Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Electrical Features of LS-APPJ
3.2. Morphological Features of LS-APPJ
3.3. Typical OES Emitted from LS-APPJ
3.4. Spatially Resolved Spectra of LS-APPJ
3.5. Temporally Resolved Spectra of LS-APPJ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olszewski, P.; Willett, T.C.; Theodosiou, E.; Thomas, O.R.T.; Walsh, J.L. In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas. Appl. Phys. Lett. 2013, 102, 204104. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.; Kong, F.; Yan, P.; Chang, C.; Shao, T. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation. Surf. Coat. Technol. 2019, 362, 1–11. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Zhang, S.; Zhang, P.; Zheng, S.; Shao, T. The effect of accumulated charges and fluid dynamics on the helium plasma jet array behavior. IEEE Trans. Plasma Sci. 2019, 47, 4861–4867. [Google Scholar] [CrossRef]
- Fang, Z.; Shao, T.; Yang, J.; Zhang, C. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon. Eur. Phys. J. D 2016, 70, 3. [Google Scholar] [CrossRef]
- Mumtaz, S.; Khan, R.; Rana, J.N.; Javed, R.; Iqbal, M.; Choi, E.H.; Han, I. Review on the biomedical and environmental applications of nonthermal plasma. Catalysts 2023, 13, 685. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, C.; Nie, C.; Li, X.; Yan, Y. A high efficiency low-temperature microwave-driven atmospheric pressure plasma jet. Appl. Phys. Lett. 2019, 114, 254106. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, L.; Liu, F.; Fang, Z. Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization. Eur. Phys. J. D 2019, 73, 174. [Google Scholar] [CrossRef]
- Lu, X.P.; Jiang, Z.H.; Xiong, Q.; Tang, Z.Y.; Hu, X.W.; Pan, Y. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl. Phys. Lett. 2008, 92, 081502. [Google Scholar]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Guided ionization waves: Theory and experiments. Phys. Rep. 2014, 540, 123–166. [Google Scholar] [CrossRef]
- Walsh, J.L.; Olszewski, P.; Bradley, J.W. The manipulation of atmospheric pressure dielectric barrier plasma jets. Plasma Sources Sci. Technol. 2012, 21, 034007. [Google Scholar] [CrossRef]
- Jarrige, J.; Laroussi, M.; Karakas, E. Formation and dynamics of plasma bullets in a non-thermal plasma jet: Influence of the high-voltage parameters on the plume characteristics. Plasma Sources Sci. Technol. 2010, 19, 065005. [Google Scholar] [CrossRef]
- Wu, S.; Xu, H.; Lu, X.; Pan, Y. Effect of pulse rising time of pulse dc voltage on atmospheric pressure non-equilibrium plasma. Plasma Process. Polym. 2013, 10, 136–140. [Google Scholar] [CrossRef]
- Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X. A 3D model of a reverse vortex flow gliding arc reactor. Plasma Sources Sci. Technol. 2016, 25, 035014. [Google Scholar]
- Platier, B.; Staps, T.J.A.; Van Der Schans, M.; Ijzerman, W.L.; Beckers, J. Resonant microwaves probing the spatial afterglow of an RF plasma jet. Appl. Phys. Lett. 2019, 115, 254103. [Google Scholar]
- Shen, S.; Ya, J.; Wang, Y.; Wang, Y.; Ding, W.; Sun, G. Stepwise development of atmospheric pressure plasma jet driven by bursts of high-voltage nanosecond pulses at multi-tens MHz. Plasma Sources Sci. Technol. 2022, 31, 105003. [Google Scholar] [CrossRef]
- Lepikhin, N.D.; Luggenhölscher, D.; Czarnetzki, U. Electric field measurements in a He:N2 nanosecond pulsed discharge with sub-ns time resolution. J. Phys. D Appl. Phys. 2021, 54, 055201. [Google Scholar] [CrossRef]
- Naidis, G.V. Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects. Appl. Phys. Lett. 2011, 98, 141501. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, P.; Lu, X.; Pei, X.; Wu, S.; Xiong, Q.; Ostrikov, K. From short pulses to short breaks: Exotic plasma bullets via residual electron control. Sci. Rep. 2013, 3, 1599. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, M.T.; Gundersen, M.A. Polarity-induced asymmetric effects of nanosecond pulsed plasma jets. J. Phys. D Appl. Phys. 2009, 42, 232002. [Google Scholar] [CrossRef]
- Matsusaka, S. Control of particle charge by atmospheric pressure plasma jet (APPJ): A review. Adv. Powder Technol. 2019, 30, 2851–2858. [Google Scholar] [CrossRef]
- Zhu, W.C.; Li, Q.; Zhu, X.M.; Pu, Y.K. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium. J. Phys. D Appl. Phys. 2009, 42, 202002. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, C.; Sun, H.; Sorokin, D.A.; Tarasenko, V.F.; Shao, T. Enhancement of hydrogen radical density in atmospheric pressure plasma jet by a burst of nanosecond pulses at 1 MHz. Plasma Sources Sci. Technol. 2022, 31, 025019. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Primc, G.; Vesel, A. Optical emission spectroscopy as a diagnostic tool for characterization of atmospheric plasma jets. Appl. Sci. 2021, 11, 2275. [Google Scholar] [CrossRef]
- Srikar, P.S.N.S.R.; Allabakshi, S.M.; Gomosta, S.; Maliyekkal, S.M.; Gangwar, R.K. Development of efficient nonthermal atmospheric-pressure Ar-plasma jet through simultaneous spectroscopic characterization and radical quantification. J. Phys. D Appl. Phys. 2024, 57, 395204. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Cong, S.; Zhang, J.; Wang, D. Effects of nitrogen impurity on the atmospheric pressure helium plasma jets exposed to a nitrogen environment. Phys. Plasmas 2020, 27, 103511. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Wang, K.; Liu, F.; Wang, D. Spatially resolved spectra of excited particles in homogeneous dielectric barrier discharge in helium at atmospheric pressure. Spectrochim. Acta A 2010, 76, 224–229. [Google Scholar] [CrossRef]
- Lazarou, C.; Anastassiou, C.; Topala, I.; Chiper, A.S.; Mihaila, I.; Pohoata, V.; Georghiou, G.E. Numerical simulation of capillary helium and helium−oxygen atmospheric pressure plasma jets: Propagation dynamics and interaction with dielectric. Plasma Sources Sci. Technol. 2018, 27, 105007. [Google Scholar] [CrossRef]
- Stafford, D.S.; Kushner, M.J. O2(1Δ) production in He/O2 mixtures in flowing low pressure plasmas. J. Appl. Phys. 2004, 96, 2451–2465. [Google Scholar] [CrossRef]
No. | Reaction | Reaction Rate Constant * | Reference |
---|---|---|---|
1 | e + N2 → N2 (C) + e | f(E/N) | [26] |
2 | e + N2 → N2+ + e + e | f(E/N) | [26] |
3 | e + He → He * + e | f(E/N) | [26] |
4 | He * + He * → e + He+ + He | 8.7 × 10−10 cm3/s | [27] |
5 | He * + He *→ e + He2+ | 2.03 × 10−9 cm3/s | [27] |
6 | He * + N2 →N2+ + He + e | 7 × 10−11 cm3/s | [27] |
7 | He * + He + H2O → 2He + H2O+ + e | 2 × 10−29 cm6/s | [27] |
8 | He * + 2He → He2 (a) + He | 3 × 10−34 cm6/s | [27] |
9 | He2 (a) + H2O → 2He + H2O+ + e | 6 × 10−10 cm3/s | [27] |
10 | He2+ + H2O → OH + HeH+ + He | 1.3 × 10−10 cm3/s | [27] |
11 | H2O+ + e → OH + H | 3 × 10−7 cm3/s | [27] |
12 | He2 (a) +O2 → 2He + O2+ + e | 1 × 10−10 cm3/s | [28] |
13 | He * +O2 → He + O2+ + e | 2.54 × 10−10 cm3/s | [28] |
14 | He2++O2 → 2He + O2+ | 1 × 10−9 cm3/s | [28] |
15 | O2+ + e → 2O | 1.2 × 10−8 Te−0.7 cm3/s | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Yu, Q.; Li, Y.; Yuan, H.; Yang, D. Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration. Appl. Sci. 2024, 14, 8013. https://doi.org/10.3390/app14178013
Sun W, Yu Q, Li Y, Yuan H, Yang D. Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration. Applied Sciences. 2024; 14(17):8013. https://doi.org/10.3390/app14178013
Chicago/Turabian StyleSun, Wenxiao, Qianqian Yu, Yao Li, Hao Yuan, and Dezheng Yang. 2024. "Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration" Applied Sciences 14, no. 17: 8013. https://doi.org/10.3390/app14178013
APA StyleSun, W., Yu, Q., Li, Y., Yuan, H., & Yang, D. (2024). Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration. Applied Sciences, 14(17), 8013. https://doi.org/10.3390/app14178013