-CPS”, aided by cloud in-
frastructure and big data analysis. This three-layered system encompasses data gathering,
management, and data service layers.

2.2. Disease Prediction

A 2017 study explored disease prediction using big data, categorizing data into struc-
tured (e.g., age, gender) and unstructured (e.g., medical records) types. Machine learning
algorithms such as naïve Bayes, KNN, and decision tree were employed for prediction [17].
Emergency situations necessitate alerting systems in healthcare services.

2.3. Alter-Based Healthcare Systems

Oryema et al. (2017) proposed an interoperable messaging system for IoT healthcare
services utilizing constrained application protocol (CoAP) and message queue telemetry
transport (MQTT) [18].
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2.4. Healthcare and Edge Computing Technology

The accuracy, speed, and continuity of patient monitoring systems are critical in
healthcare. Cloud dependency poses risks, leading to the adoption of edge computing.
Challenges in cloud implementation may render some applications impractical. Edge com-
puting alternatives include mobile edge computing (MEC), fog computing, and cloudlets.
Fog computing, with its features like internode cooperation and short delays, proves
suitable for healthcare systems [18]. There are some challenges for IoT-based cloud imple-
mentation, so it may be impossible to implement some applications inside the cloud layer.
Some of the challenges are summarized in Figure 2. Challenges such as security issues
may have destructive social effects as well as interruption issues, delays in sending and
receiving data, and the need for high bandwidth, making the cloud an unsuitable tool for
healthcare applications.
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2.5. Types of Edge Computing

A 2017 study compared edge technologies regarding their computing, cashing, and
communication convergence [19]. The potential benefits of mobile edge computing (MEC)
providing cloud servers at base stations are short delays, high bandwidth, context aware-
ness, and real-time services. Fog computing uses near-to-user edge devices as edge routers
for computing and cashing. It has the same benefits as MEC. Cloudlets are another edge
computing-based technology that is only one step from the user. It is self-configuring and
energy efficient. These technologies are compared in Table 1. The differences and common
features of fog, cloudlet, and MEC technologies are shown in Figure 3 [20].
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Table 1. Comparing edge computing technologies.

MEC Fog Computing Cloudlet

Introduced by ETSi Cisco Prof. Satyanarayanan

Layers count 3 Layers 3 Layers or more 3 Layers

Delay Low Low Low

Owner Mobile Operators Distributed Fog Owners Local Businesses

Share rate Medium Little Little

Content Awareness Yes Yes Probably

Node Cooperation No Yes No

Fog Computing

Fog computing is an emerging technology to address computing and networking
bottlenecks in the large-scale deployment of IoT applications. It is a promising complemen-
tary computing paradigm to cloud computing where computational, networking, storage,
and acceleration elements are deployed at the edge and network layers in a multi-tier,
distributed, and possibly cooperative manner [21].

Internode cooperation, context awareness, the ability to have more than one layer,
content awareness, and short delays are the main features of fog computing that make it
a suitable choice for healthcare systems. Fog computing is a process that brings some of
the cloud processing structures to the network edge. It adds new features to the network,
including shorter delays due to processing data at the edge of the network (2018).

In 2016, Chiang et al. described the general structure of fog computing [22]. As shown
in Figure 4, fog–cloud communication manages fog with the cloud; exchanges information
bilaterally, when necessary; provides required services to each other; and offers end-to-end
services. The fog nodes communicate with each other to support applications, share data,
and collaborate for computing, storage, or backup. The fog–user interaction is necessary
for presentations and data transfer.
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Establishing communication every time with the cloud is not required with the intro-
duction of fog, and thus, the latency is reduced. Healthcare is a latency-sensitive application
area. Therefore, the deployment of fog computing in this area is of vital importance. Proper
analytics and research may lead to better care, improved treatment, and enhanced patient
satisfaction [23]. Fog computing benefits healthcare by enhancing services. A proposed
platform combines fog and cloud technologies for medical data collection, automatic
medication prescription, and robotic medication delivery [24].

As shown in Figure 5, the platform consists of three parts: (1) medical data collecting,
(2) automatic medication prescription, and (3) robotic medication delivery.
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During the fog implementation and operation phases, the gateways are adjacent to the
IoT domain and accessible through short-range radio communications such as Bluetooth.
The cloud is further away and accessible through a wide area network (WAN). It provides
the needs of healthcare systems through the platform as a service (PaaS) and infrastructure
as a service (IaaS). Fog computing has changed the quality, accuracy, and speed of healthcare
services.

A fog-based approach to improve the IoT structure for healthcare was presented in
2017 [25]. The approach consisted of three layers: (1) sensors and activators, (2) a smart
gateway network, and (3) the final system. The middle layer function is to process local
data for improving the response speed to medical situations, filter the data and preprocess
at the edge, and compress and store the data locally.

2.6. Data Mining

Data mining, the technique of discovering patterns in large datasets, plays a vital
role in extracting valuable information from raw data. In 2017, Liu et al. reviewed some
of the major supervised algorithms [26], namely decision tree (DT), naïve Bayes (NB),
support vector machine (SVM), radial basis function neural network (RBFNN), and KNN
algorithms. Various datasets were used to test the algorithms. The memory and CPU usage
of the algorithms are compared in Figure 6.
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2.6.1. Data Mining for IoT

A review study conducted in 2015 [12] defined data mining as the best-practice process
for predicting or developing a descriptive model for a large volume of data so that even
new data can be generated. Generally, the purpose of data mining is to find interesting
information among a large body of stored data. The sequence of a typical data mining
process is shown in Figure 7.
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Shikhar et al. (2017) analytics showed that a [27] real-time IoT analysis is not limited
to databases, and it can be applied to the network edge. As the analysis reaches the edge,
data-generating things might be able to locally analyze the data instead of sending them to
databases. This can reduce process delays, which is critical for real-time analysis.

2.6.2. Data Mining in Healthcare

Data mining is a process that interacts with a large dataset to determine complex,
interesting patterns from unknown structured data. It is strongly associated with high-
performance computing, computer graphics, multimedia systems, human–computer in-
teraction, and pattern recognition [28]. Numerous organizations utilize data mining to
analyze enormous datasets, to enhance the decision-making process, and to obtain better
long-term results [29]. Data mining techniques enable IoT platforms to generate valuable
insights from static healthcare data that would otherwise remain unused.

2.7. Diabetes

Many diseases required constant care and control. As the third and fifth leading cause
of death in the world and Iran, respectively, diabetes is a critical and pervasive condition.
Many people are born or diagnosed with diabetes every year. Many studies and services
have been presented to control this disease.

IoT and Diabetes

Diabetes, a pervasive and critical condition, demands constant care and control. IoT-
based approaches for diabetes management include self-managing systems, RFID-enabled
devices for insulin management, and healthcare systems establishing bilateral connections
between patients and clinicians [30–32].

A healthcare platform with a humanoid robot showcased a centralized IoT approach
for diabetes care [33]. In summary, the literature review highlights the pervasive influence
of the IoT in healthcare, emphasizing its role in disease prediction, alert-based systems, edge
computing, fog computing, data mining, and specific applications for diabetes management.
This groundwork sets the stage for our proposed study, which integrates fog computing,
data mining, and the IoT for enhancing healthcare services, with a focus on diabetic
patient monitoring.

2.8. Analysis of Methods, Systems, and Steps Taken

Ensuring the accuracy of diagnosis and post-care, along with promptly responding to
critical abnormalities, while global standards dictate the monitoring of blood sugar and
vital signs in many countries, they may not always align with individual patient needs.
Some individuals may exhibit normal blood sugar and blood pressure levels that deviate
from these standards, rendering traditional monitoring systems less effective in detecting
potential abnormalities.

In such cases, leveraging data mining techniques becomes imperative to tailor moni-
toring approaches to individual patient profiles, thereby enhancing accuracy and respon-
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siveness. Additionally, deploying nodes at the fog layer helps mitigate delays in alerting
caregivers, ensuring swift intervention in critical situations.

3. Proposed Method

As shown in Figure 8, the proposed method was carried out in 2 stages:
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Implementation Fog layer using Raspberry Pi

To implement the method, we needed a fog space to process data, classify and detect
anomalies, and send notifications. Our research focuses on leveraging Raspberry Pi within
the fog layer as a specific implementation example.

Simulation by using IBM SPSS Modeler

To analyze the data, we took the help of machine learning algorithms with IBM SPSS
Modeler.

3.1. IBM SPSS Modeler

We utilized IBM SPSS Modeler v18, a comprehensive data mining and analysis simula-
tor. This software offers a wide array of libraries for implementing data mining algorithms,
ensuring compatibility with various Excel files or databases. The visual presentation of
outputs enhances the interpretation of results, facilitating insightful analysis.

3.2. Datasets

The proposed method necessitates blood sugar data, which were sourced from the
UCI website, renowned for its comprehensive datasets in machine learning research. The
dataset utilized comprises 10,000 entries and includes three primary categories: test time, a
code indicating the patient’s condition before the test (refer to Table 2), and glucose level.

Table 2. Dataset codes.

Status Code

After sports activity 34

Before Insulin injection 48

Before breakfast 58

Before the main meal 60

After Insulin injection 62

Table 2 presents the dataset codes, indicating various patient conditions and their
corresponding codes. Notably, each condition is associated with a distinct standard glucose
level. For instance, the standard fasting blood sugar (code 58) for diabetic patients typically
falls within the range of 90–125 mg/dL, as per the American Diabetes Association website.
The data were organized in an Excel file and categorized by week, as illustrated in Table 3.
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Table 3. A sample of the dataset.

1 Time Code Blood Glocose

2 9:09 58 100

3 17:08 62 119

4 22:51 48 123

5 7:35 58 216

6 16:56 62 211

7 7:25 58 257

8 17:25 62 129

9 7:52 58 239

10 17:10 62 129

11 22:09 48 340

12 7:29 58 67

13 17:24 62 206

14 21:54 48 288

15 5:52 58 77

3.3. Data Mining Algorithms

A plethora of algorithms exists for classifying and analyzing data. Among them, the
KNN algorithm stands out for its simplicity and efficiency. Being a lazy algorithm, KNN
requires no preprocessing, making it particularly suitable for implementation on fog layer
nodes. Hence, we opted for KNN as the data mining algorithm for our proposed method.

3.4. KNN Algorithms

KNN is a simple algorithm that stores all the received data and classifies them based
on their similarity. New input is classified by comparing the similarity (or distance) of the
new input to all the neighboring data. The KNN can use various methods to calculate the
similarity, two of which are described below.

1. Euclidean distance

The length of the line between two points is considered the distance. It is calculated
by the following equation. √√√√ k

∑
i=1

(xi − yi)
2

where x is the new input and y is the neighboring point.
A plethora of algorithms exists for classifying and analyzing data. Among them, the

KNN algorithm stands out for its simplicity and efficiency. Being a lazy algorithm, KNN
requires no preprocessing, making it particularly suitable for implementation on fog layer
nodes. Hence, we opted for KNN as the data mining algorithm for our proposed method.

2 Cosine similarity

Cosine similarity measures the similarity between two non-zero vectors by calcu-
lating the cosine of the angle formed between them. The equation below illustrates this
calculation.

similarity = cos(θ) =
A · B

∥ A ∥∥ B ∥ =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

where A is the new input and B is the neighboring point.
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An important consideration in utilizing KNN algorithm is selecting an appropriate
value for K, representing the number of nearest neighbors to consider. Two common
approaches for this are arbitrary selection and cross-validation, which determines the
optimal. In our proposed method, cross-validation was employed to ascertain an optimal.

3.5. Fog Layer Implementation
3.5.1. Data Collection

During this stage, the measurement of glucose level, blood pressure, and body tem-
perature on a diabetic patient during two consecutive days were extracted from the dataset,
and these data, according to the UCI standard and measurements, were taken under dif-
ferent conditions, including before and after insulin injection, before the main meal, and
under fasting conditions.

The data were stored in an Excel file, as shown in Table 4.

Table 4. A sample of the collected data.

Time Code Blood Glocose Blood Pressure Heart Rate

8:30 58 135 115.51 89

10:30 62 231 100.54 83

12:30 60 216 133.75 83

14:30 62 177 133.69 85

16:30 48 180 149.66 83

18:30 48 170 149.72 83

20:30 62 123 187.88 83

3.5.2. Raspberry Pi

Raspberry Pi computers serve as the fog layer nodes in our system. These microcom-
puters, resembling the size of a credit card, come in multiple versions. For our implemen-
tation, we utilized the Raspberry Pi 2 model. Raspberry Pi 2 offers the computing power
necessary for executing our proposed method.

Raspian v9 was used as the operating system of Raspberry Pi. Raspian is an open-layer
operating system.

3.5.3. Node-RED

Node-RED is a powerful programming tool based on JavaScript. We leveraged Node-
RED for programming tasks at the fog layer in our system. The interface of Node-RED
provides a user-friendly environment for creating and deploying workflows. Its intuitive
visual interface simplifies the development process, making it accessible for both novice
and experienced programmers.

4. Simulation, Implementation, and Results

In this, we employed two distinct methods to validate our proposed approach: sim-
ulation using IBM SPSS Modeler and fog layer implementation. Here is a breakdown of
each method.

(a) Simulation using IBM SPSS Modeler:

As illustrated in Figure 9, the Excel file is accessed by the modeler for data processing.
Prior to importing the file into IBM SPSS Modeler, a new row labeled “Online Blood Glu-
cose” was appended to include input data for another week, while any aberrant data points
in the “Blood Glucose” column were filtered out. Within the Excel node configuration, time
serves as the input, code functions serves as the classifier, and the blood glucose level is
designated as the input data. Notably, the target variable is denoted as the online glucose
level, as depicted in Figure 10.



Appl. Sci. 2024, 14, 7924 12 of 19

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19 
 

3.5.3. Node-RED 
Node-RED is a powerful programming tool based on JavaScript. We leveraged Node-

RED for programming tasks at the fog layer in our system. The interface of Node-RED 
provides a user-friendly environment for creating and deploying workflows. Its intuitive 
visual interface simplifies the development process, making it accessible for both novice 
and experienced programmers. 

4. Simulation, Implementation, and Results 
In this, we employed two distinct methods to validate our proposed approach: sim-

ulation using IBM SPSS Modeler and fog layer implementation. Here is a breakdown of 
each method. 
(a) Simulation using IBM SPSS Modeler: 

As illustrated in Figure 9, the Excel file is accessed by the modeler for data processing. 
Prior to importing the file into IBM SPSS Modeler, a new row labeled “Online Blood Glu-
cose” was appended to include input data for another week, while any aberrant data 
points in the “Blood Glucose” column were filtered out. Within the Excel node configura-
tion, time serves as the input, code functions serves as the classifier, and the blood glucose 
level is designated as the input data. Notably, the target variable is denoted as the online 
glucose level, as depicted in Figure 10. 

 
Figure 9. Simulation process. 

 
Figure 10. Different inputs of the modeler. 

As depicted in Figure 11, the KNN algorithm was operationalized through the utili-
zation of the type and KNN nodes. The system was configured to classify the data from 
the “Blood Glucose” column based on the corresponding values in the “Code” column. 
The overarching objective is to enable a comparative analysis between “Online Glucose” 
data and the classes derived from “Blood Glucose” to detect abnormalities effectively. 

Figure 12 illustrates the classification of data based on the condition codes. 

Figure 9. Simulation process.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19 
 

3.5.3. Node-RED 
Node-RED is a powerful programming tool based on JavaScript. We leveraged Node-

RED for programming tasks at the fog layer in our system. The interface of Node-RED 
provides a user-friendly environment for creating and deploying workflows. Its intuitive 
visual interface simplifies the development process, making it accessible for both novice 
and experienced programmers. 

4. Simulation, Implementation, and Results 
In this, we employed two distinct methods to validate our proposed approach: sim-

ulation using IBM SPSS Modeler and fog layer implementation. Here is a breakdown of 
each method. 
(a) Simulation using IBM SPSS Modeler: 

As illustrated in Figure 9, the Excel file is accessed by the modeler for data processing. 
Prior to importing the file into IBM SPSS Modeler, a new row labeled “Online Blood Glu-
cose” was appended to include input data for another week, while any aberrant data 
points in the “Blood Glucose” column were filtered out. Within the Excel node configura-
tion, time serves as the input, code functions serves as the classifier, and the blood glucose 
level is designated as the input data. Notably, the target variable is denoted as the online 
glucose level, as depicted in Figure 10. 

 
Figure 9. Simulation process. 

 
Figure 10. Different inputs of the modeler. 

As depicted in Figure 11, the KNN algorithm was operationalized through the utili-
zation of the type and KNN nodes. The system was configured to classify the data from 
the “Blood Glucose” column based on the corresponding values in the “Code” column. 
The overarching objective is to enable a comparative analysis between “Online Glucose” 
data and the classes derived from “Blood Glucose” to detect abnormalities effectively. 

Figure 12 illustrates the classification of data based on the condition codes. 

Figure 10. Different inputs of the modeler.

As depicted in Figure 11, the KNN algorithm was operationalized through the utiliza-
tion of the type and KNN nodes. The system was configured to classify the data from the
“Blood Glucose” column based on the corresponding values in the “Code” column. The
overarching objective is to enable a comparative analysis between “Online Glucose” data
and the classes derived from “Blood Glucose” to detect abnormalities effectively.
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Figure 14 illustrates that the blood sugar level of 197 mg/dL deviates significantly
from its neighboring data points, indicating that it does not belong to the correct class.
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Hence, the blood sugar level of 197 mg/dL does not align with the class of neighboring
points. Consequently, the system categorizes these data as abnormal and may trigger alerts
to caregivers as deemed necessary.

(b) Fog Layer Implementation

As shown in Figure 15, the fog implementation process starts with data collection and
goes to data analysis with the help of Raspberry Pi and Node-RED.
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Figure 15. Fog implementation process.

Data collected from a diabetic individual were employed to deploy the fog layer. Blood
sugar level fluctuations are depicted in Figures 16 and 17. Throughout the observed days,
the patient exhibited normal conditions with no indications of abnormal spikes or drops in
sugar levels except for the second day, where the second blood sugar measurement reached
250 mg/dL. Notably, it is evident that the patient’s normal blood sugar levels exceed the
global standard. Therefore, comparing the blood sugar level to the global standard values
may lead to false alerts within the system.
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As previously mentioned, we utilized Raspberry Pi 2 for the fog layer implementation.
The patient data files were converted to .csv format, and the FTP tool integrated into
FileZilla software (3.56.2) facilitated the transfer of these converted files to Raspberry Pi.
Subsequently, Node-RED was employed to execute the transferred files and initiate the data
processing tasks. The parameters selected for analysis included the blood sugar level and
patient condition codes. These parameters were transmitted to the function node as inputs,
where the process of abnormality detection was conducted, as illustrated in Figure 18.
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The KNN algorithm was executed within the function node using JavaScript, as
depicted in Figure 19.

The UI node visually displayed the two parameters alongside the condition results.
Subsequently, two sample fasting datasets were employed: one representing normal condi-
tions and the other exhibiting abnormal characteristics, as depicted in Figures 20 and 21.

Data point #105 was established as the benchmark for normal blood sugar levels, while
data point #250, indicating an anomalous blood sugar level, served as the threshold for
triggering alerts. Consequently, the responses generated by Raspberry Pi were considered
appropriate based on these criteria.
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5. Conclusions

This study contributes to the ongoing efforts to enhance healthcare systems through the
integration of the IoT and fog computing technologies. By leveraging real-time data analysis
and edge computing capabilities, healthcare providers can achieve more proactive and
personalized patient care, ultimately leading to improved health outcomes and enhanced
quality of life for individuals living with chronic conditions like diabetes. Moving forward,
further research on and the implementation of such systems are warranted to fully realize
their potential in revolutionizing healthcare delivery. Future research could integrate
a cloud layer for enhanced computational resources and explore complex optimization
algorithms for refining system performance. Additionally, scalability could be assessed by
deploying more fog nodes, providing insights for optimizing system configurations. The
continued exploration of advanced technologies in healthcare can lead to more efficient
and personalized services, ultimately benefiting patients worldwide.
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