
Citation: Byun, J.; Kim, B.; Cha, K.-A.;

Lee, E. Design and Implementation of

an Interactive Question-Answering

System with Retrieval-Augmented

Generation for Personalized

Databases. Appl. Sci. 2024, 14, 7995.

https://doi.org/10.3390/app14177995

Academic Editor: Alessandro

Di Nuovo

Received: 30 July 2024

Revised: 31 August 2024

Accepted: 5 September 2024

Published: 6 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design and Implementation of an Interactive
Question-Answering System with Retrieval-Augmented
Generation for Personalized Databases
Jaeyeon Byun 1 , Bokyeong Kim 1 , Kyung-Ae Cha 1,* and Eunhyung Lee 2

1 Department of Artificial Intelligence, Daegu University, Gyeongsan 38453, Republic of Korea;
9722jayon@gmail.com (J.B.); qhrud418@gmail.com (B.K.)

2 Textway Inc., A02 Unicorn Lab., 5th Fl, 111, Oksan-ro, Buk-gu, Daegu 41593, Republic of Korea;
eh.lee@textway.net

* Correspondence: chaka@daegu.ac.kr; Tel.: +82-53-850-6641

Abstract: This study introduces a novel approach to personalized information retrieval by integrating
retrieval augmentation generation (RAG) with a personalized database system. Recent advance-
ments in large language models (LLMs) have shown impressive text generation capabilities but
face limitations in knowledge accuracy and hallucinations. Our research addresses these challenges
by combining LLMs with structured, personalized data to enhance search precision and relevance.
By tagging keywords within personal documents and organizing information into context-based
categories, users can conduct efficient searches within their data repositories. We conducted experi-
ments using the GPT-3.5 and text-embedding-ada-002 models and evaluated the RAG assessment
framework with five different language models and two embedding models. Our results indicate
that the combination of GPT-3.5 and text-embedding-ada-002 is effective for a personalized database
question-answering system, with potential for various language models depending on the applica-
tion. Our approach offers improved accuracy, real-time data updates, and enhanced user experience,
making a significant contribution to information retrieval by LLMs and impacting various artificial
intelligence applications.

Keywords: retrieval-augmented generation (RAG); GPT; large language model (LLM); personalized
knowledge database

1. Introduction

In recent years, large language models (LLMs) and natural language processing have
revolutionized the artificial intelligence field by leveraging large datasets and powerful
computing resources. OpenAI’s generative pretrained transformer (GPT) model series is
one of the most prominent LLMs, with the first version, GPT-1, released in 2018, demon-
strating high performance in natural language processing and generation tasks using the
transformer architecture and transfer learning techniques. Subsequently, GPT-2 expanded
the model’s capabilities, and GPT-3, with billions of parameters, further enhanced its ability
to generate complex and diverse information [1–3].

These developments have had a profound impact on various natural language pro-
cessing applications, and LLMs are now being used for complex tasks such as automatic
translation, question answering, document summarization, and content generation in di-
verse fields, including healthcare, education, and science [4–8]. Although these pretrained
LLMs can produce increasingly realistic text, their ability to access and accurately manipu-
late knowledge remains limited [9]. Additionally, they cannot clarify their decision-making
process, which is known as the black-box problem. Therefore, the accuracy and authenticity
of their results are unknown, and updating them with new data remains challenging. Thus,

Appl. Sci. 2024, 14, 7995. https://doi.org/10.3390/app14177995 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0006-3263-5918
https://orcid.org/0009-0006-6936-4584
https://orcid.org/0009-0009-4061-7826
https://doi.org/10.3390/app14177995
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177995?type=check_update&version=2

Appl. Sci. 2024, 14, 7995 2 of 21

although LLMs offer convenience to users, they may generate inappropriate or erroneous
responses in certain situations [10–12].

Currently, LLM developers are addressing issues such as hallucinations, lack of up-
dates, and lack of answer transparency through retrieval-augmented generation (RAG) [13].
This technique combines knowledge from the field of natural language processing and
LLMs with external knowledge databases to enhance the quality and relevance of their re-
sponses. RAG is particularly useful in scenarios where specific and up-to-date information
is required, such as academic research, customer service, or content creation [14–18].

Modern data environments comprise vast amounts of information, and rapid and
accurate searches are essential to utilize the data effectively. Additionally, the demand
for retrieving accurate and relevant information is increasing. Therefore, RAG can be
used for faster updates and personalized searches in LLMs, where information is stored in
parameters. RAG facilitates retrieval of the necessary information without using sensitive
data. Thus, RAG is the key to providing personalized search capabilities in information
retrieval services not only for companies and institutions but also for individuals.

In this study, a personalized database system was implemented using search augmen-
tation, and keywords set by individuals through question answering (QA) were tagged
based on their context. This is similar to structuring information into categories, such as
date and topic, based on context. Individuals using this search enhancement system are
provided a personalized database of keywords and contextual layers. However, a simple
implementation of LLM prompts and outputs is insufficient to use this system. Therefore,
we applied an RAG process for context-based search enhancement and implemented a
NoSQL database to continuously update the search histories of users. Thus, we imple-
mented a personalized database and QA system and verified its performance through the
retrieval-augmented generation assessment (RAGAs) platform [19].

This study focuses on Internet web services that tag keywords within personal doc-
uments and use this information to search for personal documents in a personalized
database (i.e., searching through notes in a document). On this platform, the text entered by
logged-in individuals or referenced from external documents is stored in a personalization
database with relevant keywords. Thus, the documents that an individual or team wants
to retain are structured and tagged with specific keywords and updated in the database.
This facilitates an interactive search for embedded personal information by understanding
which documents are relevant and quickly analyzing the content within them.

The main contributions of this study are as follows:

• We designed and developed a method to integrate an interactive QA system with
the actual SQL database of a company that provides personalized semantic tagging
services. This system leverages RAG to reflect user-specific database modifications in
real time. By reusing previously embedded data, the system reduces costs by avoiding
the need to embed data each time. The proposed system offers a personalized database
experience that dynamically updates based on user interactions.

• We present the results of performance evaluation experiments applying various state-
of-the-art LLMs, providing valuable reference data for the appropriate selection of
LLMs in designing RAG architecture-based QA systems. According to our experimen-
tal results, as evaluated by the RAG framework, the combination of GPT-3.5-Turbo
and our custom template applied to the system demonstrated the most impressive
performance, highlighting the importance of an optimized RAG design.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes the development of the RAG implemented in this study. Section 4
presents the practical service methods and shows how they can be used in conjunction with
LLMs for designing applications that provide the desired results and applies the RAGAS
framework to evaluate their performances and response times. Finally, Section 5 discusses
the study results and outlines future research directions.

Appl. Sci. 2024, 14, 7995 3 of 21

2. Related Work
2.1. Hallucinations in LLMs

Although LLMs have induced innovative developments in the field of natural lan-
guage processing, they suffer from the problem of hallucinations, which refers to producing
false information, logical errors, and non-existent data that are coherent but not based on
actual facts. For example, they can provide information about a person or event that does
not exist.

Hallucinations include actual hallucinations, which include non-factual information;
logical hallucinations, which include logically inconsistent or senseless answers; and
structural hallucinations, which include incorrectly or inappropriately formatted responses.
Recently, this issue has become more prominent owing to ChatGPT’s tendency to generate
plausible-sounding false information. Hallucinations can have serious implications because
they contribute to the spread of misinformation and undermine the credibility of the content
generated by LLMs [20–24].

To investigate this phenomenon, Hanna et al. [24] entered 54 prompts from different
domains into ChatGPT, resulting in ChatGPT-3.5 and ChatGPT-4 achieving overall suc-
cess rates of approximately 61% and 72%, respectively, indicating hallucination rates of
39 and 28%, respectively. Although these results were obtained through prompt-dependent
experiments, they indicate the hallucination rates of LLMs.

The causes of hallucinations vary, and the following factors have been cited as major
contributors [20–28]:

• Training data bias: Most LLMs are trained on large amounts of textual data collected
from the Internet. These data inevitably contain incomplete or biased information,
increasing the likelihood of the models learning wrong patterns.

• How the model makes inferences: LLMs work by predicting the next word; thus, they
attempt to generate the most plausible word for a given context, which may lead them
to generate out-of-context untrue information.

• Interaction limitations: LLMs generate information through interactions with human
users, which may be limited; therefore, the responses generated based on such infor-
mation may be inaccurate, and obtaining accurate information may be challenging.

In this study, we implemented search augmentation in a personalized database service
and used the RAG to address the problems of hallucinations, lack of updating, and unclear
sources in the existing ChatGPT-3.5 model.

2.2. Research on RAG

The typical process of an RAG and the differences between implementing LLM with
and without RAG are shown in Figure 1 [13–15]. Consider a scenario wherein a user asks
ChatGPT about the number of foreign students at a university. Because ChatGPT relies
on pretrained data, it initially lacks the ability to provide the most recent data. As shown
on the left side of Figure 1, it cannot provide the exact number and only outputs abstract
information. By contrast, RAG allows it to retrieve knowledge from external databases;
therefore, it can refer to the university database and provide the exact number. Thus, RAG
improves the search performance of ChatGPT, similar to providing it with a personalized
textbook for information retrieval.

Chen et al. [15] analyzed the various components of RAG. Recently, modular RAG
techniques that increase the flexibility of RAG by incorporating new modules and other
techniques such as fine-tuning have emerged. For example, the implementation and ad-
vantages and disadvantages of naive, advanced, and modular RAG models were analyzed
for RAG applications.

Zhao et al. [16] introduced practical RAG applications and benchmarks by catego-
rizing the fundamental processes of RAG and investigating various search and generator
augmentation methodologies. They investigated the impact of search augmentation on
LLMs and analyzed the RAG performance in terms of noise, negative rejection, information
integration, and semantic robustness. They experimented with four separate testbeds based

Appl. Sci. 2024, 14, 7995 4 of 21

on the aforementioned basic capabilities for evaluating RAG in English and Chinese. The
results showed that LLMs exhibit a certain level of noise robustness but still suffer from
significant difficulties in negative rejection, information integration, and handling false
information. These results suggest the need for designing applications more deeply and us-
ing databases to enhance the benefits of RAG. In this study, we implemented an application
system that can fully leverage RAG by building and retrieving personalized information.

Appl. Sci. 2024, 14, 7995 4 of 24

Figure 1. Difference between the processing of a large language model (LLM) with and without
retrieval-augmented generation (RAG).

Chen et al. [15] analyzed the various components of RAG. Recently, modular RAG
techniques that increase the flexibility of RAG by incorporating new modules and other
techniques such as fine-tuning have emerged. For example, the implementation and ad-
vantages and disadvantages of naive, advanced, and modular RAG models were analyzed
for RAG applications.

Zhao et al. [16] introduced practical RAG applications and benchmarks by categoriz-
ing the fundamental processes of RAG and investigating various search and generator
augmentation methodologies. They investigated the impact of search augmentation on
LLMs and analyzed the RAG performance in terms of noise, negative rejection, infor-
mation integration, and semantic robustness. They experimented with four separate
testbeds based on the aforementioned basic capabilities for evaluating RAG in English
and Chinese. The results showed that LLMs exhibit a certain level of noise robustness but
still suffer from significant difficulties in negative rejection, information integration, and
handling false information. These results suggest the need for designing applications
more deeply and using databases to enhance the benefits of RAG. In this study, we imple-
mented an application system that can fully leverage RAG by building and retrieving per-
sonalized information.

Xia et al. [17] integrated domain refinement and RAG to implement a QA method for
providing accurate information on typhoon disasters. They trained the T5 LLM on ty-
phoon disaster information from open-source databases, such as Baidu Encyclopedia and
Wikipedia. The RAG module was employed to enhance answers to user prompts by re-
trieving semantically similar phrases from external knowledge bases. They evaluated the
typhoon agent (Typhoon-T5) using a similarity matching approach and laid the founda-
tion for integrating LLMs and disaster information. Thus, employing RAG in conjunction
with LLMs can effectively improve the search performance for a specific topic.

Li et al. [18] reviewed search-augmented text generation and other notable ap-
proaches for various text-generation tasks, including dialog-response generation and ma-
chine translation. They summarized the various components of search-augmented text
generation, including search metrics, search sources, and integration paradigms, and pro-
vided useful information for developing application-specific topics during RAG.

Thus, the efficacy of compensating for the shortcomings of LLMs, such as hallucina-
tions, and improving search efficiency is being actively investigated. This study

Figure 1. Difference between the processing of a large language model (LLM) with and without
retrieval-augmented generation (RAG).

Xia et al. [17] integrated domain refinement and RAG to implement a QA method
for providing accurate information on typhoon disasters. They trained the T5 LLM on
typhoon disaster information from open-source databases, such as Baidu Encyclopedia
and Wikipedia. The RAG module was employed to enhance answers to user prompts by
retrieving semantically similar phrases from external knowledge bases. They evaluated the
typhoon agent (Typhoon-T5) using a similarity matching approach and laid the foundation
for integrating LLMs and disaster information. Thus, employing RAG in conjunction with
LLMs can effectively improve the search performance for a specific topic.

Li et al. [18] reviewed search-augmented text generation and other notable approaches
for various text-generation tasks, including dialog-response generation and machine trans-
lation. They summarized the various components of search-augmented text generation,
including search metrics, search sources, and integration paradigms, and provided useful
information for developing application-specific topics during RAG.

Thus, the efficacy of compensating for the shortcomings of LLMs, such as hallucina-
tions, and improving search efficiency is being actively investigated. This study demon-
strates that RAG can be effectively implemented to build a personalized database that
provides differentiated search and QA services, along with improved search accuracy.

3. Materials and Methods
3.1. System Overview

This section describes the methods used in the proposed system, as illustrated in Figure 2.
The proposed system was designed to help users effectively manage personalized text

documents. It offers users the ability to select and save specific sentences from a document,
along with the associated tags and links. This is accomplished through a system called the
tagging box [29], which allows users to map the text from a part of a document of interest to
tagged keywords and save it as a personal archive. This represents a customized knowledge

Appl. Sci. 2024, 14, 7995 5 of 21

base categorized for the specific purposes of individuals or teams. This is part of a large-
scale knowledge management engine, wherein many documents required by individuals or
teams are organized and stored and the keywords used to tag specific sentences act as notes;
this technology was developed by the authors of this paper. The aim was to employ the
RAG pipeline for designing a personalized database construction and retrieval technique
to develop an information-retrieval technique without the disadvantages of existing LLMs.

Appl. Sci. 2024, 14, 7995 5 of 24

demonstrates that RAG can be effectively implemented to build a personalized database
that provides differentiated search and QA services, along with improved search accu-
racy.

3. Materials and Methods
3.1. System Overview

This section describes the methods used in the proposed system, as illustrated in Fig-
ure 2.

Figure 2. System architecture.

The proposed system was designed to help users effectively manage personalized
text documents. It offers users the ability to select and save specific sentences from a doc-
ument, along with the associated tags and links. This is accomplished through a system
called the tagging box [29], which allows users to map the text from a part of a document
of interest to tagged keywords and save it as a personal archive. This represents a custom-
ized knowledge base categorized for the specific purposes of individuals or teams. This is
part of a large-scale knowledge management engine, wherein many documents required
by individuals or teams are organized and stored and the keywords used to tag specific
sentences act as notes; this technology was developed by the authors of this paper. The
aim was to employ the RAG pipeline for designing a personalized database construction
and retrieval technique to develop an information-retrieval technique without the disad-
vantages of existing LLMs.

A well-established semantic space is required for employing RAG to compensate for
LLM hallucinations and ensure that appropriate and accurate answers are retrieved by
the LLM during QA. Tagging services attempt to make RAGs more active and build a
personalized semantic space for successful answer generation.

The proposed RAG pipeline effectively processes user questions and generates rele-
vant answers using three main components. The first is an SQL database that stores per-
sonalized documents and information based on the identity of an individual. The user
information table in this SQL database manages the information of registered users
through a “TaggingBox” system. When a question is entered into the user interface of the
QA system, the SQL database extracts information from the table that matches the user ID
and splits it into chunks for further processing.

The second component is a vector database that takes the data chunks extracted from
the SQL database and converts them into embedding vectors to reconstruct information.
By storing data as vectors, vector databases can be used to handle unstructured data. To
process user queries, vector databases use a similarity search between vector data, which
offers the advantage of returning results more flexibly than using exact matches to queries.

Figure 2. System architecture.

A well-established semantic space is required for employing RAG to compensate for
LLM hallucinations and ensure that appropriate and accurate answers are retrieved by
the LLM during QA. Tagging services attempt to make RAGs more active and build a
personalized semantic space for successful answer generation.

The proposed RAG pipeline effectively processes user questions and generates rel-
evant answers using three main components. The first is an SQL database that stores
personalized documents and information based on the identity of an individual. The user
information table in this SQL database manages the information of registered users through
a “TaggingBox” system. When a question is entered into the user interface of the QA
system, the SQL database extracts information from the table that matches the user ID and
splits it into chunks for further processing.

The second component is a vector database that takes the data chunks extracted from
the SQL database and converts them into embedding vectors to reconstruct information.
By storing data as vectors, vector databases can be used to handle unstructured data. To
process user queries, vector databases use a similarity search between vector data, which
offers the advantage of returning results more flexibly than using exact matches to queries.
That is, the vector embedding of information allows the transformation of data from a
high-dimensional space to a low-dimensional vector. Although the data dimensions are
reduced, the important information and data patterns are preserved. This allows computers
to effectively analyze data and identify similarities or patterns between vectors.

We also implemented MongoDB [30] to store the chat history of QAs and generate
answers that users can use later. As an LLM does not store the state, it does not remember
the previous messages in a conversation. The developer is responsible for maintaining
the history and providing context for the LLM. Prior contextual information can be stored
in a persistent database and used to restore the context in new conversations, allowing
scenarios wherein the questions and answers of users can be summarized and tracked back
in history.

Appl. Sci. 2024, 14, 7995 6 of 21

Finally, the QA generator utilizes an LLM, such as GPT-3.5-Turbo, to generate accurate
and useful answers to questions. This process is performed based on the context selected
from the vector database, and the final answer is returned to the user.

3.2. Data Extraction: LangChain Integration

An easy method for implementing RAG is to employ LangChain (0.2.8) [31], a powerful
framework that integrates external tools to create an environment. This subsection details
the implementation of RAG and a data extraction technique that incorporates LangChain
(0.2.8). The process involves the following steps:

• Extract data from the SQL database: In this step, relevant data are extracted from
the user information table through queries. This includes information related to
documents, such as those tagged by the user.

• Chunking and embedding: The extracted data are partitioned into chunks using
LangChain’s integrated framework and sent to a vector database (retriever), where
embeddings are created. These embeddings convert the document content into high-
dimensional vectors, improving information retrieval and matching.

• Generating answers: When a user inputs a prompt into the system, the relevant context
is retrieved from the stored vector database and used as input to generate the optimal
answer. LangChain (0.2.8) manages the flow used in this process.

LangChain (0.2.8) is a software development kit that simplifies the integration of
LLMs and their applications and is becoming increasingly important as the use of LLMs is
increasing. It can segment, combine, and filter documents. The data are collected from an
established SQL database through an API, returned in the JavaScript Object Notation (JSON)
format, and structured as key–value pairs, as illustrated in Figure 3. The unique identifier
number corresponds to a particular SQL database table and generates user information
in the form of titles and tag names. The main information used to build a personalized
database is the number of entries that contain tagging information, such as keywords, set
by individuals to categorize documents. We call this a “TB Search” and, as mentioned
earlier, it is available as an Internet web service. In practice, a tagging box is implemented
as a hyperlink to reference personalization information.

Appl. Sci. 2024, 14, 7995 7 of 24

Figure 3. User data extracted in the JavaScript Object Notation JSON format in the case of UserID
as 2190.

Figure 4 shows that Context, which stores the contexts created or referenced by indi-
viduals and extracted from the SQL database, contains most of the document content, and
based on this information, it sets the maximum length of the document to 1000 characters
and splits the document for processing. The JSON-based TextSplitter directly takes the
extracted data as input, selectively extracts and combines the required data, and returns
them in the JSON format. The split document is divided into chunks of a certain size, each
designed to be processed independently. After splitting, the documents are embedded via
the text-embedding-ada-002 model of the OpenAI API and stored in a vector database.
These data help place the most relevant information at the front of the QA prompt after a
search.

Figure 4. Document embedding workflow.

3.3. Role of Prompting Instructions
In the proposed system, user prompts are crucial as they directly affect its ability to

respond effectively to user questions. This section explains the importance of providing
appropriate prompts. Figure 5 illustrates the process of handling questions and generat-
ing responses. Based on the retrieved questions, the context of each question was estab-
lished and organized as a “prompt” template.

Figure 3. User data extracted in the JavaScript Object Notation JSON format in the case of UserID
as 2190.

Figure 4 shows that Context, which stores the contexts created or referenced by indi-
viduals and extracted from the SQL database, contains most of the document content, and
based on this information, it sets the maximum length of the document to 1000 characters
and splits the document for processing. The JSON-based TextSplitter directly takes the
extracted data as input, selectively extracts and combines the required data, and returns

Appl. Sci. 2024, 14, 7995 7 of 21

them in the JSON format. The split document is divided into chunks of a certain size, each
designed to be processed independently. After splitting, the documents are embedded via
the text-embedding-ada-002 model of the OpenAI API and stored in a vector database.
These data help place the most relevant information at the front of the QA prompt after
a search.

Appl. Sci. 2024, 14, 7995 7 of 24

Figure 3. User data extracted in the JavaScript Object Notation JSON format in the case of UserID
as 2190.

Figure 4 shows that Context, which stores the contexts created or referenced by indi-
viduals and extracted from the SQL database, contains most of the document content, and
based on this information, it sets the maximum length of the document to 1000 characters
and splits the document for processing. The JSON-based TextSplitter directly takes the
extracted data as input, selectively extracts and combines the required data, and returns
them in the JSON format. The split document is divided into chunks of a certain size, each
designed to be processed independently. After splitting, the documents are embedded via
the text-embedding-ada-002 model of the OpenAI API and stored in a vector database.
These data help place the most relevant information at the front of the QA prompt after a
search.

Figure 4. Document embedding workflow.

3.3. Role of Prompting Instructions
In the proposed system, user prompts are crucial as they directly affect its ability to

respond effectively to user questions. This section explains the importance of providing
appropriate prompts. Figure 5 illustrates the process of handling questions and generat-
ing responses. Based on the retrieved questions, the context of each question was estab-
lished and organized as a “prompt” template.

Figure 4. Document embedding workflow.

3.3. Role of Prompting Instructions

In the proposed system, user prompts are crucial as they directly affect its ability to
respond effectively to user questions. This section explains the importance of providing
appropriate prompts. Figure 5 illustrates the process of handling questions and generating
responses. Based on the retrieved questions, the context of each question was established
and organized as a “prompt” template.

Appl. Sci. 2024, 14, 7995 8 of 24

Figure 5. Process of handling user prompts and generating answers using LangChain (0.2.8) with
MongoDB.

Prompts act as an interface between user questions and LLMs and are used as the
basis for generating answers. The proposed system obtains a list of documents extracted
via LangChain (0.2.8), formats them into prompts, and passes them to the LLM. The ability
of an LLM to generate contextually appropriate answers is highly dependent on the qual-
ity and structure of the prompts provided. They play a pivotal role in ensuring that the
answers are not only accurate but also relevant to the questions. Figure 6 shows an exam-
ple of the prompt template developed in this study. When prompting, strictly adhere to
the following principles:
• Analyze context: The entire context provided in the prompt must be considered to

generate the answer. This ensures the accuracy of the answer, minimizes the trans-
mission of misinformation, and aligns the response with the intent of the question.

• Limit information: Any information that is not specified in context must not be in-
cluded in the answer. This ensures that the answers are generated based solely on the
entered data and prevents data leakage as the system cannot access tables that are
not relevant to the question.

• Cite sources: State the source of information for every answer to allow the user to
understand the origin or refer back to the information in the tagging box.

• Recognize uncertainty: If the answer is not available, inform the user that they should
search for tags or content in the specified box to obtain more accurate results.
This creates a prompt, as shown in Figure 6, and the prompt generated for use in the

LLM is shown in Figure 7.

Figure 6. Custom prompt template.

Figure 5. Process of handling user prompts and generating answers using LangChain (0.2.8) with
MongoDB.

Prompts act as an interface between user questions and LLMs and are used as the
basis for generating answers. The proposed system obtains a list of documents extracted
via LangChain (0.2.8), formats them into prompts, and passes them to the LLM. The ability
of an LLM to generate contextually appropriate answers is highly dependent on the quality
and structure of the prompts provided. They play a pivotal role in ensuring that the
answers are not only accurate but also relevant to the questions. Figure 6 shows an example
of the prompt template developed in this study. When prompting, strictly adhere to the
following principles:

• Analyze context: The entire context provided in the prompt must be considered
to generate the answer. This ensures the accuracy of the answer, minimizes the
transmission of misinformation, and aligns the response with the intent of the question.

• Limit information: Any information that is not specified in context must not be
included in the answer. This ensures that the answers are generated based solely on

Appl. Sci. 2024, 14, 7995 8 of 21

the entered data and prevents data leakage as the system cannot access tables that are
not relevant to the question.

• Cite sources: State the source of information for every answer to allow the user to
understand the origin or refer back to the information in the tagging box.

• Recognize uncertainty: If the answer is not available, inform the user that they should
search for tags or content in the specified box to obtain more accurate results.

Appl. Sci. 2024, 14, 7995 8 of 24

Figure 5. Process of handling user prompts and generating answers using LangChain (0.2.8) with
MongoDB.

Prompts act as an interface between user questions and LLMs and are used as the
basis for generating answers. The proposed system obtains a list of documents extracted
via LangChain (0.2.8), formats them into prompts, and passes them to the LLM. The ability
of an LLM to generate contextually appropriate answers is highly dependent on the qual-
ity and structure of the prompts provided. They play a pivotal role in ensuring that the
answers are not only accurate but also relevant to the questions. Figure 6 shows an exam-
ple of the prompt template developed in this study. When prompting, strictly adhere to
the following principles:
• Analyze context: The entire context provided in the prompt must be considered to

generate the answer. This ensures the accuracy of the answer, minimizes the trans-
mission of misinformation, and aligns the response with the intent of the question.

• Limit information: Any information that is not specified in context must not be in-
cluded in the answer. This ensures that the answers are generated based solely on the
entered data and prevents data leakage as the system cannot access tables that are
not relevant to the question.

• Cite sources: State the source of information for every answer to allow the user to
understand the origin or refer back to the information in the tagging box.

• Recognize uncertainty: If the answer is not available, inform the user that they should
search for tags or content in the specified box to obtain more accurate results.
This creates a prompt, as shown in Figure 6, and the prompt generated for use in the

LLM is shown in Figure 7.

Figure 6. Custom prompt template. Figure 6. Custom prompt template.

This creates a prompt, as shown in Figure 6, and the prompt generated for use in the
LLM is shown in Figure 7.

Appl. Sci. 2024, 14, 7995 9 of 24

Figure 7. Example of a custom prompt generated for the QA task.

3.4. History Management: MongoDB
The QA system developed in this study was implemented to manage chat transcripts

using MongoDB, which is a NoSQL-based database that stores key–value data in the JSON
format. As it does not have a fixed schema, it can handle different types of data quickly
and flexibly. The system takes the questions, retrieves the histories of five recent conver-
sations from MongoDB, and inputs them into the LLM along with QA prompts. Subse-
quently, the data are extracted using a predefined SQL query. The LLM analyzes the con-
versation history and generates contextually appropriate responses, which are then deliv-
ered to the user and stored in MongoDB. The flexible data-processing capabilities of Mon-
goDB allow the system to store the history of user interactions and generate customized
responses based on them.

3.5. Personalized RAG-Based Responses
In this design, we developed an RAG-based question-answering (QA) system that

generates accurate answers tailored to specific contexts by utilizing stored documents and
tagged keywords extracted from an SQL database. When the RAG pipeline is applied to
the QA system, users can receive answers based on the information they have previously
built. In contrast, general ChatGPT services provide responses based on commonly
learned information. This demonstrates the ability of the developed interactive QA system
to reflect personalized information through RAG. An example highlighting the differ-
ences in responses before and after RAG was applied can be found in Figure A1 of Ap-
pendix A.

3.6. Evaluation: RAGAs Framework
We used the RAGAs framework [19], which is a framework that focuses on evaluat-

ing the retrieval and generation capabilities of RAG systems, to evaluate the performance

Figure 7. Example of a custom prompt generated for the QA task.

3.4. History Management: MongoDB

The QA system developed in this study was implemented to manage chat transcripts
using MongoDB, which is a NoSQL-based database that stores key–value data in the JSON
format. As it does not have a fixed schema, it can handle different types of data quickly and
flexibly. The system takes the questions, retrieves the histories of five recent conversations

Appl. Sci. 2024, 14, 7995 9 of 21

from MongoDB, and inputs them into the LLM along with QA prompts. Subsequently,
the data are extracted using a predefined SQL query. The LLM analyzes the conversation
history and generates contextually appropriate responses, which are then delivered to the
user and stored in MongoDB. The flexible data-processing capabilities of MongoDB allow
the system to store the history of user interactions and generate customized responses
based on them.

3.5. Personalized RAG-Based Responses

In this design, we developed an RAG-based question-answering (QA) system that
generates accurate answers tailored to specific contexts by utilizing stored documents and
tagged keywords extracted from an SQL database. When the RAG pipeline is applied to
the QA system, users can receive answers based on the information they have previously
built. In contrast, general ChatGPT services provide responses based on commonly learned
information. This demonstrates the ability of the developed interactive QA system to
reflect personalized information through RAG. An example highlighting the differences in
responses before and after RAG was applied can be found in Figure A1 of Appendix A.

3.6. Evaluation: RAGAs Framework

We used the RAGAs framework [19], which is a framework that focuses on evaluating
the retrieval and generation capabilities of RAG systems, to evaluate the performance of the
proposed system. The evaluation of each component of the RAG pipeline can be divided
into two parts: answer generation and document retrieval.

The generation process shown in Figure 8 comprises two metrics: faithfulness, which
evaluates the relevance between the retrieved documents and generated answers, and
answer relevance, which evaluates the relevance of the generated answers to the questions.
In the search process, the documents retrieved for a question are evaluated based on context
precision and recall.

Appl. Sci. 2024, 14, 7995 10 of 24

of the proposed system. The evaluation of each component of the RAG pipeline can be
divided into two parts: answer generation and document retrieval.

The generation process shown in Figure 8 comprises two metrics: faithfulness, which
evaluates the relevance between the retrieved documents and generated answers, and an-
swer relevance, which evaluates the relevance of the generated answers to the questions.
In the search process, the documents retrieved for a question are evaluated based on con-
text precision and recall.

Figure 8. RAGAs evaluation.

The mathematical formulas for the evaluation metrics are summarized in Table 1.
This table presents the formulas used to assess answer generation and document retrieval
in the RAGAs framework.

Table 1. RAGAs evaluation metrics.

Metric Equation

Faithfulness

<!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no
namespace)@ -->
<math><mrow><mtext>Faithful-
ness score</mtext><mo>=</mo><mfrac><mrow><mo>|</mo><mtext>Nu
mber of claims in the an-
swer that can be in-
ferred from the given con-
text</mtext><mo>|</mo></mrow><mrow><mo>|</mo><mtext>To-
tal number of claims in the an-
swer</mtext><mo>|</mo></mrow></mfrac></mrow></math>
<!-- MathType@End@5@5@ -->

Answer Relevancy

<!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ -->
<math><mrow><mtext>answer rele-
vancy</mtext><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mrow><
munderover><mo
stretchy="true">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mun
derover><mrow><mi>c</mi><mi>o</mi><mrow><mrow><mi>s</mi></mrow><mo> </mo><mrow><mo>(</mo><
msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></ms
ub></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>
)</mo></mrow></mrow></mrow></mrow></mrow></math>
<!-- MathType@End@5@5@ -->

<!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no
namespace)@ -->
<math><mrow><mtext>answer rele-
vancy</mtext><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></
mrow></mfrac><mrow><munderover><mo
stretchy=ʺtrueʺ>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><
mi>N</mi></mrow></munderover><mrow><mi mathvariant=ʺnor-
malʺ> </mi></mrow></mrow><mfrac><mrow><msub><mrow><mi>E</mi></mro
w><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></m

Figure 8. RAGAs evaluation.

The mathematical formulas for the evaluation metrics are summarized in Table 1. This
table presents the formulas used to assess answer generation and document retrieval in the
RAGAs framework.

Table 1. RAGAs evaluation metrics.

Metric Equation

Faithfulness Faithfulness score = |Number of claims in the answer that can be inferred from the given context|
|Total number of claims in the answer|

Answer Relevancy
answer relevancy =

1
N

N
∑

i=1
cos

(
Egi , Eo

)
answer relevancy =

1
N

N
∑

i=1

Egi · Eo

∥Egi∥∥Eo∥

Context Precision
Context Precision@K = ∑K

k=1(Precision@k×vk)
Total number of relevant items in the top K results

Precision@k =
true positives@k

(true positives@k+false positives@k)

Context Recall context recall = |Ground Truth sentences that can be attributed to context|
|Number of sentences in Ground Truth|

Egi is the embedding of generated question i, N is the total number of generated questions; Eo is the embedding
value for the original question, and k is the total number of chunks.

Appl. Sci. 2024, 14, 7995 10 of 21

The faithfulness metric evaluates the consistency of the generated answers for pro-
viding relevant information based on the given context. It is calculated by comparing the
generated answer with the context, with a higher probability indicating a more reliable an-
swer. To calculate faithfulness, a set of assertions in the generated answer is first identified,
and then, each assertion is crosschecked against the given context to determine whether
the assertions can be inferred from the context.

Answer relevance indicates the relevance of the generated answer to an initially posed
question. It evaluates the extent to which the answer meets the requirements of the question,
with a high score indicating a complete and clear answer to a given question without
redundant or unnecessary information. To calculate this, we used the LLM to generate
multiple appropriate questions for the generated answers and evaluated their relevance by
measuring the average cosine similarity between the generated and original questions.

Context precision indicates the percentage of retrieved documents containing content
relevant to a question. It is used to evaluate the accuracy with which a search system
curates and presents relevant documents to users. Context recall comprehensively evaluates
whether the retrieved documents contain the information required to formulate the answer
to a given question. It evaluates the performance of the search system during document
retrieval by assessing whether the document contains sufficient background information
and the correct answer to the question.

3.7. Experimental Setup

The data used in the experiment were evaluated using the commonsense dataset pro-
vided by AIHub [32] as the personalized database of “Tagging Box”. This dataset comprises
100 “Question”, “Ground_Truth”, and “Context” items and is organized into three columns
with these headings. The “Question” column contains the questions generated for the
experiment, whereas the “Ground_Truth” column contains the actual fact-based correct
answers to each question. The “Context” column comprises textual data stored by users
and serves as the basis for the questions and answers. To facilitate understanding of the
role of each column, a specific example is provided in Appendix B, Table A1.

Based on this, we evaluated the search performance of the RAGAs framework. We
used the NVIDIA RTX 3070 GPU (Santa Clara, CA, USA) and the Anaconda environment
for the experimental setup and the Ollama (0.2.5) library [33] for experimentation. The
versions of RAGA, Chroma DB [34], the vector database used in this study, and LangChain
(0.2.8), which supports the RAG evaluation process, are detailed in Table 2.

Table 2. System environment employed for RAG development and evaluation.

Components Version

CPU AMD Ryzen 9 5900X 12-Core Processor (Advanced Micro Devices,
Inc., Santa Clara, CA, USA)

RAM 32 GB
GPU NVIDIA GeForce RTX 3070

Anaconda Python 3.9.19
Ollama 0.2.5
RAGA 0.1.9

Chroma DB 0.4.23
LangChain 0.2.8

3.8. Performance Analysis for Various Model Combinations

To implement the RAG, we used GPT-3.5-Turbo as the LLM and text-embedding-ada-
002 as the embedding model to verify the entire process, from user query to answer genera-
tion. In this section, we describe the reconstruction of the RAG process using various com-
binations of five LLMs and two embedding models to verify the scalability of RAG systems
across different LLMs. Specifically, we used the GPT-3.5-Turbo, Gemma-2-9b [35], Llama-3-

Appl. Sci. 2024, 14, 7995 11 of 21

8B [36], Mistral-7B [37], and Qwen2-7B [38] LLMs and OpenAI’s “text-embedding-ada-002”
and the local Korean “snunlp/KR-SBERT-V40K-klueNLI-augSTS” [39] embedding models.

4. Evaluation Results

We evaluated the performance of the QA system in our study using the two public
data sources mentioned above. We used the RAGAs framework to analyze the results of
the system’s evaluation of contextual relevance, accuracy, and reliability of responses.

First, we present the evaluation results using the common knowledge dataset. This
dataset consists of question–answer pairs on WIKI texts, where the question is related to
the content of the WIKI text and the answer is the corresponding answer pair in the WIKI
text. The information from this dataset was processed by the user’s “TaggingBox” and
stored in a personalized database, which we used to evaluate how well our QA system
generates accurate and relevant answers to user-input questions.

Figure 9 shows the accuracies of the generated results for each LLM and embedding
module combination, wherein Ada-002 + GPT-3.5-Turbo exhibits the highest accuracy of
0.51. This is significantly higher than those of the other model combinations, indicating
its reliability. The combinations using Llama-3-8B, Ada-002 + Llama-3-8B and KR-SBERT
+ Llama-3-8B also show high accuracies of 0.46 and 0.45, respectively, suggesting that
Llama-3-8B offers higher accuracy than the other models.

Appl. Sci. 2024, 14, 7995 12 of 23

stored in a personalized database, which we used to evaluate how well our QA system
generates accurate and relevant answers to user-input questions.

Figure 9 shows the accuracies of the generated results for each LLM and embedding
module combination, wherein Ada-002 + GPT-3.5-Turbo exhibits the highest accuracy of
0.51. This is significantly higher than those of the other model combinations, indicating its
reliability. The combinations using Llama-3-8B, Ada-002 + Llama-3-8B and KR-SBERT +
Llama-3-8B also show high accuracies of 0.46 and 0.45, respectively, suggesting that
Llama-3-8B offers higher accuracy than the other models.

Figure 9. Faithfulness assessment results for the commonsense dataset.

Figure 10 illustrates the response relevance. Similar to the accuracy results, the Ada-
002 + GPT-3.5-Turbo combination exhibits the highest score of 0.86, demonstrating its
superiority to other model combinations in terms of relevance. By contrast, the Ada-002 +
Llama-3-8B and KR-SBERT + Qwen2-7B combinations exhibit lower relevance scores of
0.39 and 0.42, respectively, suggesting that these combinations require improvements in
terms of answer relevance. Although most model combinations obtained relevance scores
of approximately 0.5, they performed relatively poorly.

Figure 9. Faithfulness assessment results for the commonsense dataset.

Figure 10 illustrates the response relevance. Similar to the accuracy results, the Ada-002
+ GPT-3.5-Turbo combination exhibits the highest score of 0.86, demonstrating its superiority
to other model combinations in terms of relevance. By contrast, the Ada-002 + Llama-3-8B
and KR-SBERT + Qwen2-7B combinations exhibit lower relevance scores of 0.39 and 0.42,
respectively, suggesting that these combinations require improvements in terms of answer
relevance. Although most model combinations obtained relevance scores of approximately
0.5, they performed relatively poorly.

Figure 11 shows the context-recall scores for each model combination, wherein the
KR_SBERT + Gemma-2-9b, KR-SBERT + Llama-3-8B, and KR_SBERT + Mistral-7B combi-
nations exhibit the highest recall scores of 0.82, indicating their effectiveness in recalling
information for a given context. By contrast, the Ada-002 + GPT-3.5-Turbo combination
shows a relatively low recall score of 0.67, suggesting that this combination has weak
information-recall capability.

Appl. Sci. 2024, 14, 7995 12 of 21

Appl. Sci. 2024, 14, 7995 14 of 24

Figure 9. Faithfulness assessment results for the commonsense dataset.

Figure 10 illustrates the response relevance. Similar to the accuracy results, the Ada-
002 + GPT-3.5-Turbo combination exhibits the highest score of 0.86, demonstrating its su-
periority to other model combinations in terms of relevance. By contrast, the Ada-002 +
Llama-3-8B and KR-SBERT + Qwen2-7B combinations exhibit lower relevance scores of
0.39 and 0.42, respectively, suggesting that these combinations require improvements in
terms of answer relevance. Although most model combinations obtained relevance scores
of approximately 0.5, they performed relatively poorly.

Figure 10. Answer relevance results for commonsense dataset. Figure 10. Answer relevance results for commonsense dataset.

Appl. Sci. 2024, 14, 7995 15 of 24

Figure 11 shows the context-recall scores for each model combination, wherein the
KR_SBERT + Gemma-2-9b, KR-SBERT + Llama-3-8B, and KR_SBERT + Mistral-7B combi-
nations exhibit the highest recall scores of 0.82, indicating their effectiveness in recalling
information for a given context. By contrast, the Ada-002 + GPT-3.5-Turbo combination
shows a relatively low recall score of 0.67, suggesting that this combination has weak in-
formation-recall capability.

Figure 11. Context-recall results for the commonsense dataset.

Figure 12 shows the context-precision scores for all models, wherein the Ada-002 +
GPT-3.5-Turbo and Ada-002 + Qwen2-7B combinations exhibit the highest precision of
0.79, indicating that these combinations can provide highly accurate information for a
given context. By contrast, the KR-SBERT + Mistral-7B combination shows a relatively low
precision of 0.63, suggesting that this combination requires improvements in terms of con-
textual precision.

Figure 11. Context-recall results for the commonsense dataset.

Figure 12 shows the context-precision scores for all models, wherein the Ada-002 +
GPT-3.5-Turbo and Ada-002 + Qwen2-7B combinations exhibit the highest precision of
0.79, indicating that these combinations can provide highly accurate information for a
given context. By contrast, the KR-SBERT + Mistral-7B combination shows a relatively
low precision of 0.63, suggesting that this combination requires improvements in terms of
contextual precision.

Appl. Sci. 2024, 14, 7995 13 of 21
Appl. Sci. 2024, 14, 7995 16 of 24

Figure 12. Context-precision results for the commonsense dataset.

Additionally, the response times of all combinations were analyzed. Figure 13 shows
a comparison of the processing time per data item for each model combination. Among
the KR-SBERT combinations, KR-SBERT + GPT-3.5-Turbo exhibits the fastest processing
time of 0.92 s. As KR-SBERT performs inference locally, it has a higher processing speed.
By contrast, KR-SBERT + Gemma-2-9B exhibits the slowest processing time of 5.57 s,
which may have been caused by the large size of Gemma-2-9B. Among the Ada-002 com-
binations, Ada-002 + GPT-3.5-Turbo exhibits a relatively fast processing time of 1.39 s,
suggesting that this combination is capable of fast processing even under API communi-
cation. By contrast, Ada-002 + Gemma-2-9B shows the slowest processing time of 6.16 s.
This difference is attributed to the fact that KR-SBERT is employed locally, whereas Ada-
002 requires API communication.

Figure 13. Processing time per data item for the various LLM and embedding combinations for the
commonsense dataset.

Figure 12. Context-precision results for the commonsense dataset.

Additionally, the response times of all combinations were analyzed. Figure 13 shows
a comparison of the processing time per data item for each model combination. Among
the KR-SBERT combinations, KR-SBERT + GPT-3.5-Turbo exhibits the fastest processing
time of 0.92 s. As KR-SBERT performs inference locally, it has a higher processing speed.
By contrast, KR-SBERT + Gemma-2-9B exhibits the slowest processing time of 5.57 s, which
may have been caused by the large size of Gemma-2-9B. Among the Ada-002 combinations,
Ada-002 + GPT-3.5-Turbo exhibits a relatively fast processing time of 1.39 s, suggesting that
this combination is capable of fast processing even under API communication. By contrast,
Ada-002 + Gemma-2-9B shows the slowest processing time of 6.16 s. This difference
is attributed to the fact that KR-SBERT is employed locally, whereas Ada-002 requires
API communication.

Appl. Sci. 2024, 14, 7995 16 of 24

Figure 12. Context-precision results for the commonsense dataset.

Additionally, the response times of all combinations were analyzed. Figure 13 shows
a comparison of the processing time per data item for each model combination. Among
the KR-SBERT combinations, KR-SBERT + GPT-3.5-Turbo exhibits the fastest processing
time of 0.92 s. As KR-SBERT performs inference locally, it has a higher processing speed.
By contrast, KR-SBERT + Gemma-2-9B exhibits the slowest processing time of 5.57 s,
which may have been caused by the large size of Gemma-2-9B. Among the Ada-002 com-
binations, Ada-002 + GPT-3.5-Turbo exhibits a relatively fast processing time of 1.39 s,
suggesting that this combination is capable of fast processing even under API communi-
cation. By contrast, Ada-002 + Gemma-2-9B shows the slowest processing time of 6.16 s.
This difference is attributed to the fact that KR-SBERT is employed locally, whereas Ada-
002 requires API communication.

Figure 13. Processing time per data item for the various LLM and embedding combinations for the
commonsense dataset.
Figure 13. Processing time per data item for the various LLM and embedding combinations for the
commonsense dataset.

Appl. Sci. 2024, 14, 7995 14 of 21

Overall, Ada-002 + GPT-3.5-Turbo obtains the best performance, outperforming others
across several performance metrics, including accuracy, answer relevance, and contextual
precision, and exhibits the second lowest processing time. Moreover, the KR-SBERT +
GPT-3.5-Turbo combination exhibits the lowest processing time, suggesting that it is a
useful alternative.

Next, we conducted additional experiments and evaluated the performance using a
news article dataset [40], alongside the existing open datasets. This news article dataset,
consisting of 450,000 news articles, serves as a training set for developing machine reading
comprehension systems. It includes articles across nine different categories and provides
ground truth for questions, along with the context from which the answers were derived,
enabling evaluation through RAGAs.

As shown in Figure 14, the Ada-002 + GPT-3.5-Turbo combination achieves the highest
faithfulness score of 0.47. This indicates that this combination generates responses that
are more faithful to the original information compared to other models. By contrast, the
KR-SBERT + GPT-3.5-Turbo combination exhibits the lowest faithfulness score of 0.28.

Appl. Sci. 2024, 14, 7995 17 of 24

Overall, Ada-002 + GPT-3.5-Turbo obtains the best performance, outperforming oth-
ers across several performance metrics, including accuracy, answer relevance, and contex-
tual precision, and exhibits the second lowest processing time. Moreover, the KR-SBERT
+ GPT-3.5-Turbo combination exhibits the lowest processing time, suggesting that it is a
useful alternative.

Next, we conducted additional experiments and evaluated the performance using a
news article dataset [40], alongside the existing open datasets. This news article dataset,
consisting of 450,000 news articles, serves as a training set for developing machine reading
comprehension systems. It includes articles across nine different categories and provides
ground truth for questions, along with the context from which the answers were derived,
enabling evaluation through RAGAs.

As shown in Figure 14, the Ada-002 + GPT-3.5-Turbo combination achieves the high-
est faithfulness score of 0.47. This indicates that this combination generates responses that
are more faithful to the original information compared to other models. By contrast, the
KR-SBERT + GPT-3.5-Turbo combination exhibits the lowest faithfulness score of 0.28.

Figure 14. Faithfulness assessment results for the news article dataset.

In Figure 15, the Ada-002 + GPT-3.5-Turbo combination demonstrates the highest
performance in answer relevance with a score of 0.82. This indicates a very strong align-
ment with the original question, suggesting that this combination can provide clear and
accurate responses to user inquiries. Conversely, the KR-SBERT + Mistral 7B combination
records the lowest score on this metric.

Figure 14. Faithfulness assessment results for the news article dataset.

In Figure 15, the Ada-002 + GPT-3.5-Turbo combination demonstrates the highest
performance in answer relevance with a score of 0.82. This indicates a very strong alignment
with the original question, suggesting that this combination can provide clear and accurate
responses to user inquiries. Conversely, the KR-SBERT + Mistral 7B combination records
the lowest score on this metric.

In Figure 16, contextual recall performance is evaluated, and the Ada-002 + GPT-
3.5-Turbo combination shows lower performance with a score of 0.51. By contrast, the
KR-SBERT + GPT-3.5-Turbo combination achieves the highest score of 0.68.

In Figure 17, contextual precision is evaluated, and the Ada-002 + GPT-3.5-Turbo
combination scores 0.73. Although this combination demonstrates a sufficiently reliable
level of precision in document retrieval, the KR-SBERT + Mistral2-7B combination achieves
the highest precision with a score of 0.87.

Appl. Sci. 2024, 14, 7995 15 of 21Appl. Sci. 2024, 14, 7995 18 of 24

Figure 15. Answer relevance results for the news article dataset.

In Figure 16, contextual recall performance is evaluated, and the Ada-002 + GPT-3.5-
Turbo combination shows lower performance with a score of 0.51. By contrast, the KR-
SBERT + GPT-3.5-Turbo combination achieves the highest score of 0.68.

Figure 16. Context-recall results for the news article dataset.

In Figure 17, contextual precision is evaluated, and the Ada-002 + GPT-3.5-Turbo
combination scores 0.73. Although this combination demonstrates a sufficiently reliable
level of precision in document retrieval, the KR-SBERT + Mistral2-7B combination
achieves the highest precision with a score of 0.87.

Figure 15. Answer relevance results for the news article dataset.

Appl. Sci. 2024, 14, 7995 18 of 24

Figure 15. Answer relevance results for the news article dataset.

In Figure 16, contextual recall performance is evaluated, and the Ada-002 + GPT-3.5-
Turbo combination shows lower performance with a score of 0.51. By contrast, the KR-
SBERT + GPT-3.5-Turbo combination achieves the highest score of 0.68.

Figure 16. Context-recall results for the news article dataset.

In Figure 17, contextual precision is evaluated, and the Ada-002 + GPT-3.5-Turbo
combination scores 0.73. Although this combination demonstrates a sufficiently reliable
level of precision in document retrieval, the KR-SBERT + Mistral2-7B combination
achieves the highest precision with a score of 0.87.

Figure 16. Context-recall results for the news article dataset.

Figure 18 visualizes the data-processing time for each embedding combination. The
KR-SBERT + GPT-3.5-Turbo combination records the fastest processing time of 0.95 s, which
is likely the result of running directly on the local machine. By contrast, the Ada-002 +
GPT-3.5-Turbo combination took slightly longer at 1.56 s but maintained a very efficient
processing speed while using API communication. This makes Ada-002 + GPT-3.5-Turbo
a balanced choice for performance and speed. Although the Ada-002 + GPT-3.5-Turbo
combination shows balanced results in terms of performance and processing speed, we
performed additional experiments to examine the performance of the newer GPT-4 model.
GPT-4 has several reported improvements, including better context handling, increased
accuracy, and reduced hallucination rates.

Appl. Sci. 2024, 14, 7995 16 of 21Appl. Sci. 2024, 14, 7995 19 of 24

Figure 17. Context-precision results for the news article dataset.

Figure 18 visualizes the data-processing time for each embedding combination. The
KR-SBERT + GPT-3.5-Turbo combination records the fastest processing time of 0.95 s,
which is likely the result of running directly on the local machine. By contrast, the Ada-
002 + GPT-3.5-Turbo combination took slightly longer at 1.56 s but maintained a very effi-
cient processing speed while using API communication. This makes Ada-002 + GPT-3.5-
Turbo a balanced choice for performance and speed. Although the Ada-002 + GPT-3.5-
Turbo combination shows balanced results in terms of performance and processing speed,
we performed additional experiments to examine the performance of the newer GPT-4
model. GPT-4 has several reported improvements, including better context handling, in-
creased accuracy, and reduced hallucination rates.

Figure 18. Processing time per data item for the various LLMs and embedding combinations for the
news article dataset.

Figure 17. Context-precision results for the news article dataset.

Appl. Sci. 2024, 14, 7995 18 of 23

Turbo a balanced choice for performance and speed. Although the Ada-002 + GPT-3.5-

Turbo combination shows balanced results in terms of performance and processing speed,

we performed additional experiments to examine the performance of the newer GPT-4

model. GPT-4 has several reported improvements, including better context handling, in-

creased accuracy, and reduced hallucination rates.

Figure 18. Processing time per data item for the various LLMs and embedding combinations for the

news article dataset.

To evaluate the impact of these improvements on real-world performance, we con-

ducted an experiment with GPT-4. The experiment aimed to compare the performance of

GPT-4 and GPT-3.5-Turbo and to assess how the two models perform in a real-world pro-

duction environment. According to the results shown in Figure 19, GPT-4 incurs an ap-

proximately 8137.5% higher cost than GPT-3.5-Turbo when processing 100 pieces of data.

In addition, in terms of processing time, GPT-4 is about 111.5% slower than GPT-3.5-

Turbo, where processing time refers to the time taken to process one piece of data. These

results highlight that cost and time efficiency can be a big issue in real-world production

environments where cost and time efficiency are critical.

Figure 18. Processing time per data item for the various LLMs and embedding combinations for the
news article dataset.

To evaluate the impact of these improvements on real-world performance, we con-
ducted an experiment with GPT-4. The experiment aimed to compare the performance
of GPT-4 and GPT-3.5-Turbo and to assess how the two models perform in a real-world
production environment. According to the results shown in Figure 19, GPT-4 incurs an
approximately 8137.5% higher cost than GPT-3.5-Turbo when processing 100 pieces of
data. In addition, in terms of processing time, GPT-4 is about 111.5% slower than GPT-3.5-
Turbo, where processing time refers to the time taken to process one piece of data. These
results highlight that cost and time efficiency can be a big issue in real-world production
environments where cost and time efficiency are critical.

Appl. Sci. 2024, 14, 7995 17 of 21

Appl. Sci. 2024, 14, 7995 20 of 24

To evaluate the impact of these improvements on real-world performance, we con-
ducted an experiment with GPT-4. The experiment aimed to compare the performance of
GPT-4 and GPT-3.5-Turbo and to assess how the two models perform in a real-world pro-
duction environment. According to the results shown in Figure 19, GPT-4 incurs an ap-
proximately 8137.5% higher cost than GPT-3.5-Turbo when processing 100 pieces of data.
In addition, in terms of processing time, GPT-4 is about 111.5% slower than GPT-3.5-
Turbo, where processing time refers to the time taken to process one piece of data. These
results highlight that cost and time efficiency can be a big issue in real-world production
environments where cost and time efficiency are critical.

Figure 19. Comparative evaluation of processing time, cost, and performance metrics for Ada-002 +
GPT-3.5-Turbo and Ada-002 + GPT-4.

In the RAGAs evaluation, GPT-3.5-Turbo performed 31.3%, 21.1%, and 1.9% better in
terms of faithfulness, answer relevancy, and context precision, respectively. These results
indicate that GPT-3.5-Turbo is better suited to meet research requirements where the con-
sistency and accuracy of responses are important. Conversely, GPT-4 performed 12.4%
better on Context Recall, but this advantage did not lead to a significant improvement in
overall system performance. Thus, while GPT-4 offers improved performance in context
handling and accuracy, cost-effectiveness and processing speed are important factors in
real-world applications. It can be concluded that Ada-002 + GPT-3.5-Turbo may be more
suitable in situations where cost and processing time efficiency are important.

5. Discussion
5.1. Results and Contribution

This study demonstrates that a QA system leveraging RAG can be customized for
specific domains by indexing text corpora.

Additionally, because the system ensures consistent tracking and updating of infor-
mation, including documents modified or deleted by individuals logged into the person-
alized database, there is no need to retrain or fine-tune it on sensitive personal and work-
place information. To address the limitations of existing LLM-based QA systems, which
often fail to record the context of conversations, we implemented a stable RAG system
using MongoDB to provide contextual information to prompts, thereby offering a search
experience that reflects individual search history.

Figure 19. Comparative evaluation of processing time, cost, and performance metrics for Ada-002 +
GPT-3.5-Turbo and Ada-002 + GPT-4.

In the RAGAs evaluation, GPT-3.5-Turbo performed 31.3%, 21.1%, and 1.9% better
in terms of faithfulness, answer relevancy, and context precision, respectively. These
results indicate that GPT-3.5-Turbo is better suited to meet research requirements where the
consistency and accuracy of responses are important. Conversely, GPT-4 performed 12.4%
better on Context Recall, but this advantage did not lead to a significant improvement in
overall system performance. Thus, while GPT-4 offers improved performance in context
handling and accuracy, cost-effectiveness and processing speed are important factors in
real-world applications. It can be concluded that Ada-002 + GPT-3.5-Turbo may be more
suitable in situations where cost and processing time efficiency are important.

5. Discussion
5.1. Results and Contribution

This study demonstrates that a QA system leveraging RAG can be customized for
specific domains by indexing text corpora.

Additionally, because the system ensures consistent tracking and updating of informa-
tion, including documents modified or deleted by individuals logged into the personalized
database, there is no need to retrain or fine-tune it on sensitive personal and workplace
information. To address the limitations of existing LLM-based QA systems, which often fail
to record the context of conversations, we implemented a stable RAG system using Mon-
goDB to provide contextual information to prompts, thereby offering a search experience
that reflects individual search history.

Finally, experimental results using GPT-3.5-Turbo with custom templates for prompt-
ing showed that this combination outperforms traditional RAG setups. These findings
indicate that an optimized RAG design plays a crucial role in delivering accurate answers
to user queries and confirm that the proposed system can achieve high efficiency and
effectiveness in real-world applications.

Appl. Sci. 2024, 14, 7995 18 of 21

5.2. Limitations and Future Work

The RAG system developed in this study has limitations due to its reliance on the per-
formance of the LLM. Additionally, the QA system extracts context based on the similarity
of the question to generate responses. In cases where the context is not established in the
database, the response is limited. Although this reduces hallucinations, it may be perceived
as a limitation of the system from the user’s perspective. This could potentially limit the
generalization of performance across databases of varying sizes and structures. Therefore,
this study aims to improve the QA system’s performance by adjusting various thresholds.

Moreover, the data used in the experiment were selected specifically for research
purposes from a customized database optimized for a particular domain. This implies that
the same level of performance may not be guaranteed with datasets from other domains or
with different structures, which could introduce potential bias in the study. Nonetheless,
the domain used in our actual experiment is already a structured database from a company
currently in operation. Consequently, multiple users in this domain can expand their
personalized databases with their own information and use the RAG QA system to derive
answers without hallucinations, which is a significant contribution of this study. In the
future, we plan to leverage the accumulated information from this company’s system to
increase the potential for generalization.

In the future, we intend to focus our research on overcoming the limitations identi-
fied in this study by utilizing the accumulated information from the company’s system.
Specifically, we will work on enhancing the integration of data from various domains and
improving the ability to process unstructured data, enabling the system to handle more
complex and diverse queries.

Author Contributions: Conceptualization, J.B., B.K., K.-A.C. and E.L.; methodology, J.B., B.K. and
K.-A.C.; software, J.B., B.K. and E.L.; validation, J.B. and B.K.; investigation, J.B., B.K., K.-A.C. and
E.L.; data curation, J.B. and B.K.; writing—original draft preparation, J.B., B.K. and K.-A.C.; writing—
review and editing, J.B., B.K. and K.-A.C.; visualization, J.B. and B.K.; supervision, K.-A.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: Author Eunhyung Lee was employed by the company Textway Inc. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A

Figure A1 compares the response differences between our RAG-based QA system
and traditional LLMs, particularly GPTs. This comparison demonstrates the ability of
RAG to reflect personalized information about user prompts in the interactive question-
answering system we developed. We highlight the difference in responses before and after
the application of RAG with an example of a company’s application solution where the
RAG pipeline was applied to a QA system. As shown in Figure A1, the user prompt for
a muffin recipe and the output from ChatGPT-3.5 do not reflect the user’s inclinations
and intentions: the output does not reflect context because it is based on already-learned
parameters, and the LLM simply analyzes the prompt and generates an answer. By contrast,
as shown on the right in Figure A1, the contextualized response generated by RAG from
the personalized database of “TaggingBox” implemented in this system outputs a muffin
recipe created and updated by the individual, displaying contextual information relevant
only to the individual.

Appl. Sci. 2024, 14, 7995 19 of 21

Appl. Sci. 2024, 14, 7995 22 of 24

intentions: the output does not reflect context because it is based on already-learned pa-
rameters, and the LLM simply analyzes the prompt and generates an answer. By contrast,
as shown on the right in Figure A1, the contextualized response generated by RAG from
the personalized database of “TaggingBox” implemented in this system outputs a muffin
recipe created and updated by the individual, displaying contextual information relevant
only to the individual.

Figure A1. A comparison example between ChatGPT-3.5 and the RAG-based QA system’s question
and answer responses.

Appendix B
The contexts listed in Table A1 are examples of the dataset format used in a person-

alized document describing the ancient walls surrounding Jinju, a region in South Korea,
taken from a public dataset. This document is stored in a personalized database.

Table A1. An example of dataset format in the evaluation experiment.

Question Ground Truth Context

What is the area
of Ibanseong-

myeon?
19.41 km2

Ibanseong-myeon is the center of transportation, culture, education, and
commerce for the five eastern towns, and it has long been commercially

developed, with the Banseong traditional market thriving day by day. The
area is 19.41 km2, making it the smallest of the 16 towns and districts in

Jinju City. However, the nearby Gyeongnam Forest Environment Research
Institute attracts tourists who pass through Ibanseong-myeon. As of Janu-
ary 1, 2012, the population was 3233 (male: 1556, female: 1677) with 1413

households, comprising 6 legal districts, 19 natural villages, and 31 neigh-
borhoods.

Who discovered
Cape Verde? Portuguese navigators

The Republic of Cape Verde (Cabo Verde), also known as Cape Verde in
English, is a country located in the Atlantic Ocean off the west coast of Af-
rica, discovered by Portuguese navigators. Although it was uninhabited at
the time of discovery, the islands had been visited since ancient times by

Phoenicians, Arabs, Moors, and nearby West African tribes. Subsequently,
Portuguese settlers began moving to this rare tropical region and establish-

ing settlements.

Figure A1. A comparison example between ChatGPT-3.5 and the RAG-based QA system’s question
and answer responses.

Appendix B

The contexts listed in Table A1 are examples of the dataset format used in a person-
alized document describing the ancient walls surrounding Jinju, a region in South Korea,
taken from a public dataset. This document is stored in a personalized database.

Table A1. An example of dataset format in the evaluation experiment.

Question Ground Truth Context

What is the area of
Ibanseong-myeon? 19.41 km2

Ibanseong-myeon is the center of transportation, culture, education, and
commerce for the five eastern towns, and it has long been commercially

developed, with the Banseong traditional market thriving day by day. The area
is 19.41 km2, making it the smallest of the 16 towns and districts in Jinju City.

However, the nearby Gyeongnam Forest Environment Research Institute
attracts tourists who pass through Ibanseong-myeon. As of 1 January 2012, the

population was 3233 (male: 1556, female: 1677) with 1413 households,
comprising 6 legal districts, 19 natural villages, and 31 neighborhoods.

Who discovered Cape
Verde? Portuguese navigators

The Republic of Cape Verde (Cabo Verde), also known as Cape Verde in
English, is a country located in the Atlantic Ocean off the west coast of Africa,
discovered by Portuguese navigators. Although it was uninhabited at the time
of discovery, the islands had been visited since ancient times by Phoenicians,

Arabs, Moors, and nearby West African tribes. Subsequently, Portuguese
settlers began moving to this rare tropical region and establishing settlements.

References
1. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training, OpenAI Blog 2018. Available

online: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf (accessed on 25 July 2024).
2. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learners,

OpenAI Blog 2019. Available online: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf (accessed on 25 July 2024).

3. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Agarwal, S. Language models are few-shot learners. arXiv
2020, arXiv:2005.14165.

4. Liu, J.; Shen, D.; Zhang, Y.; Dolan, B.; Carin, L.; Chen, W. What Makes Good In-Context Examples for GPT-3? arXiv 2021,
arXiv:2101.06804.

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Appl. Sci. 2024, 14, 7995 20 of 21

5. Bin-Nashwan, S.A.; Sadallah, M.; Bouteraa, M. Use of ChatGPT in academia: Academic integrity hangs in the balance. Technol.
Soc. 2023, 75, 102370. [CrossRef]

6. Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing Scientific Abstracts Generated
by ChatGPT to Real Abstracts with Detectors and Blinded Human Reviewers. NPJ Digit. Med. 2023, 6, 75. [CrossRef] [PubMed]

7. Ferreiro-Santamaria, G. Exploring the Role of ChatGPT in English Teaching within Higher Education Settings. Int. J. Trends Dev.
Educ. 2024, 4, 44–58.

8. Surameery, N.M.S.; Shakor, M.Y. Use Chat GPT to Solve Programming Bugs. Int. J. Inf. Technol. Comput. Eng. IJITC 2023, 3, 17–22.
[CrossRef]

9. Floridi, L.; Chiriatti, M. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds Mach. 2020, 30, 681–694. [CrossRef]
10. Xu, Z.; Jain, S.; Kankanhalli, M. Hallucination is inevitable: An innate limitation of large language models. arXiv 2024,

arXiv:2401.11817.
11. Alkaissi, H.; McFarlane, S.I. Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus 2023, 15, e35179.

[CrossRef]
12. Wang, B.; Chen, W.; Pei, H.; Xie, C.; Kang, M.; Zhang, C.; Xu, C.; Xiong, Z.; Dutta, R.; Schaeffer, R.; et al. DecodingTrust:

A Comprehensive Assessment of Trustworthiness in GPT Models. Adv. Neural Inf. Process. Syst. 2023, 36, 31232–31339.
13. Lewis, P.S.H.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.; Rocktäschel, T.; et al.

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Adv. Neural Inf. Process. Syst. 2020, 33, 9459–9474.
14. Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Guo, Q.; Wang, M.; et al. Retrieval-Augmented Generation for

Large Language Models: A Survey. arXiv 2023, arXiv:2312.10997.
15. Chen, J.; Lin, H.; Han, X.; Sun, L. Benchmarking Large language models in retrieval-augmented generation. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vancouver, Canada, 20–27 February 2024; Volume 38, pp. 17754–17762.
16. Zhao, P.; Zhang, H.; Yu, Q.; Wang, Z.; Geng, Y.; Fu, F.; Yang, L.; Zhang, W.; Jiang, J.; Cui, B. Retrieval-Augmented Generation for

AI-Generated Content: A Survey. arXiv 2024, arXiv:2402.19473.
17. Xia, Y.; Huang, Y.; Qiu, Q.; Zhang, X.; Miao, L.; Chen, Y. A Question and Answering Service of Typhoon Disasters Based on the T5

Large Language Model. ISPRS Int. J. Geo-Inf. 2024, 13, 165. [CrossRef]
18. Li, H.; Su, Y.; Cai, D.; Wang, Y.; Liu, L. A survey on retrieval-augmented text generation. arXiv 2022, arXiv:2202.01110.
19. Es, S.; James, J.; Espinosa-Anke, L.; Schockaert, S. RAGAS: Automated Evaluation of Retrieval Augmented Generation. arXiv

2023, arXiv:2309.15217.
20. Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of Hallucination in Natural

Language Generation. ACM Comput. Surv. 2023, 55, 248. [CrossRef]
21. Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y.; et al. Siren’s Song in the AI Ocean:

A Survey on Hallucination in Large Language Models. arXiv 2023, arXiv:2309.01219.
22. Liu, F.; Liu, Y.; Shi, L.; Huang, H.; Wang, R.; Yang, Z.; Zhang, L.; Li, Z.; Ma, Y. Exploring and Evaluating Hallucinations in

LLM-Powered Code Generation. arXiv 2024, arXiv:2404.00971.
23. Galitsky, B.; Chernyavskiy, A.; Ilvovsky, D. Truth-o-meter: Handling multiple inconsistent sources repairing LLM hallucinations.

In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM,
Washington, DC, USA, 14–18 July 2024; pp. 2817–2821.

24. Hanna, E.; Levic, A. Comparative Analysis of Language Models: Hallucinations in ChatGPT: Prompt Study, DIVA 2023. Available
online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1764165&dswid=6109 (accessed on 25 July 2023).

25. Chen, Y.; Fu, Q.; Yuan, Y.; Wen, Z.; Fan, G.; Liu, D.; Zhang, D.; Li, Z.; Xiao, Y. Hallucination detection: Robustly discerning reliable
answers in large language models. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, ACM, Birmingham, UK, 21–25 October 2023; pp. 245–255.

26. Yao, J.Y.; Ning, K.P.; Liu, Z.H.; Ning, M.N.; Yuan, L. LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples.
arXiv 2023, arXiv:2310.01469.

27. Zhang, M.; Press, O.; Merrill, W.; Liu, A.; Smith, N.A. How language model hallucinations can snowball. arXiv 2023,
arXiv:2305.13534.

28. Varshney, N.; Raj, S.; Mishra, V.; Chatterjee, A.; Sarkar, R.; Saeidi, A.; Baral, C. Investigating and Addressing Hallucinations of
LLMs in Tasks Involving Negation. arXiv 2024, arXiv:2406.05494.

29. TaggingBox. Available online: https://taggingbox.im/ (accessed on 24 July 2024).
30. MongoDB: The Developer Data Platform. Available online: https://www.mongodb.com/ (accessed on 25 July 2024).
31. LangChain. Available online: https://github.com/langchain-ai/langchain (accessed on 25 July 2024).
32. AI Hub. General Knowledge Dataset. Available online: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=

100&aihubDataSe=realm&dataSetSn=106 (accessed on 25 July 2024).
33. Ollama. Available online: https://github.com/ollama/ollama (accessed on 25 July 2024).
34. Chroma. Available online: https://www.trychroma.com/ (accessed on 25 July 2024).
35. Gemma Team. Gemma2: Improving Open Language Models at a Practical Size. arXiv 2024, arXiv:2408.00118.
36. Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A.; et al. The

Llama 3 Herd of Models. arXiv 2024, arXiv:2407.21783.

https://doi.org/10.1016/j.techsoc.2023.102370
https://doi.org/10.1038/s41746-023-00819-6
https://www.ncbi.nlm.nih.gov/pubmed/37100871
https://doi.org/10.55529/ijitc.31.17.22
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.7759/cureus.35179
https://doi.org/10.3390/ijgi13050165
https://doi.org/10.1145/3571730
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1764165&dswid=6109
https://taggingbox.im/
https://www.mongodb.com/
https://github.com/langchain-ai/langchain
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=106
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=106
https://github.com/ollama/ollama
https://www.trychroma.com/

Appl. Sci. 2024, 14, 7995 21 of 21

37. Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; Casas, D.D.L.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier,
L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825.

38. Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.; Li, C.; Li, C.; Liu, D.; Huang, F.; et al. Qwen2 Technical Report. arXiv 2024,
arXiv:2407.10671.

39. snunlp. KR-SBERT-V40K-klueNLI-augSTS. Available online: https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS
(accessed on 24 July 2024).

40. AI Hub. Machine Reading Dataset. Available online: https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&
topMenu=100&aihubDataSe=realm&dataSetSn=89 (accessed on 19 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=89
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=89

	Introduction
	Related Work
	Hallucinations in LLMs
	Research on RAG

	Materials and Methods
	System Overview
	Data Extraction: LangChain Integration
	Role of Prompting Instructions
	History Management: MongoDB
	Personalized RAG-Based Responses
	Evaluation: RAGAs Framework
	Experimental Setup
	Performance Analysis for Various Model Combinations

	Evaluation Results
	Discussion
	Results and Contribution
	Limitations and Future Work

	Appendix A
	Appendix B
	References

