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Abstract: While State-of-Charge (SOC) estimation for supercapacitors has been extensively studied,
most research focuses on single units. However, the recent introduction of reconfigurable circuits
significantly alters system dynamics, rendering existing SOC estimation techniques inadequate. This
paper addresses this challenge by employing a switching systems approach to estimate the SOC of
supercapacitors with reconfigurable circuits. We first establish an RC model for the supercapacitor
integrated with the reconfigurable circuit and thoroughly analyze the state continuity and observabil-
ity of the resulting switched system. Subsequently, we propose a switching observer and evaluate
its convergence properties by comparing its performance against other observer techniques. Experi-
mental validation on a hardware platform demonstrates the superiority of our proposed observer for
accurate SOC estimation in this context.

Keywords: switching observer; linear switching system; reconfigurable circuits; state of charge;
supercapacitors

1. Introduction

Supercapacitors have emerged as promising energy storage devices due to their excep-
tional performance, finding applications in electric vehicles, renewable energy systems, and
modern power grids [1], and research on it continues to be updated [2]. As a commonly
used onboard power source for electric vehicles, the State of Charge (SOC) of superca-
pacitors is a key parameter that reflects the current charge storage level. Accurate SOC
estimation is fundamental to energy control and management, ensuring the safe and reli-
able operation of the onboard power system, which is crucial for maintaining its operational
efficiency and longevity [3]. At times we need to ensure that the SOC operates within a
certain range to guarantee the system’s proper functioning [4].

Due to the importance of the SOC in supercapacitors, many methods for estimating
the SOC have already been proposed [5]. While traditional Coulomb counting is straightfor-
ward, its accuracy diminishes under dynamic conditions due to the gradual accumulation
of errors over time. Data-driven approaches for estimating battery SOC [6], like deep
feedforward neural networks (DNNs) [7], Elman neural networks [8], and long short-term
memory recurrent neural networks (LSTM RNNs) [9] provide greater accuracy but come
with higher computational demands and a reliance on data quality. These methods often
necessitate the frequent retraining of the model. In contrast, model-based techniques such
as Luenberger observers, sliding-mode observers [10], Kalman Filters, and nonlinear ob-
servers [11] strike a balance between computational efficiency and accuracy. The Kalman
Filter is one of the most widely used methods, and different types of Kalman Filters have al-
ready been applied to SOC estimation, including the Extended Kalman Filter (EKF) [12,13],
Adaptive Kalman Filter (AKF) [14], and Unscented Kalman Filter (UKF) [15,16].

However, most existing research primarily focuses on individual supercapacitor cells,
utilizing cell current as input and cell voltage as output for observer design. In practical
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applications, supercapacitors are rarely used in isolation and are often integrated with
balancing circuits [17–19]. Reconfigurable circuits have recently emerged as a promising
solution to address balancing challenges in battery and supercapacitor applications [20].
These circuits enable dynamic reconfiguration to adjust voltage and current levels, optimize
energy conversion efficiency, and isolate faulty cells, ultimately extending the lifespan of the
energy storage system. However, the switching actions inherent in reconfigurable circuits
introduce abrupt changes in the system model, rendering traditional observers ineffective.

This paper proposes a novel SOC estimation method for supercapacitors integrated
with reconfigurable circuits based on a switched systems approach. We develop a linear
switched system model to capture the dynamic behavior of the system. A corresponding
observer is designed, explicitly considering the impact of switching events on system
dynamics. Experimental results validate the effectiveness of the proposed method.

2. Modeling and Motivation
2.1. System Modeling

This section details the development of a suitable model for supercapacitors integrated
with reconfigurable circuits.

2.1.1. Supercapacitor Representation

Figure 1 illustrates the adopted supercapacitor model, employing a series connection of
RC circuits. This representation is widely used due to its balance of accuracy and simplicity.

Figure 1. The equivalent RC circuit of the supercapacitor.

While often small in magnitude, the impact of Equivalent Series Resistance (ESR)
can contribute to power dissipation within the system. In reality, ESR is a parameter that
is almost impossible to measure accurately and can vary over time. We will discuss the
impact of this variation in the observer design and experiment sections. State of Charge
(SOC) serves as a crucial metric for supercapacitors, reflecting the available charge relative
to its capacity. SOC is commonly defined as

SOC =
Qremain(t)

Qrated
× 100% (1)

where Qremain(t) represents the remaining charge at time instant t, and Qrated denotes the
rated charge, which remains constant.

It is important to note that in certain cases, Qrated might be replaced with the maximum
available capacity, which tends to be lower than the rated capacity due to the impact of
continuous charge–discharge cycles.

Let vrated represent the rated maximum voltage, v the terminal voltage of the superca-
pacitor cell, and vc(t) the voltage across the equivalent capacitor of the cell. Based on the
fundamental characteristics of a capacitor, we have

Qremain = Ceqvc(t) (2)
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Qrated = Ceqvrated (3)

where Ceq represents the equivalent capacitance of the supercapacitor.
Combining Equations (1)–(3), we can derive the following relationship:

SOC =
vc(t)
vrated

(4)

Considering the influence of ESR, the voltage across the equivalent capacitor can be
expressed as

vc = v − ir (5)

where i represents the charging current flowing through the cell, and r denotes the ESR of
the cell. The voltage dynamics across the equivalent capacitor Ceq can be described by

v̇c =
i

Ceq
(6)

It is crucial to observe that a higher charging current i leads to a faster rate of change
in the voltage vc.

Differentiating both sides of Equation (4) with respect to time, we obtain

SȮC =
i

Ceqvrated
(7)

2.1.2. Reconfigurable Circuit Modeling

Let us begin by examining the reconfigurable circuit illustrated in Figure 2. This circuit
features two switches, s controlling the capacitor branch and s̄ governing the bypass path.
These switches operate in a complementary fashion, ensuring that only one path is active at
any given time. When s is ON (s = 1), the supercapacitor is connected to the main circuit,
allowing for charging or discharging. Conversely, when s̄ is ON (s̄ = 1), the supercapacitor
is bypassed, effectively isolating it from the circuit and preventing any current flow.

Figure 2. The reconfigurable circuit considering ESR.

To develop a comprehensive model for cell balancing, we need to integrate the mathe-
matical representations of both the supercapacitor and the reconfigurable circuit. This inte-
grated model will provide a framework for analyzing and controlling the system’s behavior.



Appl. Sci. 2024, 14, 8005 4 of 18

By combining Equations (5) and (7), which describe the supercapacitor’s dynamics,
with Equations (4) and (6), which capture the circuit configuration, we arrive at the fol-
lowing state-space representation for the supercapacitor within the reconfigurable circuit:{

SȮC = s
Ceqvrated

i
v = vratedSOC + sri

(8)

In this representation, i represents the input current, v represents the output voltage,
and SOC serves as the state variable, reflecting the supercapacitor’s charge level. This
model reveals that the system exhibits switching behavior, transitioning between two
distinct linear subsystems depending on the state of the switches.

To further clarify the system’s dynamics, we can compare Equation (8) with the general
form of a state-space representation:{

ẋ = Aσx + Bσu
y = Cσx + Dσu

(9)

In this general form, x represents the state vector, u represents the input vector, and y
represents the output vector. The matrices Aσ, Bσ, Cσ, and Dσ define the system’s behavior
in each subsystem, with the subscript σ indicating the active subsystem.

By mapping the variables in our specific model (x = SOC, u = i, y = v) to the general
form, we can readily extract the system parameters for each subsystem:

A1 = 0, B1 = 0, C1 = vrated, D1 = 0 (10)

A2 = 0, B2 =
1

Ceqvrated
, C2 = vrated, D2 = r (11)

Here, σ = s + 1 serves as a switching signal, determining which set of parameters
is active at any given time. When σ = 1 (s = 0), the supercapacitor is bypassed, and the
system’s behavior is governed by the parameters in Equation (10). Conversely, when σ = 2
(s = 1), the supercapacitor is connected, and the system’s behavior is dictated by the
parameters in Equation (11).

2.2. Motivation
2.2.1. Challenges in SOC Estimation for Reconfigurable Circuits

Accurately estimating the State-of-Charge (SOC) of supercapacitors in reconfigurable
circuits presents unique challenges. Let us consider a scenario where an external charging
current, denoted as ic, supplies the circuit. This current can be constant or time-varying,
and for a more general analysis, we assume it changes over time. The actual current flowing
through the supercapacitor, representing the system input, is denoted by u.

Figure 3 illustrates the impact of reconfigurable circuitry on SOC estimation. The
figure depicts a 20-second charging sequence with a time-varying charging current. To
highlight the effects of circuit switching, we intentionally open switch s (turning it OFF)
during two intervals: from 0 to 5 s and from 10 to 15 s.

Note that when the switch is turned off, meaning s = 0, the charging current through
the supercapacitor drops to zero, as shown in the figure. This abrupt change in current
poses a significant problem for conventional SOC estimation techniques that rely solely on
the external charging current (ic) and a single supercapacitor model. In such cases, the input
current error approaches 100%, rendering the SOC estimation inaccurate and unreliable.

Furthermore, Figure 3 demonstrates that the supercapacitor voltage can be maintained
at a constant level when the switch is OFF. This ability to isolate and hold the super-
capacitor’s voltage highlights the potential benefits of reconfigurable circuits in energy
management and power control applications.
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Figure 3. Supercapacitors charging during circuit switching.

2.2.2. Limitations of Open-Loop SOC Estimation

While Equation (8) provides a direct relationship between SOC, SȮC, voltage, and
current, it raises a crucial question: can we rely solely on this equation for accurate SOC
estimation in a reconfigurable circuit?

By deforming the first line of Equation (8), we can easily obtain the open-loop calcula-
tion equation for SOC:

SOC(t)= SOC(0)+∆SOC = SOC(0) +
∫ t

0

s
Ceqvrated

i(t)dt (12)

In the equation, SOC(0) represents the initial SOC.
To investigate this, let us analyze a charging scenario where a supercapacitor with a

rated voltage (vrated) of 2.7 V, an internal resistance (r) of 2.2 mΩ, and a capacitance of 310 F
(Ceq) is charged with a constant current of 2 A (i). Once fully charged, switch s is toggled to
open the supercapacitor branch.

Clearly, when evaluating the SOC estimation using the open-loop method, we must
consider not only the cases where the parameters are precise but also where there are
errors in the parameters. Here, we simulate the real-world scenario where supercapacitor
parameters may have errors by modifying the capacitance value (Ceq) in Equation (12). As
for the true SOC, we can directly adjust Equation (8) to obtain Equation (13), using the
actual parameters of the supercapacitor for calculation:

SOC =
v − sri
vrated

(13)

Figure 4 shows the SOC estimation results obtained using the open-loop method de-
scribed by Equation (12) in the simulation experiment. To simulate real-world measurement
uncertainties, we considered two scenarios: one where the capacitance (Ceq) in Equation
(12) matches the true value and another where there is a 10% deviation from the true value.
Although the open-loop estimation performs well when the parameters are accurate, it fails
to converge to the true SOC value when there are parameter errors, as seen in Figure 4a
and Table 1. This divergence highlights a significant drawback of the open-loop approach:
its susceptibility to measurement errors, which are inevitable in practical applications.
Therefore, a more robust approach is needed to address this limitation. Additionally, to
further confirm the limitations of the open-loop estimation, we will also use this method in
subsequent hardware experiments.
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Table 1. Open-loop estimation performance under capacitance changes.

Initial SOC (%) Final SOC (%) Charging Stop Time (s)

True Value 30.12 100.03 293.164

Open-loop Observer 30.12 93.62 293.164
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Figure 4. Comparison of SOC estimation performance during dynamic charging with capacitance
variations. (a) SOC estimation with 10% capacitance variations. (b) SOC estimation with 10%
capacitance variations.

3. Observer Design for Switching Systems

Due to the different state-space equation parameters of the system at different operat-
ing points, switching observers are considered. In this section, we will propose a usable
switching observer based on the proof of properties.

3.1. System Properties

Before delving into observer design, it is essential to understand the fundamental
properties of our switching system, which are crucial for observer construction. These prop-
erties encompass continuity, state differentiability, and the controllability and observability
of each subsystem.

Lemma 1. Consider the switched system described by the state-space Equation (8), where the
input current i is piecewise continuous. Then, the system’s state (SOC) is continuous due to
its differentiability.
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Proof. To prove the continuity of the state, we need to demonstrate its differentiability.
This involves establishing the existence and uniqueness of solutions for the state-space
Equation (8) and showing that the equation itself is continuous.

From Equation (8), we can derive the following differential equation:

SȮC = f (t, SOC,λ) (14)

Here, λ represents the system parameters, including r, C, R, and s, while i(t) is a
piecewise continuous function of time.

Let us define T = {tl}∞
l=1 as the sequence of switching instants. We assume that i(t)

remains continuous within each time interval (tl , tl+1) and that the system is Zeno-free,
meaning that it does not exhibit infinitely fast switching. Consequently, within each interval
(tl , tl+1), the impact of switching remains bounded.

Now, we invoke a mathematical principle: if a function remains bounded within a
finite time interval, both its left-hand and right-hand limits must exist at every point within
that interval.

Proof of the Principle. The principle clearly holds for points where the function is contin-
uous. Let us focus on discontinuities.

Consider approaching a point t from the left, denoted as t → tl−. Due to the function’s
boundedness in the interval [t0, tl ], any sequence tn approaching tl from the left (tn < tl
and tn → tl) will result in a bounded sequence g(tn). This implies the existence of a finite
limit Ll such that limt→tl− g(t) = Ll .

Similarly, approaching t from the right (t → tl+) leads to the existence of a finite
right-hand limit Lr such that limt→tl+ g(t) = Lr.

Therefore, at any jump point t = tl , both the left-hand and right-hand limits of g(t)
exist. This allows for discontinuities of the first kind, where the function takes a finite jump.

Consequently, we can conclude that f (t, SOC, λ) is piecewise continuous in t, as
discontinuities of the first kind do not disrupt the function’s continuity at other points.

Next, let us examine the Lipschitz constant of f with respect to SOC:∣∣ f (t, SOCx,λ)− f (t, SOCy,λ)
∣∣∣∣SOCx − SOCy

∣∣ ≤ L (15)

Since f is independent of SOC, the left-hand side of the inequality is always zero.
Therefore, the inequality holds true for any value of L, including L = 0, regardless of
whether s = 0 or s = 1.

Lemma 2. The switching system represented by Equation (8) maintains observability regardless of
the switch state.

Proof. To assess the observability of the system, let us examine the controllability and
observability matrices derived from Equations (10) and (11):

C1 = 0, C2 =
1

Ceqvrated
(16)

O1 = vrated, O2 = vrated (17)

These matrices reveal the following ranks: rank(C1) = 0, rank(C2) = 1, rank(O1) = 1,
and rank(O2) = 1.

When the capacitor is short-circuited (s = 0), the system becomes uncontrollable, as
indicated by rank(C1) = 0. However, crucially, the system remains observable in both switch
states, evidenced by the full rank of the observability matrices (rank(O1) = rank(O2) = 1).

Therefore, even though controllability is lost when the capacitor is short-circuited,
the system’s observability persists, allowing us to estimate the state (SOC) based on the
available measurements.
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3.2. Observer Design

Having established the system’s properties, we can now proceed to design a switching
observer tailored to our specific system dynamics. Equation (8) provides the foundation for
constructing this observer.

The proposed switching observer takes the following form:{
Ṡ̂OC =AσSÔC + Bσi + Lσ(v − v̂)
v̂ = CσSÔC + Dσi

(18)

In this observer structure, Lσ represents the observer gain, a crucial design parameter
that needs careful selection to ensure the estimated state, and SÔC converges asymptotically
to the true state, SOC.

To analyze the observer’s convergence, we can combine Equation (8) with Equation (18)
to obtain the error dynamics:

ė = Āσe (19)

Here, e = SÔC − SOC represents the estimation error. Our goal is to ensure the
asymptotic stability of this error system. The matrix Āσ governing the error dynamics is
given by

Āσ = Aσ − LσCσ (20)

By carefully choosing the observer gain Lσ, we can manipulate the eigenvalues of Āσ

to ensure that the error dynamics converge to zero, implying that our estimated SOC will
approach the true SOC over time.

Next, let us discuss the errors introduced by parameter variations. When the superca-
pacitor is not charging, both Aσ and Bσ in the equation are 0, so the observed SOC remains
constant. However, when the switch is switched and the supercapacitor starts charging,
parameter variations will have an impact. Take ESR as an example, which is a parameter
often subject to errors.

When the ESR changes, that is, when Dσ changes, and assuming the change value is
∆Dσ, a new error term will be introduced:

ey = y − ŷ = (Dσ + ∆Dσ − Dσ)u = ∆Dσu (21)

Thus, the new error equation becomes

ė = (Aσ − LσCσ)e + Lσey = (Aσ − LσCσ)e + Lσ∆Dσu (22)

At this point, the error term ∆Dσu is introduced as a new disturbance term into the
observer system. This disturbance term will affect the convergence of the error dynamics
and may lead to observer increased error.

However, the ESR of a supercapacitor is generally very small. Even though it may
increase after prolonged use, the absolute change remains minimal, with the value of ∆Dσ

typically in the order of 10−4 or lower. Therefore, the value of the error term Lσ∆Dσu is
relatively small, making it still reliable to use this observer for supercapacitors.

4. Experimental Validation

This section will focus on the experiments. We will first introduce the hardware
platform and experimental parameters used, then evaluate the proposed observer under
four different scenarios. Finally, we will summarize and discuss the conclusions drawn
from each experiment.

4.1. Structure of Hardware Platform

The hardware setup is illustrated in Figure 5 and consists of the following key compo-
nents: a control board, three supercapacitors, voltage and current data acquisition units,
and a 12 V DC power source.
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Figure 5. Hardware platform used for experimental validation.

Control Board: The platform’s controller is a Raspberry Pi 4B with 8GB RAM running
Raspberry Pi OS, featuring GPIO output, SPI communication, and serial communication.

Supercapacitors: Three Maxwell BCAP0310 supercapacitors (Yongin-si, Republic of
Korea) are connected in series, balanced using RPi Relay Board (B) relay modules and
RX24-50W equalizing resistors.

Voltage Sensor: A high-precision AD/DA board, equipped with an ADS1256 chip,
provides 8 channels of 24-bit ADC (4 differential) at a maximum sampling rate of 30 ksps,
along with a DAC8532 chip for 2 channels of a 16-bit DAC.

Current Sensor: An INA238 Current Sensor, with a 2 mΩ sampling resistance, detects
currents up to 30 A with 0.05% accuracy, communicating data via serial communication.

Power Source: The Tektronix PWS4305 power supply (Beaverton, OR, USA), known
for its 0.03% voltage accuracy and 0.05% current accuracy, provides charging current for
the supercapacitors, while an external 12 V DC power supply powers the control board
and sensors.

The operation process of the platform is as follows: The Raspberry Pi 4B runs the
control program for the entire balancing and charging process. During charging, the
controller uses SPI to monitor the voltage of each supercapacitor via the AD/DA Board.
When a cell’s voltage exceeds the set threshold, the controller activates the corresponding
relay on the RPi Relay Board (B) via GPIO for balancing protection. The INA238 Current
Sensor measures the charging current for further analysis.

4.2. Experimental Parameters

(1) Physical Parameters: According to Maxwell’s specifications, the BCAP0310 super-
capacitor has a rated capacitance of 310 F and a rated voltage of 2.70 V, with an absolute
maximum voltage of 2.85 V. It operates between −40 °C and 65 °C, with our tests conducted
at 25 °C, where the estimated DC life is 10 years, after which capacitance may decrease by
up to 20% and ESR may increase by up to 100%.

To measure the capacitance and ESR, we followed the specified test current and wave-
form. With a maximum charging current of 10A, the measurements yielded the following
results: for the first supercapacitor, Ceq = 298.455 F, r = 2.031 mΩ, and vrated = 2.693 V; for the
second, Ceq = 315.285 F, r = 1.967 mΩ, and vrated = 2.608 V; and for the third, Ceq = 330.037 F,
r = 1.978 mΩ, and vrated = 2.769 V.
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(2) System Parameters: For our experiments, we set the observer gain L to 0.2, a value
determined to be suitable based on our theoretical analysis (Lemma 2) and confirmed
through experimental observations.The charging current(i) is always set to 2 A.

4.3. Experimental Results

We designed three distinct experiments to compare the performance of our proposed
observer against other observer implementations.

(1) Case 1: In this case, we focus on evaluating the robustness of our proposed observer
(Equation (19)) against parameter uncertainties, comparing it to a standard open-loop
observer (Equation (12)). To simulate a realistic scenario where component parameters
may deviate from their nominal values, we introduced deviations of 10% and 20% in the
capacitance value within the system parameters.

For this experiment, we charge the system using a constant current (CC) source at 2 A,
with all three switches deactivated. Our focus is on the first supercapacitor cell, initialized
at a voltage of 0.1 V, corresponding to an initial SOC of approximately 3.67%. The proposed
observer and open-loop observer are both initialized at 15% SOC. We switched the switch
to start charging the supercapacitor at t = 8 s and stopped charging again at at t = 124 s.

Figure 6 presents the experimental results. As evident from the plots, while the
proposed observer exhibits an initial lag behind the true SOC, it rapidly converges and
maintains its tracking error within 1% within approximately 5 s. In contrast, the open-loop
observer struggles to achieve accurate tracking, as shown in Figure 6a, where a persistent
error is observed with a 10% capacitance deviation. In Figure 6b, when the parameter
deviation reaches 20%, the error worsens further. Table 2 contains SOC data at the end of
charging. This highlights the superior robustness of our proposed observer in the presence
of real-world parameter uncertainties.
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Figure 6. Comparison between the proposed observer and the open-loop observer. (a) SOC estimation
with 10% capacitance variations. (b) SOC estimation with 20% capacitance variations. (c) Changes in
the switch.

Table 2. SOC (%) at the end of charging in case 1.

10% Capacitance Variations 20% Capacitance Variations

True Value 33.02 33.07

Proposed Observer 33.02 33.11

Open-loop Observer 46.92 50.95

(2) Case 2: In this experiment, we evaluated the observers’ ability to adapt to changing
operating conditions and accurately estimate the SOC during dynamic charging scenarios.
As depicted in Figure 7b, to achieve this, we still used the first supercapacitor and switched
the circuit again one minute after stopping the charging in case 1, at t = 184 s, and continued
charging until t = 270 s. A capacitance deviation of 10% was maintained, while the initial
voltage and observer states remained consistent with the previous experiment.
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Figure 7. Comparison of SOC estimation performance during dynamic charging with capacitance
variations. (a) SOC estimation with 10% capacitance variations. (b) Changes in the switch.

The classical non-switching Luenberger observer, defined in Equation (23), was incor-
porated into this evaluation, alongside the open-loop and proposed closed-loop observers.{

Ṡ̂OC = A1SOC + B1i + L1(v − v̂)
v̂ = C1SÔC+D1i

(23)

As depicted in Figure 7a and Table 3, the proposed observer exhibited rapid conver-
gence, achieving a tracking error of less than 1% by t = 7 s. This highlights its ability to
quickly adapt to changing system dynamics.

Table 3. Comparison between the proposed observer, open-loop observer, and the classical observer.

First Convergence Time (s) Final SOC (%) Maximum Absolute Error (%)

True Value null 52.63 0

Proposed Observer 6.984 52.58 0.709

Classical Observer 10.527 52.89 3.602

Open-loop Observer null 70.50 >50

The open-loop observer, as expected, continued to exhibit significant tracking errors
throughout the experiment. The classical observer, while demonstrating improved per-
formance compared to the open-loop approach, exhibited slower convergence initially
and a noticeable error spike after the resumption of charging. This suggests that the non-
switching nature of the classical observer limits its ability to effectively handle dynamic
changes in the system.

In summary, this experiment demonstrates the superior performance of the proposed
observer in handling dynamic charging scenarios and adapting to switching events, further
emphasizing its suitability for real-world supercapacitor applications where operating
conditions can vary significantly.

Since the proposed observer’s estimation of the SOC remained very close to the actual
SOC after the supercapacitor charging was completed in the next two experiments, the
actual SOC values have been omitted from the subsequent tables.

(3) Case 3: This experiment investigates the observers’ performance under a more
complex scenario involving active balancing of the supercapacitor cells. We implemented
the active balancing technique described in [19] to charge the second and third supercapac-
itors simultaneously.
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The initial voltages of the second and third cells were set to 0.1 V and 0.9 V, respec-
tively, while maintaining a constant charging current of 2 A. A 10% capacitance error was
introduced to assess the observers’ robustness. Both the proposed and classical observers
were initialized at 15% SOC. We started charging at t = 8 s and stopped at t = 242 s.

Figure 8a shows the SOC of two supercapacitors. Due to the presence of the active
balancing system, the third supercapacitor, which initially has a higher SOC, will wait until
the SOC of the second supercapacitor matches its own before switching on to start charging,
as illustrated in Figure 8b. It begins charging only after t = 125 s. Figure 9a,b, respectively,
show the SOC estimation of the second and third supercapacitors.

0 30 60 90 120 150 180 210 240 270

time(s)

0

10

20

30

40

50

60

S
O

C
(%

)

Cell 2

Cell 3

(a)

0 30 60 90 120 150 180 210 240 270

Time(s)

OFF

ON

S
ta

te
 o

f 
th

e
 S

w
it
c
h

Cell 2

Cell 3

(b)

Figure 8. The charging process with active balancing strategy. (a) SOC evolution of the cells during
active balancing. (b) Switching sequence during active balancing.
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Appl. Sci. 2024, 14, 8005 14 of 18

0 30 60 90 120 150 180 210 240 270

Time(s)

25

30

35

40

45

50

55

60

S
O

C
(%

)
open-loop observer

proposed observer

true SOC

classical observer

(b)

Figure 9. Comparison in active balancing charging process. (a) SOC estimation of the second
supercapacitor. (b) SOC estimation of the third supercapacitor.

Focusing on the second supercapacitor, according to Tables 4 and 5, the proposed
observer demonstrates a significantly superior performance, achieving a tracking error
below 1% within 3 s. While the classical observer eventually approaches the true SOC,
its convergence speed and accuracy lag behind the proposed observer, particularly after
switching events. Specifically, after the switching moment, the classical observer’s tracking
error rises to 2.7%, whereas the proposed observer maintains an error below 0.5%.

Table 4. SOC estimation of the second cell.

First Convergence Time (s) Final SOC (%) Maximum Absolute Error (%)

Open-loop Observer null 74.84 >50

Classical Observer 8.446 58.81 2.735

Proposed Observer 2.821 58.13 0.433

Table 5. SOC estimation of the third cell.

First Convergence Time (s) Final SOC (%) Maximum Absolute Error (%)

Open-loop Observer null 57.17 10

Classical Observer 127.259 58.68 1.09

Proposed Observer 2.238 58.13 0.172

Similar trends are observed for the third supercapacitor, with the proposed observer
exhibiting stable and accurate tracking performance despite the extended initial charging
time, which negatively impacts the classical observer’s performance.

In this experiment, the open-loop observer still performed poorly, failing to con-
verge in estimating the SOC for both supercapacitors, highlighting its inadequacy in
complex scenarios.

These findings underscore the robustness and accuracy of the proposed switching
observer in handling the complexities of active balancing, further solidifying its suitability
for demanding supercapacitor applications.

(4) Case 4: In this case, we introduce the Kalman Filter, a widely used tool for state
estimation, to estimate the State of Charge (SOC) of the supercapacitor. We employ the
same switching scheme as in case 1 and also consider a 10% parameter deviation. However,
unlike before, we separately consider the cases where the capacitance Ceq and ESR in the
RC model have fluctuations.
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As shown in the Figure 10, in both experiments, the open-loop observer’s error is
unacceptable, while both the Kalman Filter and the proposed observer exhibit stable
performance. Although both converge to the actual SOC when charging stops, there are
still some performance differences.
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Figure 10. Comparison with Kalman Filter. (a) SOC estimation with 10% capacitance variations.
(b) SOC estimation with 10% ESR variations.

According to Tables 6 and 7, during the period from 0 to 5 s when the supercapacitor is
not charging, the SOC of the proposed observer quickly converges to the true value, while
the Kalman Filter only approaches the true value after next 10 s of charging. However, after
this period, the Kalman Filter still exhibits larger errors. Although these errors decrease over
time as charging progresses, they do not fully converge even by the time charging stops.

Table 6. Comparison of the proposed observer and Kalman Filter with 10% capacitance variations.

First Convergence Time (s) Maximum Absolute Error (%)

Proposed Observer 2.639 <0.3

Open-loop Observer null >50

Table 7. Comparison of the proposed observer and Kalman Filter with 10% ESR variations.

First Convergence Time (s) Maximum Absolute Error (%)

Proposed Observer 2.631 <0.3

Kalman Filter 14.937 4.140

Open-loop Observer null >50
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Furthermore, this experiment considers the impact of ESR variation on SOC estimation.
Since the supercapacitor used in the experiment has a relatively small ESR, its parameter
fluctuation has a relatively small impact on SOC estimation, similar to the same proportional
change in capacitance. However, further discussion is needed for supercapacitors that have
been used for a long time and have experienced significant ESR increases.

4.4. Discussion

Faster Convergence and Accurate Tracking: The proposed observer exhibits the fastest
convergence rate, even when initial state errors are present. It maintains accurate SOC
tracking throughout the charging process, effectively handling switching events without
significant deviations. This is crucial for real-time applications where continuous and
accurate SOC estimation is essential.

Robustness to Parameter Variations: A key advantage of the proposed observer lies in
its robustness to parameter uncertainties. Even with capacitance errors as high as 10% or
20%, the observer consistently converges to the true SOC value. This robustness is particu-
larly valuable in practical applications where accurately measuring and maintaining precise
supercapacitor parameters can be challenging due to aging and operating conditions.

Addressing Limitations of Existing Methods: The experiments highlight the limitations
of both classical and open-loop observers. Classical observers, while able to converge
eventually, suffer from slower convergence speeds and significant deviations in SOC
estimation after charging interruptions. This inability to maintain accuracy during dynamic
operation restricts their applicability. Open-loop observers, on the other hand, exhibit
poor convergence and high sensitivity to both initial state errors and parameter variations,
rendering them unsuitable for reliable SOC estimation.

5. Conclusions

This paper addressed the challenge of accurate State-of-Charge (SOC) estimation for
supercapacitors in reconfigurable circuits, a critical aspect for ensuring reliable operation
and efficient energy management in these systems. We began by establishing a comprehen-
sive mathematical model encompassing the two distinct operating states of supercapacitors
within reconfigurable circuits. This model was rigorously analyzed to demonstrate its
continuity and observability properties, laying the foundation for observer design.

Recognizing the limitations of traditional observers in handling the dynamic nature of
reconfigurable circuits, we proposed a novel switching observer tailored to this specific
application. To rigorously evaluate its performance, we conducted a series of experiments
on a hardware platform, comparing its performance against both classical and open-
loop observers. The experimental results unequivocally demonstrated the superiority
of the proposed switching observer, showcasing its faster convergence speed, enhanced
robustness to parameter variations, and accurate tracking capabilities even during dynamic
charging and switching events.

Future research directions include the following:
(1) Combining the switching observer framework with more sophisticated estimation

algorithms, such as switching Kalman Filtering or sliding-mode observers, could further
enhance its convergence speed and disturbance rejection capabilities. This integration could
lead to even more accurate and robust SOC estimation, particularly in noisy environments
or under rapidly changing operating conditions.

(2) The current supercapacitor model, while effective, could be further refined by
incorporating temperature dependencies and variations in ESR. These factors can signifi-
cantly influence supercapacitor behavior, and their inclusion in the model would enhance
the observer’s accuracy, particularly over a wider range of operating temperatures and
during long-term operation. This could involve developing more sophisticated temperature
and aging models for the supercapacitor parameters, potentially leveraging data-driven
approaches for enhanced accuracy.
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