Venus Magnetotail Long-Term Sensing Using Solar Sails
Abstract
:1. Introduction
2. Mission Description and Simplified Mathematical Model
2.1. Solar Sail Thrust Components with Sun-Facing Orientation
2.2. Performance Approximation through a Simple Analytical Approach
3. Numerical Simulations and Results
Effects of the Eclipse Period
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation
a | osculating orbit semimajor axis [km] |
characteristic acceleration [mm/s2] | |
radial component of the propulsive acceleration vector [mm/s2] | |
transverse component of the propulsive acceleration vector [mm/s2] | |
e | osculating orbit eccentricity |
p | semilatus rectum [km] |
Venus’s mean radius [km] | |
r | Venus–spacecraft distance [km] |
apocytherion radius [km] | |
pericytherion radius [km] | |
reference distance [1 au] | |
Sun–Venus distance [au] | |
t | time [hours] |
Venus’s gravitational parameter [km3/s2] | |
Sun’s gravitational parameter [km3/s2] | |
true anomaly [rad] | |
osculating orbit apse line rotation angle [rad] | |
Subscripts | |
0 | initial, parking orbit |
f | final |
Superscripts | |
∼ | dimensionless version |
References
- Slavin, J.A.; Intriligator, D.S.; Smith, E.J. Pioneer Venus Orbiter magnetic field and plasma observations in the Venus magnetotail. J. Geophys. Res. Space Phys. 1989, 94, 2383–2398. [Google Scholar] [CrossRef]
- Rong, Z.J.; Barabash, S.; Futaana, Y.; Stenberg, G.; Zhang, T.L.; Wan, W.X.; Wei, Y.; Wang, X.; Chai, L.H.; Zhong, J. Morphology of magnetic field in near-Venus magnetotail: Venus express observations. J. Geophys. Res. Space Phys. 2014, 119, 8838–8847. [Google Scholar] [CrossRef]
- Stergiopoulou, K.; Jarvinen, R.; Andrews, D.J.; Edberg, N.J.T.; Dimmock, A.P.; Kallio, E.; Persson, M.; Khotyaintsev, Y.V. Solar Orbiter Data-Model Comparison in Venus’ Induced Magnetotail. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031023. [Google Scholar] [CrossRef]
- Collinson, G.A.; Ramstad, R.; Frahm, R.; Wilson, L.; Xu, S.; Whittlesey, P.; Brecht, S.H.; Ledvina, S. A Revised Understanding of the Structure of the Venusian Magnetotail From a High-Altitude Intercept With a Tail Ray by Parker Solar Probe. Geophys. Res. Lett. 2022, 49, e2021GL096485. [Google Scholar] [CrossRef]
- Futaana, Y.; Stenberg Wieser, G.; Barabash, S.; Luhmann, J.G. Solar Wind Interaction and Impact on the Venus Atmosphere. Space Sci. Rev. 2017, 212, 1453–1509. [Google Scholar] [CrossRef]
- Zhang, T.L.; Lu, Q.M.; Baumjohann, W.; Russell, C.T.; Fedorov, A.; Barabash, S.; Coates, A.J.; Du, A.M.; Cao, J.B.; Nakamura, R.; et al. Magnetic Reconnection in the Near Venusian Magnetotail. Science 2012, 336, 567–570. [Google Scholar] [CrossRef]
- Collinson, G.A.; Frahm, R.A.; Glocer, A.; Coates, A.J.; Grebowsky, J.M.; Barabash, S.; Domagal-Goldman, S.D.; Fedorov, A.; Futaana, Y.; Gilbert, L.K.; et al. The electric wind of Venus: A global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophys. Res. Lett. 2016, 43, 5926–5934. [Google Scholar] [CrossRef]
- Coates, A.; Wellbrock, A.; Frahm, R.; Winningham, J.; Fedorov, A.; Barabash, S.; Lundin, R. Distant ionospheric photoelectron energy peak observations at Venus. Planet. Space Sci. 2015, 113–114, 378–384. [Google Scholar] [CrossRef]
- Volwerk, M.; Sánchez-Cano, B.; Heyner, D.; Aizawa, S.; André, N.; Varsani, A.; Mieth, J.; Orsini, S.; Baumjohann, W.; Fischer, D.; et al. Venus’s induced magnetosphere during active solar wind conditions at BepiColombo’s Venus 1 flyby. Ann. Geophys. 2021, 39, 811–831. [Google Scholar] [CrossRef]
- Helbert, J.; Haus, R.; Arnold, G.; D’Amore, M.; Maturilli, A.; Säuberlich, T.; Hiesinger, H. The second Venus flyby of BepiColombo mission reveals stable atmosphere over decades. Nat. Commun. 2023, 14, 8225. [Google Scholar] [CrossRef]
- Fu, B.; Sperber, E.; Eke, F. Solar sail technology—A state of the art review. Prog. Aerosp. Sci. 2016, 86, 1–19. [Google Scholar] [CrossRef]
- Gong, S.; Macdonald, M. Review on solar sail technology. Astrodynamics 2019, 3, 93–125. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, C.; Li, Y. Design and application of solar sailing: A review on key technologies. Chin. J. Aeronaut. 2023, 36, 125–144. [Google Scholar] [CrossRef]
- Zubrin, R.M.; Andrews, D.G. Magnetic sails and interplanetary travel. J. Spacecr. Rocket. 1991, 28, 197–203. [Google Scholar] [CrossRef]
- Andrews, D.G.; Zubrin, R.M. Magnetic sails and interstellar travel. J. Br. Interplanet. Soc. 1990, 43, 265–272. [Google Scholar]
- Janhunen, P. Electric sail for spacecraft propulsion. J. Propuls. Power 2004, 20, 763–764. [Google Scholar] [CrossRef]
- Janhunen, P.; Toivanen, P.K.; Polkko, J.; Merikallio, S.; Salminen, P.; Haeggström, E.; Seppänen, H.; Kurppa, R.; Ukkonen, J.; Kiprich, S.; et al. Electric solar wind sail: Toward test missions. Rev. Sci. Instruments 2010, 81, 111301. [Google Scholar] [CrossRef]
- Bassetto, M.; Niccolai, L.; Quarta, A.A.; Mengali, G. A comprehensive review of Electric Solar Wind Sail concept and its applications. Prog. Aerosp. Sci. 2022, 128, 100768. [Google Scholar] [CrossRef]
- Gemmer, T.R.; Yoder, C.D.; Mazzoleni, A.P. Performance Analysis and Parametric Studies of the Solar Wind Ion Focusing Thruster (SWIFT) for Interplanetary Travel. J. Br. Interplanet. Soc. 2021, 74, 30–40. [Google Scholar]
- Gemmer, T.R.; Mazzoleni, A.P. Introduction and Performance Analysis of the Solar Wind Ion Focusing Thruster (SWIFT). In Proceedings of the 65th International Astronautical Congress, Toronto, ON, Canada, 29 September–3 October 2014. [Google Scholar]
- Gemmer, T.R.; Mazzoleni, A.P. Solar wind ion focusing thruster (SWIFT) Orbital Performance Analysis. In Proceedings of the 66th International Astronautical Congress, Jerusalem, Israel, 12–16 October 2015. [Google Scholar]
- Bassetto, M.; Quarta, A.A.; Mengali, G. Generalized sail trajectory approximation with applications to MagSails. Aerosp. Sci. Technol. 2021, 118, 106991. [Google Scholar] [CrossRef]
- Quarta, A.A. Three-dimensional guidance laws for spacecraft propelled by a SWIFT propulsion system. Appl. Sci. 2024, 14, 5944. [Google Scholar] [CrossRef]
- Vulpetti, G.; Johnson, L.; Matloff, G.L. Solar Sails: A Novel Approach to Interplanetary Travel, 2 ed.; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Alexander, D.; McInnes, C.R.; Angelopoulos, V.; Sandman, A.W.; Macdonald, M. GeoSail: A novel solar sail mission concept for geospace. In Proceedings of the AIP Space Technology and Applications International Forum—Staif 2002, Albuquerque, NW, USA, 3–6 February 2002. [Google Scholar] [CrossRef]
- McInnes, C.R.; Macdonald, M.; Angelopolous, V.; Alexander, D. GEOSAIL: Exploring the Geomagnetic Tail Using a Small Solar Sail. J. Spacecr. Rocket. 2001, 38, 622–629. [Google Scholar] [CrossRef]
- Macdonald, M.; Hughes, G.W.; McInnes, C.; Lyngvi, A.; Falkner, P.; Atzei, A. GeoSail: An Elegant Solar Sail Demonstration Mission. J. Spacecr. Rocket. 2007, 44, 784–796. [Google Scholar] [CrossRef]
- Macdonald, M.; McInnes, C.; Alexander, D.; Sandman, A. GeoSail: Exploring the magnetosphere using a low-cost solar sail. Acta Astronaut. 2006, 59, 757–767. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A.; Lappas, V.J. Optimal steering law for the GeoSail mission. J. Guid. Control. Dyn. 2007, 30, 876–879. [Google Scholar] [CrossRef]
- Lappas, V.; Mengali, G.; Quarta, A.A.; Gil-Fernandez, J.; Schmidt, T.; Wie, B. Practical Systems Design for an Earth-Magnetotail-Monitoring Solar Sail Mission. J. Spacecr. Rocket. 2009, 46, 381–393. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G.; Niccolai, L. Smart Dust Option for Geomagnetic Tail Exploration. Astrodynamics 2019, 3, 217–230. [Google Scholar] [CrossRef]
- Firuzi, S.; Gong, S. Refractive sail and its applications in solar sailing. Aerosp. Sci. Technol. 2018, 77, 362–372. [Google Scholar] [CrossRef]
- Firuzi, S.; Song, Y.; Gong, S. Gradient-index solar sail and its optimal orbital control. Aerosp. Sci. Technol. 2021, 119, 107103. [Google Scholar] [CrossRef]
- Bassetto, M.; Caruso, A.; Quarta, A.A.; Mengali, G. Optimal Steering Law of Refractive Sail. Adv. Space Res. 2021, 67, 2855–2864. [Google Scholar] [CrossRef]
- Dubill, A.L.; Swartzlander, G.A., Jr. Circumnavigating the Sun with diffractive solar sails. Acta Astronaut. 2021, 187, 190–195. [Google Scholar] [CrossRef]
- Swartzlander, G.A., Jr. Flying on a rainbow: A solar-driven diffractive sailcraft. JBIS J. Br. Interplanet. Soc. 2018, 71, 130–132. [Google Scholar]
- Swartzlander, G.A., Jr. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B Opt. Phys. 2017, 34, C25–C30. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Lucy Chu, Y.J.; Swartzlander, G.A., Jr. Stable diffractive beam rider. Opt. Lett. 2019, 44, 3082–3085. [Google Scholar] [CrossRef]
- Bassetto, M.; Mengali, G.; Quarta, A.A. Diffractive sail-based displaced orbits for high-latitude environment monitoring. Remote Sens. 2023, 15, 5626. [Google Scholar] [CrossRef]
- Quarta, A.A.; Bassetto, M.; Mengali, G.; Abu Salem, K.; Palaia, G. Optimal guidance laws for diffractive solar sails with Littrow transmission grating. Aerosp. Sci. Technol. 2024, 145, 108860. [Google Scholar] [CrossRef]
- McInnes, C.R. Orbits in a Generalized Two-Body Problem. J. Guid. Control. Dyn. 2003, 26, 743–749. [Google Scholar] [CrossRef]
- Curtis, H.D. Orbital Mechanics for Engineering Students; Elsevier: Oxford, UK, 2009; pp. 462–463. [Google Scholar] [CrossRef]
- Spencer, D.B.; Conte, D. Interplanetary Astrodynamics; CRC Press: Boca Raton, FL, USA, 2023; p. 362. [Google Scholar]
- Stark, J.P.W.; Swinerd, G.G.; Fortescue, P.W. Spacecraft Systems Engineering; Wiley: Chichester, UK, 2003; pp. 93–95. [Google Scholar]
- Dachwald, B.; Seboldt, W.; Macdonald, M.; Mengali, G.; Quarta, A.; McInnes, C.; Rios-Reyes, L.; Scheeres, D.; Wie, B.; Görlich, M.; et al. Potential Solar Sail Degradation Effects on Trajectory and Attitude Control. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, NC, USA, 15–18 August 2005. [Google Scholar] [CrossRef]
- Wright, J.L. Space Sailing; Gordon and Breach Science Publishers: Philadephia, PA, USA, 1992; pp. 223–233. ISBN 978-2881248429. [Google Scholar]
- McInnes, C.R. Solar Sailing: Technology, Dynamics and Mission Applications; Springer-Praxis Series in Space Science and Technology; Springer: Berlin, Germany, 1999; pp. 46–54, 119–120. [Google Scholar] [CrossRef]
- Albers, R.; Andrews, H.; Boccacci, G.; Pires, V.D.; Laddha, S.; Lundén, V.; Maraqten, N.; Matias, J.; Krämer, E.; Schulz, L.; et al. Magnetospheric Venus Space Explorers (MVSE) mission: A proposal for understanding the dynamics of induced magnetospheres. Acta Astronaut. 2024, 221, 194–205. [Google Scholar] [CrossRef]
- Pezent, J.B.; Sood, R.; Heaton, A.; Miller, K.; Johnson, L. Preliminary trajectory design for NASA’s Solar Cruiser: A technology demonstration mission. Acta Astronaut. 2021, 183, 134–140. [Google Scholar] [CrossRef]
- Yang, W.Y.; Cao, W.; Kim, J.; Park, K.W.; Park, H.H.; Joung, J.; Ro, J.S.; Hong, C.H.; Im, T. Applied Numerical Methods Using MATLAB; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 158–165, 312. [Google Scholar]
- Montenbruck, O.; Gill, E. Satellite Orbits; Springer Berlin Heidelberg: Berlin, Germany, 2000; pp. 80–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, A.A. Venus Magnetotail Long-Term Sensing Using Solar Sails. Appl. Sci. 2024, 14, 8016. https://doi.org/10.3390/app14178016
Quarta AA. Venus Magnetotail Long-Term Sensing Using Solar Sails. Applied Sciences. 2024; 14(17):8016. https://doi.org/10.3390/app14178016
Chicago/Turabian StyleQuarta, Alessandro A. 2024. "Venus Magnetotail Long-Term Sensing Using Solar Sails" Applied Sciences 14, no. 17: 8016. https://doi.org/10.3390/app14178016
APA StyleQuarta, A. A. (2024). Venus Magnetotail Long-Term Sensing Using Solar Sails. Applied Sciences, 14(17), 8016. https://doi.org/10.3390/app14178016