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Abstract: Estimating the 6D pose and size of objects is crucial in the task of visual grasping for
robotic arms. Most current algorithms still require the 3D CAD model of the target object to match
with the detected points, and they are unable to predict the object’s size, which significantly limits
the generalizability of these methods. In this paper, we introduce category priors and extract
high-dimensional abstract features from both the observed point cloud and the prior to predict the
deformation matrix of the reconstructed point cloud and the dense correspondence between the
reconstructed and observed point clouds. Furthermore, we propose a staged geometric correction
and dense correspondence refinement mechanism to enhance the accuracy of regression. In addition,
a novel lightweight attention module is introduced to further integrate the extracted features and
identify potential correlations between the observed point cloud and the category prior. Ultimately,
the object’s translation, rotation, and size are obtained by mapping the reconstructed point cloud
to a normalized canonical coordinate system. Through extensive experiments, we demonstrate that
our algorithm outperforms existing methods in terms of performance and accuracy on commonly
used benchmarks for this type of problem. Additionally, we implement the algorithm in robotic
arm-grasping simulations, further validating its effectiveness.

Keywords: pose estimation; robotic grasping; grasp detection; channel attention; scene understanding

1. Introduction

Robotic arm grasping is widely applied in both industrial production and daily life.
Before planning a grasp, it is crucial to accurately estimate the object’s translation, rotation,
and size to effectively set the values for the various joints of the robotic arm and gripper.
Many studies have attempted to perform grasp detection by predicting planar grasping
boxes [1,2]. However, these planar pose estimations are conducted only in 2D planes,
which leads to the loss of many potentially effective grasps in 3D space. The 6D pose
estimation, which takes RGB images or RGB images combined with depth images as inputs,
predicts the object’s translation, rotation, and the size of the 3D bounding box in the camera
coordinate system. Therefore, it is more suitable for robotic arm-grasping tasks. Moreover,
6D pose estimation, as a critical problem in computer vision, is also widely applied in 3D
reconstruction, augmented reality, and virtual reality [3].

Previous studies have shown that applying 6D pose estimation to robotic arm grasp-
ing is important [4,5]. Significant progress has been made in 6D pose estimation, includ-
ing effectively addressing occlusion issues [6]. However, these algorithms require prior
knowledge of the object’s CAD model and cannot predict the pose of unknown objects,
which significantly limits the applicability of instance-level 6D pose estimation algorithms.
Category-level 6D pose estimation algorithms can predict the pose of different objects
within the same category, overcoming the limitations of known models. Densefusion [4]
was proposed, which uses a pointwise approach for 6D pose estimation and applies it to
robotic arm grasping. This method, which directly regresses the object’s translation and
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rotation through a network, overlooks the object’s geometric features. Wang [7] proposed
the Normalized Object Coordinate Space (NOCS), a shared canonical representation for
all objects within the same category. In NOCS, each vertex of an object is scaled into
a unit-length cube, with all objects within the same category aligned in orientation and cen-
tered. The authors also provided the dense correspondence between the NOCS coordinates
and the real point cloud. Therefore, if the NOCS coordinates of an object can be accurately
predicted, the real point cloud image can be obtained. Since NOCS coordinates are within
a unit-length cube, they are more conducive to neural network regression. Building on
NOCS, further research [8] introduced category priors as input. The network learns feature
information from the observed point cloud and the prior, deforms the prior point cloud, and
maps it to NOCS through dense correspondence to estimate the 6D object pose and size.

Despite the significant progress made by previous researchers in this area, we observe
that these studies primarily focus on the extraction and fusion of feature information from
the observed object and the prior point clouds [9,10], while lacking explicit deformation
of the point clouds. Furthermore, deforming the prior point cloud and establishing corre-
spondence with the NOCS model is a dense regression problem. The direct regression of
high-dimensional features through a single network can easily lead to information loss and
local optima. Although [11] attempts have been made to compensate for the missing feature
information, the lack of RGB image data reduces the network’s generalization capability.
Moreover, the absence of RGB guidance makes the results susceptible to interference when
the target object is occluded, which is particularly dangerous in robotic arm-grasping tasks.

To address these issues, we propose a grasping detection method based on refined
prior-guided category-level 6D object pose estimation. This method extracts the 6D pose
of the target object from the category-level pose estimation network, which includes the
object’s translation and rotation in 3D space, as well as the object’s 3D bounding box. We
introduce category priors to predict the offsets between the prior point cloud and the
observed object point cloud. The deformed point cloud is then mapped to the NOCS
coordinate system through dense correspondence. Finally, the RANSAC algorithm [12] is
used to account for outliers, and the Umeyama algorithm [13] is employed to solve the
rigid transformation, including translation, rotation, and the object’s size. We refine the
deformation network by using a multi-stage network structure, explicitly incorporating the
deformed point cloud into the dense correspondence matrix regression network, enhancing
the network’s robustness. Additionally, we propose a new attention structure that focuses
the network’s attention on the differences between point cloud features, addressing the
intra-class variation problem:

• We propose a refined prior-guided category-based 6D pose estimation framework.
Based on RGB and depth images, this framework effectively handles occlusion and
lighting variations and can estimate the pose of unseen objects within the same category.

• We refine high-dimensional feature information through a multi-stage structure and
refine the deformation results of the point cloud. By explicitly incorporating the trans-
formation of the point cloud, the learned features gain stronger semantic information.

• We introduce a novel attention mechanism, enabling the network to allocate more
focus on the differences between point clouds, thereby addressing the intra-class
variation problem.

• Extensive experiments on the CAMERA25 and REAL275 datasets demonstrate that
our method outperforms existing approaches and is capable of estimating the 6D
pose of objects under partial occlusion and varying lighting conditions. Furthermore,
the effectiveness of our algorithm is also tested and validated in vision-based robotic
arm-grasping experiments.

2. Related Works
2.1. Manipulator Grasping

As 6D pose estimation is a crucial component of robotic arm grasping, numerous stud-
ies have focused on enhancing the accuracy of pose estimation to improve the performance
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of robotic grasping. Ref. [5] proposed a method for semantic grasping and pose estimation
of household objects through deep learning. The core of this approach involves predicting
key points from RGB images using a deep learning network, which are then matched with
key points on the 3D model using the PnP algorithm, directly regressing the 6D pose of
the object. This algorithm demonstrates strong robustness even in cluttered environments.
Ref. [4] introduced depth images as input, proposing an end-to-end 6D pose detection
algorithm and applying it to robotic grasping. DenseFusion first extracts features from RGB
and depth images as input, using a pointwise approach to fuse the color and depth features
of each point. The model then estimates a local 6D pose candidate for each pixel, and these
per-point pose candidates are subsequently aggregated to generate a global, accurate object
pose estimation.

2.2. Instance-Level 6D Pose Estimation

Instance-level 6D pose estimation aims to predict the translation and rotation of
an object based on its precise 3D CAD mode l [14,15]. Methods such as [16–18] compare
feature points extracted from all pixels within the region of interest with those on the
CAD model to obtain 2D–3D correspondences, after which the 6D pose of the target
object is calculated using the Perspective-n-Point (PnP) algorithm [19]. Other approaches
like [9,20,21] render a series of images from different angles using the 3D CAD model,
and then apply a sliding window algorithm or voting mechanism to match the RGB
image with the generated renderings, selecting the highest similarity match as the object
pose. Additionally, methods like [22,23] directly regress the 6D pose of the object through
neural networks.

2.3. Category-Level 6D Pose Estimation

Many methods do not utilize prior point clouds. Refs. [24,25] combine 2D detection
and 3D segmentation for feature extraction, and then use a translation and rotation re-
gression network to obtain the 6D pose of the object. Ref. [26] introduces a transformer
structure where prior information is used as the query, and instance features as the key
and value to obtain object embeddings. These embeddings are then constrained based
on the relationships between neighboring points in the point cloud, ultimately regressing
the object pose estimation. Ref. [7] proposes the NOCS and provided the correspondence
between NOCS and the real 6D pose. A CNN network is used to simultaneously predict
the target object’s mask and NOCS map, with the pose calculated through the established
correspondences. Similarly, [27] also proposes a new unified shape space for addressing
the intra-class variation. Other studies like [8,28] incorporate priors as input and learn to
deform the priors to obtain the object’s coordinates in the normalized space. Refs. [24,29]
propose various data augmentation techniques to train networks, addressing overfitting
caused by limited dataset sizes, enhancing the model’s generalization ability, and improv-
ing its robustness. CR-Net [30] proposes a cascaded network for estimating the 6D pose of
objects. The first stage of the network is designed to extract instance features, while the
second stage incorporates prior information. SAR-Net [31] focuses on solving the pose
estimation of symmetric objects by aligning prior information with the observed instance
to predict rotation. Subsequently, it employs symmetry modeling based on the observed
parts of the instance and compares this with the observed instance information to predict
translation and size.

3. Materials and Methods
3.1. Category Prior

A category prior serves as the geometric representation of objects within a specific
category. Randomly selecting the point cloud of a particular object to represent the entire
category can negatively impact the results due to the issue of intra-class variation. For
example, if the selected object significantly deviates from the average shape of the category,
the training process of the deformation network may become unstable and difficult to
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converge. Computing an average point cloud for a given category is also challenging, as
manually establishing pointwise correspondence between different point clouds is nearly
impossible. However, it is important to note that objects within the same category typically
share similar geometric features. For instance, a laptop generally consists of two flat
rectangular prisms connected by a hinge, while a bottle is usually composed of two stacked
cylinders of different sizes. Therefore, we still aim to use an average shape to represent
a category. Following the approach of SPD [8], we utilize a neural network as an encoder
to encode the point cloud of an object into an embedding and employ a simple neural
network as a decoder to decode this embedding. The neural network is trained such that
the decoded point cloud matches the input point cloud.

Figure 1 illustrates the structure of the encoder and decoder used for the generation of
category prior.

Figure 1. Illustration of structure of the encoder and decoder used for the generation of category prior.

We input the point cloud oj
i ∈ {oj

1, . . . , oj
n} of a given object into the encoder to obtain

the embedding EMj
i of the point cloud:

EMj
i = E(oj

i), (1)

where E is the encoder, oj
i is the point cloud of a given object, and EMj

i is the embedding of
the point cloud.

We input EMj
i into the decoder to obtain a new point cloud Pj

i :

Pj
i = D(EMj

i ), (2)

where pj
i is the reconstructed point cloud, and D is the decoder.

We aim for the input point cloud oj
i and the reconstructed point cloud pj

i to be as

consistent as possible. To measure the distance between oj
i and pj

i , we use the Chamfer
Distance loss. Therefore, the loss function is defined as follows:

CD(pj
i , oj

i) = ∑
x∈pj

i

min
y∈oj

i

∥x − y∥2
2 + ∑

y∈oj
i

min
x∈pj

i

∥y − x∥2
2. (3)

We input the point cloud oj
i ∈ {oj

1, . . . , oj
n} into the trained encoder to obtain EMj

i . This

process is repeated for all point clouds belonging to the same category, yielding EMj
i , . . . , EMj

n,
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where n denotes the number of the objects in the category Oj. Subsequently, these n embed-
dings are summed and averaged to obtain the category’s average embedding EMj:

EMj =
1
n ∑

i
EMj

i , (4)

where EMj represents the average embedding of category Oj.
By using EMj as the input to the trained decoder, we obtain the output pj, which can

be regarded as the representation of the average shape for that category, i.e., the prior shape
of the category. Figure 2 illustrates the derived category priors for bow, cup, bottle, laptop,
camera, and can.

Figure 2. Illustration of the priors of six selected categories, which are bottle, bow, camera, can,
laptop, and mug, arranged from left to right.

3.2. Network Structure

We denote the observed object’s RGB image, depth image, and point cloud as Io,
Do, and Po, respectively, where Po ∈ RNo×3 and Io ∈ RH×W×3. Pp ∈ RNp×3 denotes the
category prior point cloud, and No represents the number of pixels in the foreground with
valid depth values. Np denotes the number of points in the category prior point cloud Pp.

Given a scene image captured by the camera, we first obtain the target object’s mask
using Mask R-CNN [32], which corresponds to the object in the image Io. We then extract
the corresponding region in the scene’s depth image with the same coordinates in the
image coordinate system, resulting in the target object’s depth image. By applying the
camera’s intrinsic parameters, the depth image of the target object can be converted into
the point cloud Po.

After obtaining the observed object’s Io and Po, we use PSPNet [33] to extract features
from the RGB image, resulting in Frgb ∈ RNo×C. We also use PointNet++ [34] to extract
features from Po, resulting in Fp

o ∈ RNo×C, and similarly, we use PointNet++ to extract
features from Pp, resulting in Fp

p ∈ RNp×C. The features Frgb, Fp
o , and Fp

p will serve as inputs
to the entire model.

In this section, to facilitate the understanding of the following content, we will first
provide an overview of our model structure. Then, we will detail each component of
the model, which includes the Prior Guided Observation Network, Deformation Refine
Module, Low-rank Transformer, and Feature Fusion Attention Network.

3.2.1. Overview

Figure 3 illustrates the network structure of the refined prior-guided category-level 6D
pose estimation proposed in this paper. The model takes the observed object’s RGB image
Ii, depth image Di, and category prior Pp as inputs. Through the Prior Guided Observation
Network, the model obtains the instance local feature embedding, instance global feature
embedding, category local feature embedding, and category global feature embedding.
These feature embeddings are then utilized in the Deformation Refine Module to obtain
the deformation matrix D and in the Correspondence Refine Module to obtain the dense
correspondence matrix M.
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Figure 3. The figure illustrates the overall structure of the model proposed in this paper. The RGB
image of the scene is processed through Mask R-CNN to crop the target object’s RGB image. Using
this patch, the corresponding depth image of the target object can also be obtained from the scene’s
depth image, leading to the extraction of the target object’s point cloud. The target object’s RGB
image, point cloud, and category prior are then input into the Prior Guided Observation Network.
The outputs are fed into the Deformation Refine Module and the Correspondence Refine Module,
respectively, yielding the deformed point cloud and dense correspondence matrix. Through these
computations, the NOCS coordinates of the target object are ultimately obtained.

3.2.2. Prior Guided Observation Network

The structure of the Deformation Refine Module is shown in Figure 4. We propose this
module inspired by SGPA [28]. Our goal is to introduce the semantic features of the category
prior through the Prior Guided Observation Network, providing additional information
for the subsequent deformation process. Unlike SGPA, we inject the category prior into
the instance point cloud, guiding the transformation of semantic features by generating
a heatmap from the transformed point cloud and the original point cloud. The heatmap
can be considered a guide for how the instance features change after incorporating the
prior information. This same guidance can also be applied to direct image transformations.

Figure 4. Illustration of the framework of the Prior Guided Observation Network.

First, we pass Fp
p through the Dimension Alignment Module, which consists of

a two-sided MLP (Multi-layer Perceptron), aimed at reducing the dimensionality of Fp
p to

facilitate its subsequent matching with Fp
o .
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Next, we input Fp
p and Fp

o into the CrossAttention (CA) module, where Fp
p serves as

the query, and Fp
o as the key and value. The computation in this module is performed

as follows:
Q = Fp

pWq, K = Fp
o Wk, V = Fp

o Wv, (5)

F = softmax((QK⊤)V). (6)

In this context, Q, K, and V represent the query, key, and value, respectively. Wq, Wk,
and Wv are learnable projection matrices for the query, key, and value, respectively. We
utilize a total of M attention blocks, implementing a multi-head attention mechanism, to
thoroughly model the information in Fp

p and fully inject it into Fp
o , facilitating the extraction

of more informative semantic features from the category prior. The output features from
these M attention blocks are concatenated as follows:

Fd = Concat(F(1), F(2), . . . , F(M)), (7)

Next, we input Fd into a Feed Forward Network (FFN) to obtain the features Fd
o of the

instance point cloud, transformed by the prior point cloud.
To measure the degree of change in Fd

o relative to Fp
o , we compute a heatmap (H) using

the cosine similarity between Fd
o and Fp

o :

H = cosine similarity =
A · B
|A||B| , (8)

|A| =
√

n

∑
i=1

A2
i , |B| =

√
n

∑
i=1

B2
i , (9)

where A and B are vectors that represent Fd
o and Fp

o , respectively. Subsequently, the
corresponding category prior semantic feature Fs

p can be generated by

(Fs
p) = softmax(H)× Frgb, (10)

Next, we concatenate Fs
o and Fp

o along the channel dimension, and then pass them
through the instance local network, which consists of three layers of MLP, to obtain the local
features of the observed object, denoted as Fl

o. Subsequently, an instance global network,
composed of two layers of MLP and an average pooling layer, is used to generate the global
features of the observed object, denoted as Fg

o .
Similarly, for Fs

p and Fp
p , we concatenate them along the channel dimension and pass

them through the category local network, also composed of three layers of MLP, to obtain
the local features of the observed object, denoted as Fl

p. Following this, the category global
network, consisting of two layers of MLP and an average pooling layer, is used to generate
the global features of the observed object, denoted as Fg

p .

3.2.3. Deformation Refine Module

The structure of the Deformation Refine Module is shown in Figure 5. The purpose of
the Deformation Refine Module is to regress a deformation matrix D ∈ RNp×3, which is
used to deform Pr into the predicted shape of the target object, P̂o. The predicted shape P̂o
is obtained by directly adding the prior model and the deformation field as follows:

P̂o = D + Pr. (11)
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Figure 5. Illustration of the Deformation Refine Module.

In previous methods, regressing D from high-dimensional complex feature informa-
tion using a single network was insufficient, which is why we propose this Deformation
Refine Module.

We first concatenate Fl
o, Fg

o , and Fg
p along the channel dimension. The first stage of the

network, which is the same as the network used in previous methods, consists of three
MLP layers and produces the first-stage deformation matrix Dmid. By incorporating the
information from Pr, we obtain a coarsely deformed point cloud shape Pmid. However,
this deformation is not sufficient, so Pmid is passed into the second stage of the network.
The second stage extracts features from Pmid to obtain Fmid. Considering the possibility of
information loss after passing through the first stage, we reintroduce Fg

o and Fg
p , obtained

from the Prior Guided Observation Network, into the third stage of the network. The third
stage, also consisting of three MLP layers, outputs the final deformation matrix D.

Theoretically, the accuracy of the result would improve with the repeated stacking
of networks in the second and third stages of the refine module. However, experiments
show that the results saturate after a single repetition. Therefore, we employ a three-stage
network in this module.

3.2.4. Correspondence Refine Module

The structure of the Correspondence Refine Module is shown in Figure 6. The purpose
of the Correspondence Refine Module is to regress a dense correspondence matrix M ∈
RNo×Nr that maps the predicted point cloud P̂o of the target object to the NOCS. Thus, the
final NOCS model is obtained by left-multiplying M with P̂o as follows:

Pnocs = M × P̂o. (12)

Similarly, considering that regressing a dense matrix directly from high-dimensional
complex information is challenging for a single-stage network, a refine module is intro-
duced here as well.

We first concatenate Fl
p, Fg

o , and Fg
p along the channel dimension. The first stage of the

network produces Mmid, and this network, like previous methods, consists of three MLP
layers. Given the potential for information loss, it is necessary to reintroduce the previously
obtained information. At this stage, we also acquire information about the transformed
point cloud P̂o, so we introduce Fmid as well. Explicitly considering the weights of Fmid
and Fl

p is not appropriate, as M is a dense matrix. Therefore, we use the Feature Fusion
Attention Network to fuse the feature information, obtaining Fl

f . We then concatenate Fl
f ,
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Mmid, Fg
o , and Fg

p along the feature dimension and pass them into the second stage of the
network, which consists of three MLP layers, to obtain the final matrix M.

Figure 6. Illustration of the Correspondence Refine Module.

3.2.5. Feature Fusion Attention Network

The structure of the Feature Fusion Network is illustrated in Figure 7. Inspired by
the Self-Attention Layer used in Transformers [35], the relationships between the input
matrices are first identified and then concatenated with the original information. The final
fused information is obtained through a Feed Forward Network (FFN).

Figure 7. Illustration of the structure of the Feature Fusion Attention Network.

Fl
p and Fmid are concatenated along the channel dimension, followed by processing

through an average pooling layer and a maximum pooling layer, with the results assigned
certain weights:

emb = fconv(λ1outavg + λ2outmax), (13)

where emb is the output of the 1D convolutional layer.
Subsequently, the result is passed through a one-dimensional convolutional layer

and then concatenated with the initially concatenated embedding. Finally, the output is
obtained through a three-layer MLP.

3.3. Loss Function
3.3.1. Reconstruction Loss

The reconstruction loss is employed to indirectly supervise the deformation matrix.
During training, the ground truth of the observed object’s point cloud is known, and we
aim to minimize the discrepancy between the deformed point cloud and the ground truth
point cloud of the observed object Pgt. We use the Chamfer Distance to measure the distance
between the two point clouds. Additionally, in the refined prior-guided category-level 6D
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object pose estimation model, the predicted point cloud of the observed object is given by
P = D + Pp. Therefore, the reconstruction loss used to supervise D is defined as follows:

Lr = ∑
i∈Pi

min
j∈Pj

gt

∥i − j∥2
2 + ∑

j∈Pj
gt

min
i∈Pi i

∥i − j∥2
2. (14)

3.3.2. Correspondence Loss

The correspondence loss is employed to indirectly supervise the dense correspondence
matrix. During training, the ground truth coordinates of the observed object’s point cloud
in the NOCS are known, and we aim to minimize the discrepancy between the NOCS
coordinates of the deformed point cloud and the ground truth point cloud of the observed
object. We measure the distance between the two point clouds using the distance between
corresponding point coordinates. Additionally, in the refined prior-guided category-level
6D object pose estimation model, the predicted NOCS coordinates of the observed object’s
point cloud are given by Pnocs = M × P. Therefore, we use the soft L1 loss to supervise M,
and the correspondence loss is defined as follows:

Lc(x, xgt) =
1

Nc

{
5(x − xgt)2 if |x − xgt| ≤ 0.1,
|x − xgt| − 0.05 otherwise.

(15)

where x represents the predicted coordinates, and xgt represents the ground truth.

3.3.3. Regulation Loss

The regulation loss is used to directly supervise D and M. Since each row vector in M
represents the correspondence between each point in the predicted point cloud P of the
observed object and the points in Pnocs, we use the mean cross-entropy loss to regulate M.
The mean cross-entropy loss is defined as follows:

Lentropy =
1

No
∑

i
∑

j
−Mi,j log Mi,j. (16)

Considering that a specific object within a category should not undergo significant
deformation relative to the category prior, we also need to regularize D. The regularization
loss is defined as follows:

Ldef =
1

Nr
∑

di∈D
∥di∥2. (17)

3.3.4. Overall Loss

Thus, the loss for the first stage of the network can be defined as follows:

Ld1 = λ1Lr1 + λ2Lc1 + λ3Ldef1 + λ4Lreg1, (18)

where Lr1, Lc1, Ldef1, and Lreg1 represent the reconstruction loss, correspondence loss, and
two regularization losses in the first stage, respectively.

Similarly, the loss for the second stage of the network is defined as

Ld2 = λ1Lr2 + λ2Lc2 + λ3Ldef2 + λ4Lreg2, (19)

where Lr2, Lc2, Ldef2, and Lreg2 represent the reconstruction loss, correspondence loss, and
two regularization losses in the second stage, respectively.

Then, the overall loss can be defined as

Ld = k1 × Ld1 + k2 × Ld2. (20)



Appl. Sci. 2024, 14, 8009 11 of 19

3.4. 6D Pose Parameter Calculation

Through the entire model, we obtain the deformation matrix D for the category prior
and the dense correspondence matrix M with the NOCS coordinates. Consequently, the
coordinates of the observed object in the NOCS can be computed as Pnocs = M × (Pp + D).

Having obtained the coordinates in the NOCS, we enhance the robustness of the results
by applying the RANSAC algorithm to eliminate noise. The Umeyama algorithms are then
employed to recover the 6D pose of the observed object from the NOCS, which includes
translation and rotation. The object’s size is calculated using the sum of the variances of
the points after mean subtraction in the NOCS coordinates, along with the singular values
obtained from the singular value decomposition (SVD) of the covariance matrix:

size =
1

varP
× ∑ V, (21)

where varP is the sum of the variances of the points after mean subtraction in the source
point cloud, and V is the singular value vector obtained from the singular value decompo-
sition of the covariance matrix.

4. Results

We trained our model on the CAMERA25 and REAL275 datasets. Subsequently,
we performed grasping experiments using a UR3 robotic arm in the PyBullet simulation
environment to validate the effectiveness of the model.

4.1. Preprocessing and Implementation Detail

We utilized Mask R-CNN, proposed by [32], to perform semantic segmentation on the
scene images. After segmentation, we randomly selected 1024 points from the segmented
instance image as input to the model’s RGB image. PSPNet, proposed by [33], was em-
ployed to extract features from the RGB image. To ensure consistency with previous work
and enable a fair comparison, the backbone of PSPNet was set to ResNet-18, and in the
pyramid pooling module, the feature maps were pooled at scales of 1, 2, 3, and 6. Both the
instance point cloud and the category prior point cloud contained 1024 points. We used
PointNet++, proposed by [34], to extract features from both the instance point cloud and
the category prior point cloud.

The PointNet++ network we employed had four layers, with the radii of the local re-
gions used for feature extraction in these four layers set to [0.01, 0.02], [0.02, 0.04], [0.04, 0.08],
and [0.08, 0.16], respectively. Each layer’s two parameters represented two different radii,
which divided the local regions of the point cloud into different scales, thereby enabling
the model to capture multi-scale features. The numbers of points sampled at each layer
were 512, 256, 128, and 64. The numbers of neighboring points sampled within the local
regions at each layer were [16, 32], [16, 32], [16, 32], and [16, 32] respectively. The number of
layers in the Multi-layer Perceptron (MLP) used at each scale in each layer and the num-
ber of neurons per layer were set to [[ 16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]],
[[128, 196, 256], [128, 196, 256]], and [[256, 256, 512], [256, 384, 512]].

The training and evaluation were both performed on an 11th Gen Intel Core i9-11900K
@ 3.50 GHz CPU with a single Nvidia GeForce RTX 3080 graphics card.

4.2. Dataset

The CAMERA25 and REAL275 datasets were introduced by Wang et al. in [7]. The
objects within these datasets belong to six common categories: bottle, bowl, camera, can,
laptop, and mug. Each category contains multiple object instances with varying shapes,
colors, and sizes. The CAMERA25 dataset comprises a total of 309 object instances and
300,000 RGB-D images. The REAL275 dataset includes 8K RGB-D frames, of which 4300
are used for training, 950 for validation, and 2750 for testing. It also features 18 real-world
scenes and 42 unique object instances, with 7 scenes allocated for training, 5 for validation,
and 6 for testing.
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4.3. Evaluation Metrics

We utilized 3D Intersection over Union (IoU), translation, and rotation errors as metrics
to evaluate the accuracy of the model from different perspectives.

Three-dimensional IoU: Three-dimensional IoU measures the discrepancy between
the predicted size and the ground truth, represented as the ratio of the intersection to the
union of the predicted object’s three-dimensional bounding box and the ground truth. The
formula is defined as follows:

IOU =
Bp ∩ Bg

Bp ∪ Bg
× 100%, (22)

where Bp and Bg represents the predicted 3D bounding box and the ground truth of the 3D
bounding box.

We employed two types of 3D IoU metrics: 3D25 and 3D50. These indicate that the 3D
IoU is greater than 25% and 50%, respectively, as the evaluation criteria.

Translation and Rotation Error: The translation and rotation errors measure the
discrepancy between the predicted and ground truth values in terms of translation and
rotation. These errors represent the difference between the predicted translation and
rotation of the target object and the ground truth. We used four specific translation and
rotation error metrics: 5°2 cm, 5°5 cm, 10°2 cm, and 10°5 cm, where each denotes a rotation
error of 5° with a translation error of 2 cm, a rotation error of 5° with a translation error of
5 cm, a rotation error of 10° with a translation error of 2 cm, and a rotation error of 10° with
a translation error of 5 cm, respectively.

4.4. Comparison with State-of-the-Art Methods

Tables 1 and 2 present the comparison of the mean Average Precision (mAP) of the
method proposed in this paper with the previous state-of-the-art methods [7,8,28–31]. On
the CAMERA25 dataset, our experimental results for 3D50, 3D75, 5°2 cm, 5°5 cm, 10°2 cm,
and 10°5 cm are 93.8%, 89.2%, 70.2%, 72.6%, 86.7%, and 90.4%, respectively. Notably, our
method achieves the highest mAP in the 3D75, 10°2 cm, and 10°5 cm metrics, exceeding
the previous best mAP by 0.2%, 4.0%, and 0.9%, respectively. On the REAL275 dataset, our
experimental results for 3D50, 3D75, 5°2 cm, 5°5 cm, 10°2 cm, and 10°5 cm are 82.1%, 66.1%,
38.7%, 40.3%, 65.1%, and 79.7%, respectively. Our method achieves the highest mAP in the
3D50, 10°2 cm, and 10°5 cm metrics on this dataset as well, surpassing the previous best
mAP by 2.0%, 1.6%, and 0.5%, respectively.

Table 1. Comparison with state-of-the-art methods on CAMERA25 dataset. The bolded parameters
indicate the optimal values for each metric.

Method 3D50 3D75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

NOCS [7] 83.9 69.5 32.3 40.9 48.2 64.6
SAR-Net [31] 86.8 79.0 66.7 70.9 75.3 80.3

SPD [8] 93.2 83.1 54.3 59.0 73.3 81.5
CR-Net [30] 93.8 88.0 72.0 76.4 81.0 87.7

RPB-Pose [29] 93.1 89.0 73.5 79.6 82.1 89.5
SGPA [28] 93.2 88.1 70.7 74.5 82.7 88.4

Ours 93.4 89.2 70.2 72.6 86.7 90.4

Figure 8 illustrates a comparison between our method and the results obtained by
SGPA in two scenarios. The red boxes represent the model’s predicted results, while the
green boxes represent the ground truth bounding boxes. The top two scenarios show the
predictions made by SGPA, while the bottom two scenarios display the predictions made
by our method.
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Table 2. Comparison with state-of-the-art methods on REAL275 dataset. The bolded parameters
indicate the optimal values for each metric.

Method 3D50 3D75 5◦2 cm 5◦5 cm 10◦2 cm 10◦5 cm

NOCS [7] 78.0 30.1 7.2 10.0 13.8 25.2
SAR-Net [31] 79.3 62.4 31.6 42.3 50.3 68.3

SPD [8] 77.3 53.2 19.3 21.4 43.2 54.1
CR-Net [30] 79.3 55.9 27.8 34.3 47.2 60.8

RPB-Pose [29] - 67.8 38.2 48.2 63.1 79.2
SGPA [28] 80.1 61.9 35.9 39.6 61.3 70.7

Ours 82.1 66.1 36.7 40.3 64.7 79.7

Figure 8. Illustration of the comparison between the detection results of our proposed method and
those of SGPA. The top two images depict the results from SGPA, while the bottom two images show
the predictions made by our method. The red boxes represent the algorithm’s predicted results, and
the green boxes indicate the ground truth. It is evident that our proposed algorithm performs better
than SGPA in predicting rotation and size.

The experimental results on both datasets indicate that our method achieves superior
results in the 10°2 cm and 10°5 cm metrics. Additionally, the visual validation results
further demonstrate that our method outperforms SGPA in predicting rotation and scale,
thereby proving the effectiveness of our approach.

4.5. Ablation Studies

Table 3 presents the results on the CAMERA25 dataset after incorporating the Feature
Fusion Module and Refine Module into the network proposed in this paper. The results
indicate that while the Feature Fusion Module provides a certain degree of improvement
to the model, it notably enhances performance on the 5°5 cm metric, increasing the mAP by
2.3%. Furthermore, after adding the Refine Module, significant improvements are observed
across all evaluation metrics, with increases of 0.7%, 2.4%, 4.3%, 4.1%, 2.3%, and 2.6% in the
3D50, 3D75, 5°2 cm, 5°5 cm, 10°2 cm, and 10°5 cm metrics, respectively. This demonstrates
that each module contributes to the overall effectiveness of the model.
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Table 3. Ablation study of the feature fusion module and refine module on CAMERA25 dataset.
✓indicates inclusion, and - indicates exclusion.

Feature Fusion Module Refine Module
CAMERA25

3D50 3D75 5°2 cm 5°5 cm 10°2 cm 10°5 cm

1 - - 92.1 86.5 66.0 66.2 84.9 87.7
2 ✓ - 92.7 86.8 65.9 68.5 84.4 87.8
3 ✓ ✓ 93.4 89.2 70.2 72.6 86.7 90.4

4.6. Simulation of Robotic Grasping

To further validate the effectiveness of the model, we applied the model proposed in
this paper to robotic arm-grasping experiments, conducting simulations through PyBullet.
The experiments utilized a UR3 robotic arm equipped with a Robotiq 85 gripper. The
models used in the simulation were bottle, bowl, camera, can, laptop, and mug, with three
instances of each model. Some of these models are shown in Figure 9. Two cameras were
used, a Realsense 415 positioned above the robotic arm, and a Realsense 435i positioned
directly in front of the robotic arm, both fixed and not moving with the arm. The simulation
involved 50 scenes, each loaded with three objects, with random object positions and
rotations. Each object category was subjected to 25 grasping attempts. Figure 9 shows
some models we used during the simulation. Figure 10 shows some of the scenes used in
the simulation.

The 6D pose estimation of symmetrical objects is a significant challenge in 6D pose
estimation. This is because a symmetrical object may have multiple correct rotation predic-
tions, while there is only one ground truth. If the algorithm does not effectively address the
mismatch between the correct predictions and the ground truth, it can lead to difficulties in
training convergence and result in inaccurate final rotation predictions. Figure 11 illustrates
the grasping process of a symmetrical object (bottle) in two different scenarios with varying
positions and rotations, demonstrating that our algorithm effectively handles the challenges
associated with predicting the rotation of symmetrical objects.

The Low-rank Transformer used in SGPA increases inference time. Hence, we chose
another relatively lightweight model, SPD, for comparison with our method. Table 4
presents the detection success rates and grasping success rates for each object category,
comparing these results with those obtained when implementing the SPD algorithm.

To ensure a fair comparison, we implemented the SPD algorithm using the same
parameters and structures for the shared components. Specifically, we utilized Mask R-
CNN for segmenting the target objects. For semantic feature extraction from RGB images,
we employed a PSPNet with a ResNet-18 backbone. The input priors were also generated
using the information obtained from our trained encoder, with the prior point cloud
consisting of 1024 points.

Figure 9. Illustration of part of the models we used for simulation.
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Figure 10. Illustration of part of scenes we used for simulation.

Figure 11. Illustration of the process of robotic grasping. Three subfigures represent the grasp-
ing process of the bottle in two different scenarios. From left to right, they show detection,
grasping, and removal.
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Table 4. Comparison of grasping and detection success rates with SPD.

Bowl Bottle Can Camera Laptop Mug

Detection Success Rate
SPD [8] 23/25 24/25 24/25 15/25 20/25 21/25

ours 23/25 25/25 24/25 20/25 23/25 22/25

Grasp Success Rate
SPD [8] 22/25 24/25 23/25 13/25 20/25 20/25

ours 20/25 24/25 23/25 19/25 22/25 22/25

The experimental results indicate that our proposed model can effectively identify
target objects, achieving a detection success rate of 91.3%, which is an improvement of 6.6%
over SPD. As seen in Table 3, both models have relatively low detection success rates for
the camera category, primarily because the camera models selected for the simulation differ
significantly in shape from the category prior point cloud. This highlights that intra-class
variation remains a bottleneck problem for category-level 6D pose estimation. However,
our algorithm demonstrates a better capability to address the intra-class variation issue
compared to SPD, thereby proving the rationale and effectiveness of our approach.

5. Discussion

This paper presents a refined prior-guided category-level 6D object pose estimation
method and applies it to robotic arm grasping. The model takes RGB images, depth
images, and category priors as inputs, and outputs a deformation matrix and a dense
correspondence matrix for the point cloud. Subsequently, the instance’s NOCS coordinates
are obtained, and the instance’s 6D pose, including translation, rotation, and 3D size, is
computed using the Umeyama algorithm and RANSAC. We address the intra-class varia-
tion problem by introducing an explicit deformation point cloud. Furthermore, this paper
proposes a novel attention module and refine modules for point cloud deformation and
dense correspondence to improve prediction accuracy. Extensive experiments conducted
on the widely used CAMERA25 and REAL275 datasets demonstrate that our method
outperforms existing approaches. Finally, we implement the model on a robotic arm, and
grasping simulation experiments further validate the model’s effectiveness and practicality.

A key advantage of this model is its ability to generalize to unseen objects, enabling
pose estimation for all objects within a category rather than being limited to objects with
known, precise 3D CAD models. This makes it broadly applicable to augmented reality,
virtual reality, 3D reconstruction, and robotic arm grasping. The model’s versatility is
particularly important for robotic arm grasping, as the robot must handle a wide variety
of objects in different environments. Our model assists the robotic arm in accurately
identifying and understanding the precise location and orientation of objects, thereby
enhancing its operational flexibility in complex environments. The simulation results
indicate that our method can improve recognition accuracy, which in turn increases the
success rate of robotic arm grasping.

Analyzing the cases of failed simulated grasps by the robotic arm, we found that many
of them were caused by the target objects being heavily occluded. Looking ahead, while our
method can already perform pose estimation among different instances within a category,
its robustness under extreme conditions (such as partial occlusion, significant lighting
changes, or reflective object surfaces) still needs improvement. Additionally, increasing
the model’s capacity can enhance its performance, but it may also reduce computational
efficiency and real-time capability. Moreover, when the robotic arm needs to grasp fragile
objects, the algorithm can only predict the 6D bounding box of the target object, without
the ability to avoid specific parts of the object. To address the issue of partial occlusion,
we may explore three directions: segmentation, feature extraction, and model capacity.
Since our model currently uses Mask R-CNN for segmenting target objects and PSP-Net
for feature extraction, future work could involve employing MAE (Masked Autoencoder)
or SAM (Segment Anything Model) for more precise segmentation and feature extraction.



Appl. Sci. 2024, 14, 8009 17 of 19

For the model itself, the incorporation of depth images and point cloud information can
alleviate, to some extent, the severe impact on prediction results caused by occlusion and
lighting condition variations when only RGB images are used. In future work, we will
further refine the model structure to ensure more accurate deformation of the prior when
adapting to partially missing instances. Furthermore, our future work will also focus on
lightweight model design and the recognition of specific parts of the target object. The aim
is to maintain the accuracy of the results while improving inference speed to ensure more
effective grasping, thereby making the model more suitable for industrial applications.

6. Conclusions

In conclusion, this paper presents a refined prior-guided category-level 6D object pose
estimation model and validates its effectiveness through simulation experiments in robotic
arm grasping. The key contributions of this work include the introduction of a refine
module and a novel attention mechanism aimed at addressing bottleneck issues in the
field. Extensive experiments conducted on widely recognized benchmarks demonstrate
that our method is superior to many existing approaches. Additionally, through robotic
arm simulation experiments, we have shown that our method can significantly improve the
detection success rate of target objects, thereby enhancing the grasping success rate of the
robotic arm. Our approach effectively increases the flexibility of robotic arms in complex
environments, as it enables the prediction of the pose of unknown objects without prior
knowledge of their CAD models, which has important implications and applications in
both industrial and everyday robotic tasks.
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