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Abstract: Although Cyber–Physical Systems (CPSs) provide a flexible architecture for enterprises to
deal with changing demand, an effective method to organize and allocate resources while considering
sustainability factors is required to meet customers’ order requirements and mitigate negative impacts
on the environment. The planning of processes to achieve sustainable CPSs becomes an important
issue to meet demand timely in a dynamic environment. The problem with planning processes
in sustainable CPSs is the determination of the configuration of workflows/resources to compose
processes with desirable properties, taking into account time and energy consumption factors. The
planning problem in sustainable CPSs can be formulated as an integer programming problem with
constraints, and this poses a challenge due to computational complexity. Furthermore, the ever-
shrinking life cycle of technologies leads to frequent changes in processes and makes the planning
of processes a challenging task. To plan processes in a changing environment, an effective planning
method must be developed to automate the planning task. To tackle computational complexity,
evolutionary computation approaches such as bio-inspired computing and metaheuristics have
been adopted extensively in solving complex optimization problems. This paper aims to propose
a solution methodology and an effective evolutionary algorithm with a local search mechanism to
support the planning of processes in sustainable CPSs based on an auction mechanism. To achieve
this goal, we focus on developing a self-adaptive neighborhood search-based Differential Evolution
method. An effective planning method should be robust in terms of performance with respect to
algorithmic parameters. We assess the performance and robustness of this approach by performing
experiments for several cases. By comparing the results of these experiments, it shows that the
proposed method outperforms several other algorithms in the literature. To illustrate the robustness
of the proposed self-adaptive algorithm, experiments with different settings of algorithmic parameters
were conducted. The results show that the proposed self-adaptive algorithm is robust with respect to
algorithmic parameters.

Keywords: sustainable development; differential evolution; self-adaptive; optimization; cyber–physical
system; auction

1. Introduction

Industry 4.0 has become a revolutionary industrial paradigm that can endow enter-
prises with the ability to fulfill challenging industrial and business requirements flexibly [1].
Cyber–Physical Systems (CPSs) offer a paradigm for realizing the vision of Industry 4.0 and
support the daily operations of enterprises in the Industry 4.0 era [2]. Due to its capability
to enable enterprises to monitor, manage and supervise resources and activities, the CPS
becomes an important paradigm today. CPS refers to smart systems consisting of entities in
cyber space and physical space. The entities in cyber space are computational components
and the entities in physical space are physical components in the systems. CPS relies on
interactions between the cyber-space computational components and physical-space com-
ponents to achieve its goals through properly sensing, planning, control and monitoring.
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In the literature, a lot of studies concerning CPSs are available. Key research issues such
as modeling [3–5], control [6], planning [7,8], security [9], development of context-aware
applications [10] and resilience/robustness properties [11] have been studied in the context
of CPSs. With the development of the Sustainable Development Goals (SDGs) aiming to
achieve a more sustainable future [12], many countries around the world and companies in
different sectors have been taking actions to achieve these SDGs. Therefore, the design of
CPSs should take into account its sustainability factors. In the literature, sustainability in
CPSs has been studied in [13–15]. Among the 17 SDGs, Goal 7, Goal 9, Goal 12, Goal 13
and Goal 17 are relevant to manufacturing. The challenges are the design and development
of effective, energy-efficient and sustainable self-adaptive CPSs [16,17].

Recent studies on the energy efficiency and energy consumption of machine tools pave
the way for the development of energy-efficient CPSs. Existing studies on the energy effi-
ciency and energy consumption of machine tools can be found in the review papers [18,19].
The above studies provide the underpinning knowledge for developing effective, energy-
efficient and sustainable self-adaptive CPSs. Although Cyber–Physical Systems (CPSs)
provide a flexible architecture for enterprises to respond to changing demand and achieve
the Sustainable Development Goals, an effective method to plan processes and allocate
resources must be developed to realize these advantages in the Industry 4.0 era. An impor-
tant related research subject in the context of CPSs is the sustainable development of the
self-adaptive CPS [16]. Although a variety of approaches for the sustainable development
of self-adaptive CPSs have been proposed in the literature [16], there lacks a sustainable
development methodology that covers all the stages in the development of solvers for
realizing self-adaptive CPSs, from modelling CPSs and problem formulation to the de-
velopment of solution algorithms. The requirements of such a sustainable development
methodology not only must be able to deal with a specific type of production process,
achieving a specific goal of production using a specific solution algorithm, but also need
to accommodate the changes in production processes, goals of production, and solution
algorithms. To bridge this gap, this study focuses on developing a solution methodology
to support the sustainable development of self-adaptive CPSs based on formal models,
a general problem formulation and a solution algorithm for the general problem. We
will illustrate the proposed framework by applying it to deal with the case of sequential
production processes.

Self-organization and self-adaptation are two research issues related to exploiting the
flexible architecture of a CPS to achieve production objectives [20–22] in the presence of
unexpected changes or disturbances. The design of a CPS must consider issues in order to
allow the system to self-organize and self-adapt to satisfy requirements dynamically [23].
To develop a self-organized and self-adaptive CPS, let us first review the architecture of
a CPS. The design of a CPS can be divided into five levels [24], including the connection
level, conversion level, cyber level, cognition level and configuration level. The collection
of information from sensors, controllers or related systems in CPSs is conducted at the
connection level. The transformation of the raw data into useful information is performed at
the conversion level. The cyber level plays a central role in the architecture since it enables
a CPS to interact with other CPSs and the environment. The cognition level constructs
a virtual model based on the information gathered from all the components of the CPS.
Knowledge of the CPS is generated at the cognition level to support decision-making. The
configuration level deals with the self-configuration and self-optimization issues in the CPS.
Planning and scheduling are two important issues in the Industry 4.0 literature [25,26] and
are at the configuration level in CPS design [27]. The scheduling issue has been studied
in [3,10,11] under the premise of pre-specified workflows of processes and capabilities
of resources in CPSs. However, the workflows of processes and capabilities/efficiency
of resources may change dynamically. In addition, the energy consumption factor is not
considered in [3,10,11]. Developing a method to determine the configuration of workflows
and resources is urgent. Process planning aims to determine the configuration of the
production process and the associated resources involved. It is a preliminary step for
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developing a self-organized and self-adaptive CPS and solving the subsequent scheduling
problem [28]. The planning of CPSs with logistic models has been studied in [29]. The
process planning issue in CPS design has been studied in [30]. However, the sustainability
factor of CPSs is not considered in [30].

This paper focuses on the problem of determining the configuration of workflows/resources
to compose processes with desirable properties in planning sustainable CPSs. Time and energy
consumption are two important factors in developing production processes for sustainable CPSs.
The former focuses on the issue of meeting the order demand in a timely manner, whereas the
latter is directly related to the sustainability issue in the manufacturing sector. Therefore, time
and energy consumption factors must be taken into consideration in the production planning
processes in sustainable CPSs. In addition to time and energy consumption factors, planning
production processes in CPSs must be based on the operational requirements/constraints of the
processes and the real-time information available from the IoT infrastructure.

The planning of processes in sustainable CPSs is an important issue to timely meet
demand and sustainability development goals. The ever-shrinking life cycle of technologies
leads to frequent changes in processes. This makes the planning of processes a challenging
task. To plan processes in the presence of process changes, an effective planning method
must be developed to automate the planning task. A CPS consists of entities in cyber
space and physical space. Cyber World models are used to capture the capability of
entities in the CPS. To address the planning problem, proper modeling tools must be used
to construct the Cyber World models for the CPS. Petri nets are applied to model and
manufacturing systems [31] due to their capability to capture discrete events, as well as
synchronous/asynchronous and concurrent operations in production systems. In particular,
Discrete Timed Petri Nets (DTPNs) have been applied to represent the Cyber World models
for the CPS, solve the scheduling problems [3,10] and assess the influence of failures on
the CPS [11]. In this study, DTPNs are adopted as the Cyber World models for the CPS.
However, the problem addressed in this study is to determine the DTPNs necessary to meet
the manufacturing requirements of sustainable CPSs instead of analyzing given DTPNs.

In the literature, the planning of processes in CPSs were studied. For example,
in [27–30], different approaches were proposed for planning processes in CPS. This study
aims to develop a more effective evolutionary algorithm for planning processes in CPS
based on an auction mechanism. Auctions have been applied in transportation service
procurement on the Cyber–Physical Internet [32] in on-demand logistics trading [33], cloud
manufacturing resource trading [34] and task allocation in CPSs [35]. In this study, an
auction mechanism will be used in the CPS over the course of the process planning. As
the process-planning problem is a constrained discrete optimization problem, an effective
approach must be used to tackle its complexity issue. Due to the success of applying
various evolutionary computation approaches in the literature to optimize CPSs [36–38],
we will adopt an evolutionary computation approach to solve the planning problem of
sustainable CPSs.

Well-known evolutionary computation approaches include Particle Swarm Optimiza-
tion [39] and Differential Evolution [40–42]. In the literature, the effectiveness of an evo-
lutionary computation algorithm can be assessed based on performance and robustness.
Performance is concerned with the quality of solutions found and is usually measured with
the average fitness function values of solutions. In addition to performance, robustness
is also an important metric in the evaluation of metaheuristic algorithms [43,44]. The
robustness of an evolutionary computation algorithm is measured by the sensitivity of the
average fitness function values with respect to the algorithmic parameters. In this study,
we will develop an effective evolutionary algorithm for planning production processes in
sustainable CPSs and study the computational experiences of the solution algorithm in
terms of performance and robustness.

In the literature, the neighborhood search mechanism is an effective approach to
solving optimization problems. Self-adaptive mechanisms provide an approach to adapting
the parameters of a solution method. Combining these two mechanisms has the potential
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to yield a better solution in the solution space [45]. The effectiveness of this approach has
been successfully applied in [46]. To achieve the goal of this study, we focus on developing
a self-adaptive neighborhood search-based Differential Evolution method to support the
planning of processes in sustainable CPSs. In this study, a self-adaptive mechanism is
combined with neighborhood search in the Differential Evolution method. This creates a
self-adaptive neighborhood search Differential Evolution (SaNSDE) algorithm. To tackle
the constraints of the planning problem, the method used in [47] is adopted. We assess the
performance of this approach by performing experiments for several cases. By analyzing
the results of these experiments, it shows that the proposed method outperforms several
methods in the literature.

This paper differs from the previous ones on CPSs in [3,11] in that both the sustain-
ability factor and efficiency factor are jointly considered in this study. The contributions
of this paper are as follows. First, a general problem formulation for planning processes
considering time and sustainability factors is proposed. Second, a solution method for the
problem based on the self-adaptive mechanism and neighborhood search mechanism is
proposed. Third, the proposed method is verified by a special class of production processes.
Fourth, the effectiveness of the proposed solution algorithm in terms of performance and
robustness is studied and shows that the proposed solution algorithm outperforms several
other algorithms.

We structure the rest of this paper as follows. In Section 2, we first describe the
problem in planning processes in a CPS by briefly introducing the optimization problem.
In Section 3, we will propose a SaNSDE algorithm based on the DE approach. We will
report the experimental results in Section 4. We will discuss the results in Section 5 and
conclude this paper in Section 6.

2. Modeling and Problem Formulation

We will first start with a motivating example, introduce the models of entities in CPS
and then formulate the problem in planning a process in a sustainable CPS. We consider sev-
eral factors in the process-planning problem, including operational requirements, time for
executing operations, energy consumption of operations and constraints of the processes.

A Motivating Example: Consider a CPS consisting of a number of process agents,
resource agents and optimization agents. The role of a process agent is to specify the
requirements of the target production process to be planned and submit the requirements
to the optimization agent. The role of a resource agent is to specify the operations that it can
perform and submit bids to the optimization agent to indicate the potential operations that
can be performed by it. The optimization agent aims to determine the optimal configuration
of the process agent and resource agents based on the bids submitted by the process agent
and the resource agents. For example, suppose the workflow Ωn of process agent n requires
five operations to be performed. Suppose the upper bound of the processing time of the
process to be composed for process agent n is ωn = 200. Suppose there are nine resource
agents in the CPS to perform operations. Depending on the type of resource agents, the
capability varies. That is, the function of different types of resource agents is different in
general. Therefore, each type of resource agent can only perform some of the operations.
The planning problem for process agent n is to find the configuration of resource agents that
can completely perform the required operations, satisfy the processing time requirement
and optimize energy consumption. To address this process-planning problem in the CPS,
several Cyber World models must be defined to capture the operations, the workflow of
the process agent and the capability of resource agents (activities that can be performed by
resource agents).

The above motivating example used to illustrate the proposed solution method is
based on a real application scenario similar to the one reported in [48]. The difference
between the illustrative example used in this paper and the one in [48] is the number of
resource agents and the number of operations in the process. Please refer to [48] for the
details of the application scenario.
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2.1. A Multi-Agent System Architecture and Models of Agents in CPSs

In this subsection, we introduce the models of CPSs. A process in a CPS consists of a
number of operations. The execution of operations must satisfy their constraints as needed.
The operations may be performed by different resources. A multi-agent system architecture
is used in this study to model the process-planning problem in CPSs. The entities involved
in the process planning of a CPS include process agents, resource agents and optimization
agents. Agents interact with each other in the CPS with a multi-level contract net protocol
(CNP) [10].

Each process agent specifies the requirements of a production process. A process agent
submits a bid to describe the requirements of its production process. Each resource agent
in the CPS represents a manufacturing resource that performs operations in the production
process. A resource agent submits bids according to its capabilities to perform different
operations. An optimization agent aims to determine the configuration of a process agent
and relevant resource agents to realize the production process according to the bids of the
process agent and resource agents.

Using different combinations of resources to perform the required operations typically
results in different total processing time and energy consumption for the process. The total
processing time and energy consumption of a process are two important characteristics
that need to be optimized. To obtain a process with satisfactory characteristics in a CPS, an
objective function is required. An objective function that considers both total processing
time and energy consumption is defined. Given the objective function, a constrained
optimization problem is formulated for the process-planning problem. The problem of
planning processes in CPSs is to find the winning bids (the best combination of bids) based
on the bids submitted by resources such that the objective function is optimized.

To describe the capabilities of agents and formulate the planning problem, a list of
notations is defined in Table 1.

Table 1. Notations used in the models and problem formulation.

Symbol/Variable Meaning

Kn The maximum number of operations in the workflow of process agent n.

k The index of an operation in the system, where k ∈ {1, 2, 3, . . . , K}
ωn The upper bound of total processing time

dnk
If operation k is required to be performed in the requirements of process agent n, dnk is equal to 1.

Otherwise, dnk is equal to 0.

ℜeqn

ℜeqn represents the requirements of the process agent n. ℜeqn = (dn1, dn2, dn3, . . . , dnKn , ωn), where
ωn denotes the upper bound of the overall processing time of the process, i.e., the total processing

time must be less than or equal to ωn.

RA The set of resource agents in the system

a The index of a resource agent in the system, where a ∈ RA = {1, 2, 3, . . . , |RA|}
j The index of a bid submitted by an agent

Ja The number of bids submitted by agent a

oajk oajk is one if operation k can be performed by agent a in the j-th bid; oajk is zero otherwise.

Baj
The j-th bid submitted by agent a with Baj =

(
oaj1, oaj2, oaj3, . . . , oajK , τaj) , where τaj is the overall

processing time for performing the specified operations in the bid

B A notation to represent the set of all bids, Baj, where a ∈ {1, 2, 3, . . . , |A|} and j ∈ {1, 2, 3, . . . , Ja}

Eaj
The energy consumption of the j-th bid submitted by agent a with Eaj =

(
oaj1, oaj2, oaj3, . . . , oajK , eaj) ,

where eaj is the overall energy consumption for performing the specified operations in the bid
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Table 1. Cont.

Symbol/Variable Meaning

E A notation to represent the energy consumption of the set of all bids, Eaj, where a ∈ {1, 2, 3, . . . , |A|}
and j ∈ {1, 2, 3, . . . , Ja}

qak The maximum number of times that the operation k can be performed by agent a

xaj
The decision variable of the optimization problem. The value of xaj is one if the j-th bid of agent a is

accepted and is zero otherwise.

x The vector of the decision variables xaj, where a ∈ {1, 2, 3, . . . , |A|} and j ∈ {1, 2, 3, . . . , Ja}

Γ(x, B) A function that maps a solution for xaj and Baj to the total processing time of a process, where
a ∈ {1, 2, 3, . . . , |A|} and j ∈ {1, 2, 3, . . . , Ja}

WA The set of process agents, where WA = {1, 2, . . . , N}
n A process agent, where n ∈WA

Ωk
n The Cyber World model for the k-th operation of process agent n ∈WA

Ωn The Cyber World model for process agent n

Rk
n The set of resource agents involved in performing the k-th operation in Ωn

Ak
a

The Cyber World model of the activity that represents the k-th operation is performed by resource
agent a, where a ∈ RA

Ψn
The Cyber World model of a configuration for process agent n; Ψn = (Pn, Tn, Fn, mn0, µn) =

Ωn||k∈{k′∈{1,2,...,Kn}|dnk′=1},a∈RAk
n

Ak
na

The requirements of a process agent n ∈WA in the CPS are specified by the operations
and the connection between operations. We construct the Cyber World model for the k-th
operation of process agent n ∈WA and the Cyber World model for process agent n ∈WA
as follows.

In this paper, we adopt Discrete Timed Petri Nets (DTPNs) to represent the Cyber
World model of an activity.

A DTPN G is described by G = (P, T, F, m0, µ), where P denotes a set of places, T
denotes a set of transitions, F ⊆ (P×T)∪ (T× P) denotes a set of flow relations, m0 denotes
the initial marking, the function µ : T → Z specifies the firing time for each transition and
Z is the set of nonnegative integers.

Definition 1. The Cyber World model for the k-th operation of process agent n ∈ WA is a DTPN
Ωk

n = (Pk
n , Tk

n , Fk
n , mk

n0, µk
n) with Tk

n =
{

tk
ns, tk

ne

}
and Pk

n =
{

pkb
n

}
, where tk

ns denotes the start

transition, tk
ne denotes the end transition, pkb

n denotes the busy state place of the k-th operation and
µk

n denotes a function specifying the firing time of each transition in Tk
n .

For the motivating example, to represent the operations, a model is constructed for
each operation. As there are five operations for the workflow Ωn of process agent n, we
will construct models, Ω1

n, Ω2
n, Ω3

n, Ω4
n and Ω5

n, to represent these five operations.
Figure 1a–e show the DTPN models Ω1

n, Ω2
n, Ω3

n, Ω4
n and Ω5

n for the first operation,
the second operation, the third operation, the fourth operation and the fifth operation,
respectively.

For the example in Figure 1, the start transition of Ω1
n is t1

1s = t1 and the end transition
of Ω1

n is t1
1e = t2. The start transition of Ω2

n is t2
1s = t2 and the end transition of Ω2

n is
t2
1e = t3. Similarly, t3

1s = t3, t3
1e = t4, t4

1s = t4, t4
1e = t5, t5

1s = t5 and t5
1e = t6. The busy state

place of Ω1
n is p1b

1 = p1, the busy state place of Ω2
n is p2b

1 = p2, the busy state place of Ω3
n is

p3b
1 = p3, the busy state place of Ω4

n is p4b
1 = p4 and the busy state place of Ω5

n is p5b
1 = p5.

To construct the Cyber World model for process agent n, we combine the Cyber World
models of the operations involved. A “∥” operator is defined to combine two DTPNs.
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Definition 2. Given two DTPNs, PN1 = (P1, T1, F1, m10, µ1) and PN2 = (P2, T2, F2,
m20, µ2), PN1∥PN2 = (P, T, F, m0, µ), where P = P1 ∪ P2, T = T1 ∪ T2, F(p, t) ={

F1(p, t) i f p ∈ P1 and t ∈ T1
F2(p, t) i f p ∈ P2 and t ∈ T2

, F(t, p) =
{

F1(t, p) i f p ∈ P1 and t ∈ T1
F2(t, p) i f p ∈ P2 and t ∈ T2

and m0(p) ={
m10(p) i f p ∈ P1
m20(p) i f p ∈ P2

.

Let Kn denote the maximum number of operations involved in the workflow of process
agent n. We define the Cyber World model of process agent n as follows.

Definition 3. The Cyber World model of process agent n, where n ∈ WA is an acyclic DTPN
Ωn = ∥k∈{k′∈{1,2,...,Kn}|dnk′=1}Ω

k
n.

Figure 2 shows the DTPN model, Ωn, for process agent n, where

Ωn= Ω1
n∥Ω2

n∥Ω3
n∥Ω4

n∥Ω5
n.

Operations in a CPS are performed by the resource agents. In this paper, the action
that an agent performs an operation is called an activity. An activity can be described by a
Cyber World model.
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Let Ak
na denote the Cyber World model described by a DTPN of the activity performed

by resource agent a for k-th operation of process agent n, defined as follows.
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Definition 4. We use DTPN Ak
na = (Pk

na, Tk
na, Fk

na, mk
na0, µk

na) as the Cyber World model to
represent that the k-th operation of process agent n is performed by resource agent a, where
a ∈ RA, the initial marking mk

na0(ra) is the number of available resources and ra is the idle state
place. There is no common transition between Ak

na and Ak′
na for k ̸= k′.

For the motivating example, to represent the capability of a certain type of resource
agents, we will construct the resource activity model for each type of resource agent. We
use the resource activity model Ak

na to denote the activity that the k-th operation of process
agent n can be performed by resource agent a. In this example, the resource activity model
for resource agent a1 is A1

na1
, the resource activity model for resource agent a2 is A5

na2
, the

resource activity model for resource agent a3 is A1
na3
∥A5

na3
, the resource activity model for

resource agent a4 is A1
na4

, the resource activity model for resource agent a5 is A5
na5

, the
resource activity model for resource agent a6 is A1

na6
∥A5

na6
, the resource activity model for

resource agent a7 is A3
na7

, the resource activity model for resource agent a8 is A2
na8

and the
resource activity model for resource agent a9 is A4

na9
.

Figure 3 shows the resource activity models for the resource agents in the motivat-
ing example.
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∥A5

na3
;

(d) A1
na4

; (e) A5
na5

; (f) A1
na6
∥A5

na6
; (g) A3

na7
; (h) A2

na8
; (i) A4

na9
.
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The set of resource agents for performing the k-th operation in Ωn is denoted by
RAk

n. The set of resource agents for performing the operations in Ωn is denoted by
RAn = ∪

k∈{k′∈{1,2,...,Kn}|dnk′=1}
RAk

n.

A configuration for process agent n is defined by the Cyber World model, Ωn, of pro-
cess agent n and the Cyber World models of activities of resources agent
a ∈ RAn = ∪

k∈{k′∈{1,2,...,Kn}|dnk′=1}
RAk

n for performing the operations in Ωn.

Definition 5. The Cyber World model for a configuration of process agent n with the Cy-
ber World model Ωn and the Cyber World models of activities of resources agent a ∈ RAn =

∪
k∈{k′∈{1,2,...,Kn}|dnk′=1}

RAk
n for performing the operations in Ωn is a DTPN Ψn = (Pn, Tn, Fn, mn0, µn)=

Ωn||k∈{k′∈{1,2,...,Kn}|dnk′=1},a∈RAk
n

Ak
na, where n ∈ WA. The firing time µn(t) for each transition

t ∈ Tn is µk
na(t).

Note that the number of different configurations of process agent n is usually not unique.
For example, Figure 4a–c show three different configurations for process agent n. The process-
planning problem is to find the optimal configuration of the process agent n and the associated
set of resource agents RAk

n for performing the k-th operation in Ωn to compose the overall
Cyber World model Ψn=(Pn, Tn, Fn, mn0, µn) = Ωn||k∈{k′∈{1,2,...,Kn}|dnk′=1},a∈RAk

n
Ak

na to meet
the manufacturing requirements.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 36 
 

A configuration for process agent n  is defined by the Cyber World model, n , of 

process agent n   and the Cyber World models of activities of resources agent 
k
n

dKkk
n RARAa

knn }1},...,2,1{{ = 

=  for performing the operations in n .  

Definition 5. The Cyber World model for a configuration of process agent n  with the Cyber 

World model n   and the Cyber World models of activities of resources agent 
k
n

dKkk
n RARAa

knn }1},...,2,1{{ = 

=   for performing the operations in n   is a DTPN n  =

),,,,( 0 nnnnn mFTP    = k
naRAadKkkn Ak

nknn = 


,}1},...,2,1{{
   where WAn  . The firing time )(tn  

for each transition nTt  is )(tk
na . 

Note that the number of different configurations of process agent n  is usually not 

unique. For example, Figure 4a–c show three different configurations for process agent n

. The process-planning problem is to find the optimal configuration of the process agent 

n  and the associated set of resource agents k
nRA  for performing the k -th operation in 

n   to compose the overall Cyber World model n  = ),,,,( 0 nnnnn mFTP    = 

k
naRAadKkkn Ak

nknn = 


,}1},...,2,1{{
 to meet the manufacturing requirements. 

p1

t2

p2

t3

p3

t4

p4

t5

p5

r1

r7

t1

t6

r8

r9

r2

 

p1

t2

p2

t3

p3

t4

p4

t5

p5

r3

r7

t1

t6

r8

r9

 

p1

t2

p2

t3

p3

t4

p4

t5

p5

r6

r7

t1

t6

r8

r9

 

(a) (b) (c) 

Figure 4. (a) The Cyber World model for the configuration 54321

29781 nrnrnrnrnrnn AAAAA= ; (b) 

the Cyber World model for the configuration 54321

39783 nrnrnrnrnrnn AAAAA=  ; (c) the Cyber 

World model for the configuration 54321

69786 nrnrnrnrnrnn AAAAA= . 

2.2. Process-Planning Problem Formulation for Sustainable CPS 

In this subsection, the process-planning problem will be formulated for a sustainable 

CPS. We use neq  to represent the requirements of the process agent n . neq  can be 

specified based on the operations in the production process and the desirable properties 

of the production process. For example, suppose the process agent n  requires a number 

Figure 4. (a) The Cyber World model for the configuration Ψn = Ωn∥A1
nr1
∥A2

nr8
∥A3

nr7
∥A4

nr9
∥A5

nr2
;

(b) the Cyber World model for the configuration Ψn = Ωn∥A1
nr3
∥A2

nr8
∥A3

nr7
∥A4

nr9
∥A5

nr3
; (c) the Cyber

World model for the configuration Ψn = Ωn∥A1
nr6
∥A2

nr8
∥A3

nr7
∥A4

nr9
∥A5

nr6
.

2.2. Process-Planning Problem Formulation for Sustainable CPS

In this subsection, the process-planning problem will be formulated for a sustainable
CPS. We use ℜeqn to represent the requirements of the process agent n. ℜeqn can be
specified based on the operations in the production process and the desirable properties
of the production process. For example, suppose the process agent n requires a number
of operations to be performed and the upper bound of total processing time is ωn. Let Kn
be the maximum number of operations in the workflow of process agent n. In this case,
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ℜeqn can be described by ℜeqn = (dn1, dn2, dn3, . . . , dnKn , ωn), where dnk is equal to 1 if
operation k is required to be performed in the requirements of process agent n, dnk is equal
to 0 otherwise and the overall processing time must be no greater than ωn.

In this study, we use the concept of agents to model resources in CPS. A CPS consists
of a set of resource agents such as machine agents and robot agents. The set of agents in the
system is denoted by RA. Each agent is autonomous and may submit bids in the CPS to
indicate its capability to perform a set of operations. A bid indicates the capability for the re-
source agent to perform operations in the requirements ℜeqn = (dn1, dn2, dn3, . . . , dnKn , ωn)
of the process agent n.

We use Ja to represent the number of bids submitted by resource agent a. The j-th
bid submitted by a resource agent a is denoted by Baj =

(
oaj1, oaj2, oaj3, . . . , oajKn , τaj) , where

oajk is one if operation k can be performed by resource agent a in the j-th bid, oajk is zero
otherwise and τaj is the overall processing time for performing the specified operations. The
set of all bids is denoted by B = {Baj, where a ∈ {1, 2, 3, . . . , |RA|} and j ∈ {1, 2, 3, . . . , Ja}}.

Based on the resource activity model, each resource agent submits bids to indicate
the operations it can perform. For the motivating example, the resource activity model
A1

na1
for resource agent a1 consists of transition t1 and transition t2. As transition t1 is the

start transition of Cyber World model Ω1
1 and transition t2 is the end transition of Cyber

World model Ω1
1, resource agent a1 can perform the first operation. Therefore, resource

agent a1 submits a bid Ba1 j =
(
oa1 j1, oa1 j2, oa1 j3, . . . , oa1 jKn , τa1 j) = (1 , 0, 0, 0, 0, 25), where 25

is the processing time of resource agent a1 for the first operation. Other types of resource
agents also submit bids similarly.

The energy consumption information of the j-th bid submitted by agent a is denoted
by Eaj =

(
oaj1, oaj2, oaj3, . . . , oajKn , eaj) , where eaj is the overall energy consumption for per-

forming the specified operations in the bid. The set of energy consumption information for
all bids is denoted by E = {Eaj, where a ∈ {1, 2, 3, . . . , |RA|} and j ∈ {1, 2, 3, . . . , Ja}}.

We use xaj to denote the decision variable of the optimization problem. The value of
xaj is one if the j-th bid of agent a is accepted and is zero otherwise.

To assess the quality of a process in CPS, an objective function that considers both total
processing time and energy consumption is defined. We use Γ(x, B) to denote a function
that calculates the total processing time of a configuration of process agent n based on the
solution xaj and Baj, where a ∈ {1, 2, 3, . . . , |RA|} and j ∈ {1, 2, 3, . . . , Ja}. We use Eng(x, B)
to denote a function that calculates the energy consumption according to the solution xaj
and Baj, where a ∈ {1, 2, 3, . . . , |RA|} and j ∈ {1, 2, 3, . . . , Ja}.

To propose a general framework to support the planning of processes in sustainable
CPSs, a general form of the objective function is first presented. The general form of the
objective function will be tailored for the case of sequential processes to illustrate its usage
next. The general form of the objective function is a function of the decision variable,
x. Therefore, we use G(x) to denote the objective function. As the cost due to the total
processing time and energy consumption factors are considered in this study, the objective
function G(x) is a function of the total processing time of the configuration calculated by
Γ(x, B) and the energy consumption of the configuration calculated by Eng(x, B). Therefore,
G(x) is described by G(Γ(x, B), Eng(x, B)). Note that Γ(x, B) is related to time, whereas
Eng(x, B) is related to energy consumption. There are several different ways to combine
Γ(x, B) and Eng(x, B) to define the objective function G. For example, one may introduce
weighting coefficients to combine Γ(x, B) and Eng(x, B) to define the objective function
G. Alternatively, one may define G(Γ(x, B), Eng(x, B)) as the weighted sum of functions
of Γ(x, B) and Eng(x, B), e.g., G(Γ(x, B), Eng(x, B)) = w1G1(Γ(x, B)) + w2G2(Eng(x, B),
where G1 is a monotonic decreasing function and G2 is a monotonic increasing function.

The objective function should be tailored properly according to the characteristics
of the type of production processes under consideration and the goal of the production
process. We will elaborate G(Γ(x, B), Eng(x, B)) for the special case of sequential processes
later to illustrate how the objective function is defined.
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In our problem formulation, we use ℜ(x, B,ℜeqn) to denote the constraints to sat-
isfy the requirements of the operations specified in ℜeqn. We use T(x, B) to denote the
constraints to satisfy time requirements specified in ℜeqn. We use Π(x, B) to denote
the other types of constraints. We formulate the following problem to maximize the
objective function.

max(G(x) = G(Γ(x, B), Eng(x, B)) (1)

s.t.
ℜ(x, B,ℜeqn) (2)

T(x, B) (3)

Π(x, B) (4)

xaj ∈ {0, 1} ∀a ∈ {1, 2, 3, . . . , |RA|}, ∀j ∈ {1, 2, 3, . . . , Ja} (5)

The problem formulation defined by (1) through (5) should be tailored properly
according to the characteristics of the type of production processes under consideration
and the goal of the production process.

To illustrate how to tailor the problem formulation defined by (1) through (5) to create
a process with desirable properties, let us consider the problem of composing a process
Ψn for a process agent n with a sequential Cyber World model Ωn in a CPS. Suppose the
composed process must satisfy three requirements: (i) each operation in the process Ωn
must be performed by an agent, (ii) the total processing time of the process must be no
greater than a given upper bound ωn and (iii) the number of times an operation can be
performed by each agent cannot exceed a pre-specified upper bound ωn.

In this case, we may tailor the problem defined by (1) through (5) for composing a se-
quential process as follows. If the Ωn is a sequential process, the constraintsℜ(x, B,ℜeqn) to

satisfy the requirements of the operations can be represented by ∑
a∈RA

Ja
∑

j=1
xajoajk ≥ dnk∀k ∈

{1, . . . , Kn}. If Ωn is a sequential process, Γ(x, B) = ∑
a∈RA

Ja
∑

j=1
xajτaj . Let ωn denote the

upper bound of the total processing time of the process Ψn. In this case, the constraints
to satisfy the time requirements T(x, B) can be represented by ωn ≥ Γ(x, B). Suppose
we want to set an upper bound qak on the maximum number of times that an opera-
tion k can be performed by each agent. The constraints Π(x, B) can be represented by
Ja
∑

j=1
xajoajk ≤ qak∀a ∈ A, k ∈ {1, . . . , Kn}.

We define G(Γ(x, B), E(x, B)) as an increasing function of ωn − Γ(x, B) and a de-
creasing function of Eng(x, B). For example, G(Γ(x, B), Eng(x, B)) = w1(ωn − Γ(x, B)) +
w2Eng(x, B). We formulate the following problem to maximize the objective function.

maxG(x) = G(Γ(x, B), Eng(x, B)) = w1(ωn − Γ(x, B))− w2Eng(x, B) (6)

s.t.

∑
a∈RA

Ja
∑

j=1
xajoajk ≥ dnk ∀k ∈ {1, . . . , Kn}

(7)

ω ≥ ∑
a∈RA

Ja

∑
j=1

xajτaj (8)

Ja

∑
j=1

xajoajk ≤ qak ∀a ∈ RA, k ∈ {1, . . . , Kn} (9)

xaj ∈ {0, 1} ∀a ∈ {1, 2, 3, . . . , |RA|}, ∀j ∈ {1, 2, 3, . . . , Ja} (10)
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The problem defined in (6) through (10) aims to find a solution xaj that maximizes
the objective function G(x) = G(Γ(x, B), Eng(x, B)) = w1(ωn − Γ(x, B))− w2Eng(x, B),
where a ∈ {1, 2, 3, . . . , |RA|} and j ∈ {1, 2, 3, . . . , Ja}, such that the requirement ℜeqn of the
process Ψn is satisfied, the total processing time of the overall process cannot exceed ωn
and the maximum number of times that an operation k can be performed by each agent
cannot exceed qak.

3. The Algorithm

In this section, the SaNSDE algorithm will be proposed. As the SaNSDE algorithm is a
variant of the Differential Evolution algorithm, it is a class of evolutionary algorithm that
relies on a properly defined fitness function to assess the quality of a potential solution. We
present the fitness function used in this paper first and the SaNSDE algorithm next.

3.1. Fitness Function

Just like other evolutionary algorithms, the SaNSDE algorithm relies on a properly
defined fitness function that considers both the objective function values and constraint
violations. We define a fitness function based on the method proposed in [47]. We use S f to
denote the set of all feasible solutions in the current population. For the problem defined
by (1) through (5), we define fitness function G1(x) as follows:

G1(x) =
{

G(x) i f x satis f ies constraint s (1)− (5)
U(x) otherwise

, where

U(x)= S f max+U1(x)+U2(x)+U3(x) with

S f max = max
x∈S f

G(x),

U1(x) is the penalty of constraint violation of ℜ(x, B, R) ,
U2(x) is the penalty of constraint violation of T(x, B) and
U3(x) is the penalty of constraint violation of Ψ(x, B).
For the process-planning problem of a sequential process defined by (6) through (10),

the fitness function G1(x) is defined as follows:

G1(x) =
{

G(x) i f x satis f ies constraints (6)− (10)
U(x) otherwise

, where

U(x)= S f max+U1(x)+U2(x)+U3(x) with

S f max = max
x∈S f

F(x),

U1(x) =
K

∑
k=1

((min( ∑
a∈A

Ja

∑
j=1

xajoajk − dnk), 0.0)),

U2(x) = min((ωn − Γ(x, B), 0.0) and

U3(x) = −∑
a∈A

(
K

∑
k=1

(max(
Ja

∑
j=1

xajoajk − qak, 0.0))).

3.2. SaNSDE Algorithm

To describe the self-adaptive algorithm, the notations are defined in Table 2.
As the decision variables are represented by the vector x, the solution is represented by

a vector. Therefore, each individual in the population is also a vector. We use zi to denote
the i-th individual in the population. The dimension of zi is the same as that of x. We use L
to denote the dimension of x. The element in the l-th dimension of zi is denoted by zil . We
use vi to denote the mutant vector of the i-th individual in the population. The dimension
of vi is the same as that of x. The element in the l-th dimension of vi is denoted by vil . We
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use a ui to denote the trial vector of the i-th individual in the population. The dimension of
ui is the same as that of x. The element in the l-th dimension of ui is denoted by uil . We use
T(ui) to denote the binary transformation function to transform a trial vector ui to a binary
vector. This binary transformation function is the same as the one used in [46].

Table 2. Notations of symbols, variables and parameters used in the proposed algorithm.

Variable Meaning

LP the learning period of the self-adaptive algorithm

H the number of generations to be executed

NP the population size (the number of individuals in the population)

g the generation index

L the dimension of the vector x of decision variables defined in Table 1

zi
The i-th individual in the population, represented by a binary vector with the same dimensions as the
vector x of the decision variables defined in Table 1

zil the element in the l-th dimension of zi

vi the mutant vector corresponding to zi

vil the element in the l-th dimension of vi

ui the mutant vector corresponding to zi

uil the element in the l-th dimension of ui

Fi the scale factor for the i-th individual in the population

cri the crossover rate of the i-th individual

fp the parameter that determines the generation of the scale factor Fi and selection of mutation strategy

s a mutation strategy: s = 1 represents mutation strategy vilg ← zr1lg + Fi(zr2lg − zr3lg) and s = 2
denotes mutation strategy vilg ← zilg + Fi(zblg − zilg) + Fi(zr1lg − zr2lg)

ns
the number of individuals generated by mutation strategy s successfully replacing the original
individual and entering the next generation

ms
the number of individuals generated by mutation strategy s failing to replace the original individual
and which are discarded

CRrec
an array recording the crossover rate cri associated with individual i successfully replacing the
original individual and entering the next generation

CRm the parameter defined by CRm =

|CRrec |
∑

k=1
CRrec(k)

|CRrec | to generate the crossover rate cri of individual i

r a random number with uniform distribution U(0, 1)

r1 a random number with Gaussian distribution N(µ, σ2
1 ) with mean µ and standard deviation σ1

r2 a random variable r with uniform distribution U(0, 1)

T(ui) a function to transform a trial vector ui to a binary vector

The SaNSDE algorithm basically follows the three steps of the standard Differential
Evolution approach: mutation, crossover step and selection. The scale factor is generated ran-
domly. The generation of the scale factor depends on whether a randomly generated value r
from U(0, 1) is less than fp. If r is less than fp, the scale factor will be generated from the Gaus-
sian distribution N(µ, σ2

1 ). Otherwise, the scale factor will be generated from the uniform dis-
tribution U(0, 1). A random value randi will be generated from U(0, 1) to determine which
mutation strategy will be used. If randi< fp, mutation strategy s = 1 and the mutant vector
will be calculated by vilg ← zr1lg + Fi(zr2lg − zr3lg) . Otherwise, mutation strategy s = 2 and
the mutant vector will be calculated by vilg ← zilg + Fi(zblg − zilg) + Fi(zr1lg − zr2lg) . Fol-
lowing the mutation operation, a trial vector will be calculated and the individual will be
updated as needed. The successful or failed update counter will be updated as needed. The
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value of fp will be updated according to the successful or failed update counter after the
learning period LP.

Based on the notations above, the proposed self-adaptive neighborhood search Differ-
ential Evolution algorithm is defined in Algorithm 1 as follows.

Algorithm 1: SaNSDE Algorithm

Step 0: Initialize parameters CRm = 0.5 and fp = 0.5
Generation of random population with NP individuals
Set the learning period LP
CRm = 0.5
fp = 0.5
Initialize a population with NP individuals randomly

Step 1: For g = 1 to H
For i = 1 to NP

Step 1.1: Generate r with uniform distribution U(0, 1)
If r < fp

Generate r1 with Gaussian distribution N(µ, σ2
1 )

Fi = r1
Else

Generate r2 with uniform distribution U(0, 1)
Fi = r2

End If
Generate cri with Gaussian distribution N(CRm, σ2

2 )
Step 1.2: Generate randi = U(0, 1)

For l ∈{1, 2, . . ., L}
If randi < fp

s = 1
vil ← zr1 l + Fi(zr2 l − zr3 l)

Else
s = 2
vil ← zil + Fi(zbl − zil) + Fi(zr1 l − zr2 l)

End If
End For

Step 1.3: Trial vector computation
For l ∈ {1, 2, . . ., L}

uil =

{
vil i f Rand(0, 1) < CR
xil otherwise

End For
Step 1.4: ui ← T(ui)

Individual update
If G1(ui) ≥ G1(zi)

zi = ui
Record cri in CRrec
ns = ns + 1

Else
ms = ms + 1

End If
End For

If g > LP
fp = n1(n2+m2)

n2(n1+m1)+n1(n2+m2)

CRm =

|CRrec |
∑

k=1
CRrec(k)

|CRrec |
End If

End For
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4. Results

We conducted several experiments to assess the performance and efficiency of the
SaNSDE algorithm. We will first present the results of a small example in Section 4.1. In
Section 4.2, we will compare the performance/efficiency of the proposed algorithm with
other ones. In Section 4.3, we will present the results on the influence of the learning
period parameter on the performance/efficiency of the proposed algorithm. The statistical
significance of the results will be presented in Section 4.5.

4.1. A Small Example

We applied the SaNSDE algorithm proposed in Section 3.2 to find the solutions for
several cases. Comparison with other algorithms based on results of experiments will be
presented in the next subsection. We first illustrate the proposed method by applying it to
the motivating example in Section 2.

In this example, we consider a planning problem for a process agent n with five opera-
tions to be performed by resource agents. Suppose the upper bound of the processing time
of the process is ωn = 200. The DTPN models, Ω1

n, Ω2
n, Ω3

n, Ω4
n and Ω5

n for the first operation,
the second operation, the third operation, the fourth operation and the fifth operation,
respectively, are shown in Figure 1a–e. As there are five operations to be performed, the
requirements of the process agent n are described by ℜeqn = (dn1, dn2, dn3, . . . , dnKn , ωn).
In this case, Kn = 5, dn1 = 1, dn2 = 1, dn3 = 1, dn4 = 1 and dn5 = 1. The model of the
process agent n is shown in Figure 2.

Suppose there are nine types of resource agents in the CPS to perform the five opera-
tions. Each type of resource agent can only perform a subset of the five operations. The
capability of each type of resource agents is described by the resource activity models in
Figure 3. Based on the resource activity model, each resource agent submits a bid to indicate
the operations it can perform. For example, the resource activity model A1

na1
for resource

agent a1 consists of transition t1 and transition t2. As transition t1 is the start transition
of Cyber World model Ω1

n and transition t2 is the end transition of Cyber World model
Ω1

n, resource agent a1 can perform the first operation. Therefore, resource agent a1 submits
a bid Ba1 j =

(
oa1 j1, oa1 j2, oa1 j3, . . . , oa1 jKn , τa1 j) = (1 , 0, 0, 0, 0, 25), where 25 is the processing

time of resource agent a1 for the first operation. Similarly, the resource activity model A5
na2

for resource agent a2 consists of transition t5 and transition t6. As transition t5 is the start
transition of Cyber World model Ω5

1 and transition t6 is the end transition of Cyber World
model Ω5

1, resource agent a2 can perform the fifth operation. Therefore, resource agent
a2 submits a bid Ba2 j =

(
oa2 j1, oa2 j2, oa2 j3, . . . , oa2 jKn , τa2 j) = (0 , 0, 0, 0, 1, 25), where 25 is the

processing time of resource agent a2 for the fifth operation. The resource activity model
A1

na3
∥A5

na3
for resource agent a3 consists of transitions t1, t2, t5 and t6. As transition t1 is the

start transition of Cyber World model Ω1
n and transition t2 is the end transition of Cyber

World model Ω1
n, resource agent a3 can perform the first operation. As transition t5 is the

start transition of Cyber World model Ω5
n and transition t6 is the end transition of Cyber

World model Ω5
n, resource agent a3 can perform the fifth operation. Therefore, resource

agent a3 submits a bid Ba3 j =
(
oa3 j1, oa3 j2, oa3 j3, . . . , oa3 jKn , τa3 j) = (1 , 0, 0, 0, 1, 45), where 45

is the processing time of resource agent a3 for the first operation and the second operation.
Based on the corresponding resource activity models, resource agents a4 through a9 also
submit their bids. The information on all the bids submitted by resource agents is shown in
Tables 3 and 4.
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Table 3. The information of processing time of bids in B.

Agent (a) j Bid (Baj) oaj1 oaj2 oaj3 oaj4 oaj5 Processing Time (τaj)

1 1 B11 1 0 0 0 0 25
2 1 B21 0 0 0 0 1 25
3 1 B31 1 0 0 0 1 45
4 1 B41 1 0 0 0 0 30
5 1 B51 0 0 0 0 1 35
6 1 B61 1 0 0 0 1 60
7 1 B71 0 0 1 0 0 40
8 1 B81 0 1 0 0 0 28
9 1 B91 0 0 0 1 0 32

Table 4. The information of energy consumption of bids in E.

Agent (a) j Bid (Eaj) oaj1 oaj2 oaj3 oaj4 oaj5 Energy Consumption (eaj)

1 1 E11 1 0 0 0 0 2
2 1 E21 0 0 0 0 1 2
3 1 E31 1 0 0 0 1 4
4 1 E41 1 0 0 0 0 3
5 1 E51 0 0 0 0 1 3
6 1 E61 1 0 0 0 1 6
7 1 E71 0 0 1 0 0 4
8 1 E81 0 1 0 0 0 2
9 1 E91 0 0 0 1 0 3

The algorithmic parameters used by the SaNSDE algorithm and NSDE algorithm are
listed as follows:

The parameters of the SaNSDE algorithm are as follows.

Vmax = 4

CR = 0.5

LP = 50

The number of iterations: 10,000
Population size (NP): 30
The objective function used is G(x) = G(Γ(x, B), Eng(x, B)) = w1(ωn − Γ(x, B))−

w2Eng(x, B), where w1 = 1 and w2 = 1. The following solution is found by the proposed
algorithm: x11 = 0, x21 = 0, x31 = 1, x41 = 0, x51 = 0, x61 = 0, x71 = 1, x81 = 1, x91 = 1.
The configuration of our solution is the bids submitted by the set of resource agents
{3, 7, 8, 9}. This solution corresponds to the Cyber World model for the configuration in
Figure 4b. The processing time achieved for this solution is 45 + 40 + 28 + 32 = 145. The
fitness function value found for this example is 42.

For this example, there are several candidate configurations that can perform all the
operations in the process. These candidate configurations include the bids submitted by
the sets of resource agents { 1, 2, 7, 8, 9 }, { 1, 5, 7, 8, 9}, {3, 7, 8, 9}, {4, 2, 7, 8, 9}, {4, 5, 7, 8, 9}
and {6, 7, 8, 9}. The values of the fitness function defined in Section 3.2 for these candidate
configurations are 42, 32, 42, 32, 22 and 27, respectively. The configuration of the solution
found by the proposed algorithm is the bids submitted by the set of resource agents {3, 7,
8, 9}, which is optimal as the value of the objective function is maximal. So, the solution
found is consistent with our expectation.

4.2. Comparison with Other Algorithms

To illustrate the effectiveness of the SaNSDE algorithm proposed in Section 3.2, the
PSO algorithm, six standard DE algorithms (DE1 through DE6) and a variant of the neigh-
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borhood search-based DE (NSDE) algorithm [49] were used for comparison with the
proposed algorithm. There are two reasons to compare it with these algorithms. First, these
algorithms had been applied to the special case of the problem considered in this paper, in
which the energy consumption factor is not considered in the objective function (i.e., w2 = 0
in (6)) but the constraints are the same. Second, these algorithms had also been successfully
applied to solve complex constrained optimization problems with binary decision variables
such as the ones in the studies [50,51]. Therefore, we compared the proposed algorithm
with these eight algorithms. We performed experiments by applying these algorithms to
solve ten instances. We recorded and analyzed the results to compare the performance and
efficiency of the different algorithms.

All the algorithms mentioned above are population-based algorithms. Population size
(NP) is a parameter for all these algorithms. As the performance of different evolutionary
algorithms may depend on population size, we consider a small population size of 10, a
moderate population size of 30 and a larger population size of 50 to conduct the experiments
in this study. The small population size is used to test whether all these algorithms can
work effectively even if the total number of individuals in the population is small. By
comparing the results obtained with a small population size of 10, a moderate population
size of 30 and a larger population size of 50, we will be able to know which algorithms are
sensitive to the population size parameter. In this subsection, we first present the results of
experiments for the population size NP = 10. The results of experiments for the population
sizes NP = 30 and 50 will be presented next.

In addition to the population size parameter, the other parameters used in the different
algorithms are as follows.

The parameters used in the discrete NSDE algorithm are as follows.

Vmax = 4

CR = 0.5

Fi = 0.5r1 + 0.5, where r1 is a random value with a Gaussian distribution N(0, 1).
The number of iterations: 10,000
The parameters used in the discrete Particle Swarm Optimization algorithm are

as follows.
Vmax = 4

c1 = 0.4

c2 = 0.6

w = 0.4

The number of iterations: 10,000
The parameters used in the discrete Differential Evolution algorithm are as follows.

Vmax = 4

CR = 0.5

Fi: a value arbitrarily selected from uniform (0, 2)
The number of iterations: 10,000
Tables 5 and 6 show the results for the population size NP = 10, obtained by applying

the SaNSDE algorithm, a variant of the neighborhood search-based DE (NSDE) algorithm,
the PSO algorithm and six standard DE algorithms.

In terms of performance, the results of Table 5 indicate that the SaNSDE algorithm
either outperforms or performs as well as the NSDE algorithm and PSO algorithm for most
instances, with the exception of Case 4. The average fitness function values in Tables 5 and 6
are shown in the bar charts of Figures 5 and 6, respectively.
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Table 5. Fitness function values for discrete SaNSDE, NSDE and PSO with population size NP = 10.

Case I K SaNSDE NSDE PSO

1 4 3 321/17.8 319.8/13 321/25.6
2 5 5 42/133 42/28 42/14.5
3 5 5 55/1731.8 51/99.6 54/4039.1
4 10 10 539/70.9 536.66/28.3 542.2/133.5
5 10 10 715.08/5327.1 616.06/145.7 485.12/4946.1
6 10 20 1717/5140.6 1580.7/149.7 1310.4/4603.3
7 20 20 1557.9/4860.4 1070.7/178.3 256.1/4832.2
8 30 10 726.9/3750.3 639.4/134.8 434.1/4327.8
9 30 20 768.8/2453.2 731.4/140.9 461.3/4841.6
10 40 10 780.1/3175.5 677.7/140.9 303.9/4999.8

Table 6. Average fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with NP = 10.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 320.4/23.7 320.4/96.3 320.4/113.8 320.4/31.5 321/24.1 321/493.1
2 5 5 42/8.3 42/25.5 40.5/20.5 40.4/764.4 41.5/1093.9 40.3/810.9
3 5 5 51.7/98.3 42.8/2604.1 51/221.6 41.6/934.3 49.4/755.2 53/1428.6
4 10 10 534.06/31.6 540.6/32.8 542.2/894.3 539/77.3 536.66/90.2 539/119.2
5 10 10 717.93/2846.6 621.36/3302.6 701.53/5920.3 593.53/5588.3 538.62/4369.4 694.59/3550.2
6 10 20 1674/3035.1 1602.2/4466.8 1737/4950.5 1615.6/3021.6 1574.6/2961.2 1596.8/2059
7 20 20 1544.9/5964.4 1110.7/5285 1381.6/4777.9 1194.1/5950.2 1078/3609.4 1440.3/5512
8 30 10 661.7/1439.1 354.6/2993.8 678.2/2655.8 525.9/2668.5 532.9/2401.8 601.2/3066.8
9 30 20 725.1/1760.3 657.8/839.8 732.6/1093.8 721.9/1305 693.6/2318.3 706.6/1458.9

10 40 10 730.8/1771.2 566.1/4057.5 700.1/1883.1 689.8/2653.2 623.1/1862 629.1/2833.1
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Figure 5. Average fitness function values for discrete SaNSDE (LP = 1000), NSDE and PSO with
NP = 10.

The results of Table 6 indicate that the SaNSDE algorithm either outperforms or per-
forms as well as the six standard DE algorithms in most instances, with the exceptions
of Case 4, Case 5 and Case 6. The number of best solutions found by the SaNSDE algo-
rithm, the NSDE algorithm, PSO algorithm, DE1 algorithm, DE2 algorithm, DE3 algorithm,
DE4 algorithm, DE5 algorithm and DE6 algorithm are 7, 1, 2, 2, 1, 2, 0, 1 and 1, respec-
tively. Therefore, in terms of the number of best solutions found, the SaNSDE algorithm
outperforms the other algorithms.
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Figure 6. Average fitness function values for discrete SaNSDE (LP = 1000), DE1, DE2, DE3, DE4, DE5
and DE6 with NP = 10.

Tables 7 and 8 show the results for the population size NP = 30, obtained by applying
the SaNSDE algorithm, a variant of the neighborhood search-based DE (NSDE) algorithm,
the PSO algorithm and six standard DE algorithms. The average fitness function values in
Tables 7 and 8 are shown in the bar charts of Figures 7 and 8, respectively.

Table 7. Fitness function values for discrete NSDE, NSDE and PSO with population size NP = 30.

Case I K SaNSDE NSDE PSO

1 4 3 321/6 321/16.3 321/14.1
2 5 5 42/10.1 42/740.9 42/24
3 5 5 55/37 54/304.3 55/1134.7
4 10 10 542.2/13.9 533.05/43.8 542.2/45.9
5 10 10 721.56/1551.2 620.56/163.1 495.24/4441.8
6 10 20 1728.4/2322.6 1648.8/4589 1371.2/5215.7
7 20 20 1598.3/1268.3 1214.1/4732 326.3/5634.2
8 30 10 731/558.9 731/2373.5 594/4288.1
9 30 20 802/519.9 802/379.1 486.2/5297.2
10 40 10 797/1379.6 797/2694.4 383.4/5878.5

Table 8. Average fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with NP = 30.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 321/10.6 321/653 321/88.6 320.4/1126 320.4/19 320.4/1435.2
2 5 5 42/8.4 42/341.5 41.5/19.6 41.5/684.8 42/32.7 42/20.2
3 5 5 55/71.9 49/876.5 50.5/1837.1 51/1645.8 46.8/1039.4 52/183.4
4 10 10 542.2/9.6 542.2/333.2 540.6/24.9 542.2/397.7 533.05/161.9 542.2/35.1
5 10 10 731.05/3521.3 641.42/4200.1 724.24/1625.1 705.95/2988.4 606.92/3312.6 679.29/5319.2
6 10 20 1724.9/3053 1705.4/3283.6 1699.6/6563 1620.8/3037.6 1685.7/4188.7 1672/2930.8
7 20 20 1645.5/4361.9 1370.3/3447.4 1509.3/7857 1454.9/4874.9 1485.7/2065.7 1353/4575.5
8 30 10 731/977 484.1/1186.4 724.9/2582.3 584.6/1425.7 562.5/335.3 692.7/2537.8
9 30 20 779.4/289.9 741.4/290 802/1128.9 710.3/1926 715.3/434.6 786.4/318.2

10 40 10 792.3/1407.1 739.6/3086.4 783.7/2071 759.8/1151.1 635/2731.5 774.4/1678.5
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Figure 7. Average fitness function values for discrete SaNSDE (LP = 1000), NSDE and PSO with
NP = 30.
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Figure 8. Average fitness function values for SaNSDE (LP = 1000), DE1, DE2, DE3, DE4, DE5 and
DE6 with NP = 30.

In terms of performance, the results of Table 7 indicate that the SaNSDE algorithm
either outperforms or performs as well as the NSDE algorithm and PSO algorithm in all
instances. The results of Table 8 indicate that the SaNSDE algorithm either outperforms or
performs as well as the six standard DE algorithms for most instances, with the exceptions
of Case 5 and Case 7. The number of best solutions found by the SaNSDE algorithm,
the NSDE algorithm, the PSO algorithm, DE1 algorithm, DE2 algorithm, DE3 algorithm,
DE4 algorithm, DE5 algorithm and DE6 algorithm are 8, 4, 3, 7, 3, 2, 1, 1 and 2, respec-
tively. Therefore, in terms of the number of best solutions found, the SaNSDE algorithm
outperforms the other algorithms.

Tables 9 and 10 show the results for the population size NP = 50, obtained by applying
the SaNSDE algorithm, a variant of the neighborhood search-based DE (NSDE) algorithm,
the PSO algorithm and six standard DE algorithms. The average fitness function values in
Tables 9 and 10 are shown in the bar charts of Figures 9 and 10, respectively.
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Table 9. Fitness function values for discrete NSDE, NSDE and PSO with population size NP = 50.

Case I K SaNSDE NSDE PSO

1 4 3 321/6.2 320.4/23.9 321/8.2
2 5 5 42/4.3 41/61.7 42/14.9
3 5 5 55/74 52/119.2 55/1371
4 10 10 542.2/11.3 542.2/25.5 542.2/34.6
5 10 10 724.02/1794.6 612.07/156.6 494.62/6664.5
6 10 20 1730.5/2311.2 1637/6304.8 1381.1/5476.9
7 20 20 1576.6/1088.1 1203.9/4685.2 359.7/5671.6
8 30 10 731/279.2 731/2092.8 586.2/3114.5
9 30 20 802/375.9 802/240.3 495.9/5033.8
10 40 10 797/663.4 797/2420.8 357.1/4258.6

Table 10. Average fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with NP = 50.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 321/7.7 321/138.8 321/178 321/1107.2 321/325.3 321/551
2 5 5 42/9.7 41.5/526.4 42/743.2 42/192.5 42/27.8 41.5/9.9
3 5 5 54/133 47.5/4147.6 49.9/1808.3 44.9/1376.2 44.3/1920.8 45.7/495.9
4 10 10 542.2/342.3 540.6/41.6 530.12/907.3 535.66/976 539.59/63.5 540.6/78.7
5 10 10 715.36/3430.6 627.7/3291.1 727.83/3778.6 648.74/2632.6 635.83/4070.5 587.12/3588.4
6 10 20 1734.1/3210.3 1726.6/2628.1 1693/5468.9 1711.7/4546.3 1701.5/2996.4 1662.9/4184.7
7 20 20 1646.1/4503.7 1300.7/3689.6 1328.9/7119.39 1382/4348.7 1279.3/2512.1
8 30 10 720.8/460.1 541.9/1235.6 723.1/2999.5 714.6/3235 644.2/1370.3 714.4/2184.7
9 30 20 777.7/622.8 745.4/2565.8 802/707.8 774.9/879.5 756.4/529.3 770.2/1279.8

10 40 10 787.9/976 722.1/902 774.3/3339.9 771.8/3505.2 635.1/1247.5 664.6/2989.3
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Figure 9. Average fitness function values for discrete SaNSDE (LP = 1000), NSDE and PSO with
NP = 50.

In terms of performance, the results of Table 9 indicate that the SaNSDE algorithm
either outperforms or performs as well as the NSDE algorithm and PSO algorithm for all
instances. The results of Table 10 indicate that the SaNSDE algorithm either outperforms
or performs as well as the six standard DE algorithms in most instances, with the excep-
tions of Case 5, Case 6 and Case 7. The number of best solutions found by the SaNSDE
algorithm, the NSDE algorithm, the PSO algorithm, DE1 algorithm, DE2 algorithm, DE3
algorithm, DE4 algorithm, DE5 algorithm and DE6 algorithm are 7, 3, 4, 5, 1, 4, 2, 2 and
1, respectively. Therefore, in terms of the number of best solutions found, the SaNSDE
algorithm outperforms the other algorithms.
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Figure 10. Average fitness function values for SaNSDE (LP = 1000), DE1, DE2, DE3, DE4, DE5 and
DE6 with NP = 50.

4.3. Influence of the LP Parameter on the Performance/Efficiency

The learning period parameter of the SaNSDE algorithm proposed in Section 3.2 may
have an influence on its performance and efficiency. An important issue to study is whether
the learning period parameter LP has a significant influence on performance and efficiency.
To understand the effects of the learning period parameter, we perform three series of
experiments by setting the learning period parameter, LP, to 10, 1000 and 2000, respectively,
and then analyzing the outcomes by comparing performance and efficiency. The results of
the series of experiments are based on the same set of test cases. The results are summarized
in Table 11. The average fitness function values in Table 10 are shown in the bar charts of
Figures 11 and 12, respectively.
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Figure 11. The average fitness function values obtained by SaNSDE with LP = 10, 1000 and 2000 for
Case 1, Case 2, Case 3, Case 4 and Case 5.
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Table 11. Average fitness values and average number of generations for SaNSDE with algorithmic
parameter LP = 10, 1000 and 2000.

Case I K SaNSDE (LP = 10) SaNSDE (LP = 1000) SaNSDE (LP = 2000)

1 4 3 321/11 321/6 321/7.6
2 5 5 42/9.3 42/10.1 42/11.1
3 5 5 55/74.7 55/37 55/47.9
4 10 10 542.2/10 542.2/13.9 542.2/11.5
5 10 10 691.48/5986.6 721.56/1551.2 727.66/1392.8
6 10 20 1685.8/6989.9 1728.4/2322.6 1743.7/1163.9
7 20 20 1334.1/7993.2 1598.3/1268.3 1629.2/1386.8
8 30 10 728.8/1628.7 731/558.9 731/936.7
9 30 20 802/591 802/519.9 802/1063.7

10 40 10 797/3218.2 797/1379.6 797/2669.6
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Figure 12. The average fitness function values obtained by SaNSDE with LP = 10, 1000 and 2000 for
Case 6, Case 7, Case 8, Case 9 and Case 10.

According to Table 11, the average fitness values are the same for Case 1 through Case
4, Case 9 and Case 10 regardless of whether the learning period parameter LP is set to 10,
1000 or 2000. This indicates that the proposed SaNSDE algorithm is not sensitive to the
learning period parameter LP for Case 1 through Case 4, Case 9 and Case 10.

For Case 5, the average fitness values depend on the values of LP. The maximum aver-
age fitness value is 727.66, which is obtained by setting LP = 2000, and the minimum average
fitness value is 691.48, which is obtained by setting LP = 10. The difference between the
maximum and the minimum average fitness values is (727.66 − 691.48)/691.48 = 5.2322%.

For Case 6, the average fitness values depend on the values of LP. The maximum aver-
age fitness value is 1743.7, which is obtained by setting LP = 2000, and the minimum average
fitness value is 1685.8, which is obtained by setting LP = 10. The difference between the
maximum and the minimum average fitness values is (1743.7 − 1685.8)/1685.8 = 3.4345%.

For Case 7, the average fitness values depend on the values of LP. The maximum aver-
age fitness value is 1629.2, which is obtained by setting LP = 2000, and the minimum average
fitness value is 1334.1, which is obtained by setting LP = 10. The difference between the
maximum and the minimum average fitness values is (1629.2 − 1334.1)/1334.1 = 22.1197%.

For Case 8, the average fitness values depend on the values of LP. The maximum aver-
age fitness value is 731, which is obtained by setting LP = 1000 or 2000, and the minimum
average fitness value is 728.8, which is obtained by setting LP = 10. The difference between
the maximum and the minimum average fitness values is (731 − 728.8)/728.8 = 0.3018%.
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The above analysis indicates that the sensitivity to the average fitness values obtained
by the proposed SaNSDE algorithm is less than 5% for most cases, with the exception of
Case 7. Another observation of the results is that LP should be large enough to obtain
better average fitness values.

4.4. Influence of Population Size on Performance/Efficiency

To study the influence of population size on the performance of the SaNSDE algorithm
proposed in Section 3.2, we perform three series of experiments for all test cases for NP = 10,
30 and 50. The results of these experiments are summarized in Table 12. The average fitness
function values of Table 12 are shown in the bar charts of Figures 13 and 14, respectively.

Table 12. Average fitness values and average number of generations for SaNSDE with algorithmic
parameter NP = 10, 30 and 50.

Case I K SaNSDE (NP = 10) SaNSDE (NP = 30) SaNSDE (NP = 50)

1 4 3 321/17.8 321/6 321/6.2
2 5 5 42/133 42/10.1 42/4.3
3 5 5 55/1731.8 55/37 55/74
4 10 10 539/70.9 542.2/13.9 542.2/11.3
5 10 10 715.08/5327.1 721.56/1551.2 724.02/1794.6
6 10 20 1717/5140.6 1728.4/2322.6 1730.5/2311.2
7 20 20 1557.9/4860.4 1598.3/1268.3 1576.6/1088.1
8 30 10 726.9/3750.3 731/558.9 731/279.2
9 30 20 768.8/2453.2 802/519.9 802/375.9

10 40 10 780.1/3175.5 797/1379.6 797/663.4
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Figure 13. The average fitness function values obtained by SaNSDE with NP = 10, 30 and 50 for
Case 1, Case 2, Case 3, Case 4 and Case 5.

The results show that the average fitness values of Case 1, Case 2 and Case 3 are
the same. For Case 4, Case 5, Case 6, Case 7, Case 8, Case 9 and Case 10, the differences
between the average fitness values for NP = 10, 30 and 50 are small in terms of percentage
based on the following analysis of the results. This indicates that the proposed SaNSDE
algorithm is not sensitive to population size.

For other test cases, although the average fitness values are not always the same,
they are close. For Case 4, the maximum average fitness value is 542.2, which is obtained
by setting NP = 30 or NP = 50, and the minimum average fitness value is 539, which is
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obtained by setting NP = 10. The difference between the maximum and the minimum
average fitness values is (542.2 − 539)/539 = 0.5936%.
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Figure 14. The average fitness function values obtained by SaNSDE with NP = 10, 30 and 50 for
Case 6, Case 7, Case 8, Case 9 and Case 10.

For Case 5, the maximum average fitness value is 724.02, which is obtained by setting
NP = 50, and the minimum average fitness value is 715.08, which is obtained by setting
NP = 10. The difference between the maximum and the minimum average fitness values is
(724.02 − 715.08)/715.08 = 1.2502%.

For Case 6, the maximum average fitness value is 1730.5, which is obtained by setting
NP = 50, and the minimum average fitness value is 1717, which is obtained by setting
NP = 10. The difference between the maximum and the minimum average fitness values is
(1730.5 − 1717)/1717 = 0.7862%.

For Case 7, the maximum average fitness value is 1598.3, which is obtained by setting
NP = 30, and the minimum average fitness value is 1557.9, which is obtained by setting
NP = 10. The difference between the maximum and the minimum average fitness values is
(1598.3 − 1557.9)/1557.9 = 2.5932%.

For Case 8, the maximum average fitness value is 731, which is obtained by setting
NP = 30 or NP = 50, and the minimum average fitness value is 726.9, which is obtained by
setting NP = 10. The difference between the maximum and the minimum average fitness
values is (731 − 726.9)/726.9 = 0.5640%.

For Case 9, the maximum average fitness value is 802, which is obtained by setting
NP = 30 or NP = 50, and the minimum average fitness value is 768.8, which is obtained by
setting NP = 10. The difference between the maximum and the minimum average fitness
values is (802 − 768.8)/768.8 = 4.3184%.

For Case 10, the maximum average fitness value is 797, which is obtained by setting
NP = 30 or NP = 50, and the minimum average fitness value is 780.1, which is obtained by
setting NP = 10. The difference between the maximum and the minimum average fitness
values is (797 − 780.1)/780.1 = 2.1663%.

The above results show that the difference between the maximum average fitness
value and the minimum average fitness value is less than 2% for most test cases, with the
exceptions of Case 7, Case 9 and Case 10. The difference between the maximum average
fitness value and the minimum average fitness value is less than 4.5% for Case 7, Case 9 and
Case 10. The results of the experiments show that the proposed algorithm is not sensitive
to population size.
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4.5. Statistical Significance of the Results

To illustrate the benefits and statistical significance of the results obtained by the
proposed algorithm, let us take the setting with LP = 1000 as an example.

The standard deviation of the fitness function values obtained by the proposed al-
gorithm and all the algorithms compared in this study are listed in Tables 13 and 14 for
NP = 10 and LP = 1000. The standard deviation of the fitness function values obtained
by the proposed algorithm is smaller than those of the other algorithms compared in this
study with only a few exceptions. This indicates that the variation in the fitness function
values obtained by the proposed algorithm is smaller than those of other algorithms, and
the fitness function values are clustered tightly around the mean of the fitness function
values. Therefore, this shows that the proposed algorithm is more robust than the compared
algorithms in this study.

Table 13. Standard deviation of fitness function values for discrete SaNSDE, NSDE and PSO with
population size NP = 10 and LP = 1000.

Case I K SaNSDE NSDE PSO

1 4 3 0 2.5298 0
2 5 5 0 0 0
3 5 5 0 5.1639 3.1622
4 10 10 6.7461 17.519 0
5 10 10 12.2495 27.4067 41.1472
6 10 20 16.0752 22.0254 351,447
7 20 20 85.9152 81.2595 88.2892
8 30 10 12.9653 45.785 230.4394
9 30 20 37.4189 43.6379 131.5278
10 40 10 19.3301 66.71 96.3574

Table 14. Standard deviation of fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with
NP = 10 and LP = 1000.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 1.8973 1.8973 1.8973 1.8973 0 0
2 5 5 0 0 2.4152 5.3758 1.5811 5.3758
3 5 5 5.3758 9.3903 5.1639 15.6005 6.168 4.2163
4 10 10 20.7379 5.0596 0 6.7461 17.519 6.7461
5 10 10 12.0483 116.9596 46.3209 158.0998 150.3754 89.9087
6 10 20 93.9822 183.4416 33.4099 245.0483 183.8067 182.9856
7 20 20 322.4046 591.8342 477.0795 572.9579 599.2337 309.0789
8 30 10 57.7062 312.8212 52.0465 284.4938 203.4308 222.3413
9 30 20 52.1204 103.5533 55.656 63.2463 76.2017 95.0312

10 40 10 36.1963 187.0451 140.7144 114.6247 254.3267 241.3109

The standard deviation of the fitness function values obtained by the proposed al-
gorithm and all the algorithms compared in this study are listed in Tables 15 and 16 for
NP = 30 and LP = 1000. Again, the standard deviation of the fitness function values ob-
tained by the proposed algorithm is smaller than those of the other algorithms compared
in this study with only a few exceptions. In particular, the standard deviation of the fitness
function values obtained by the proposed algorithm is smaller than those of all the com-
pared DE algorithms in this study. Therefore, this shows that the proposed algorithm is
more robust than the compared algorithms in this study.
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Table 15. Standard deviation of fitness function values for discrete SaNSDE, NSDE and PSO with
population size NP = 30 and LP = 1000.

Case I K SaNSDE NSDE PSO

1 4 3 0 0 0
2 5 5 0 0 0
3 5 5 0 3.1622 0
4 10 10 0 21.3987 0
5 10 10 10.3323 24.6737 20.0383
6 10 20 27.0563 16.9036 35.6426
7 20 20 40.7241 44.3883 65.0658
8 30 10 0 0 51.3917
9 30 20 0 0 89.8749
10 40 10 0 0 111.3943

Table 16. Standard deviation of fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with
NP = 30 and LP = 1000.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 0 0 0 1.8973 1.8973 1.8973
2 5 5 0 0 1.5811 1.5811 0 0
3 5 5 0 5.1639 5.986 5.1639 7.8145 4.8304
4 10 10 0 0 5.0596 0 21.3987 0
5 10 10 22.1143 112.8819 16.5798 30.6306 113.6875 72.9427
6 10 20 64.5453 96.4862 81.4278 169.2747 156.7446 149.8784
7 20 20 219.7454 607.2852 244.3599 404.5649 565.1306 582.2639
8 30 10 0 339.5753 13.2199 308.6382 298.7199 58.4618
9 30 20 37.8306 50.2354 0 182.6812 99.4105 25.1714

10 40 10 14.9627 85.3661 21.5254 53.2015 183.8628 41.6898

The standard deviation of the fitness function values obtained by the proposed al-
gorithm and all the algorithms compared in this study are listed in Tables 17 and 18 for
NP = 50 and LP = 1000. Again, the standard deviation of the fitness function values ob-
tained by the proposed algorithm is smaller than those of the other algorithms compared
in this study with only a few exceptions. In particular, the standard deviation of the fitness
function values obtained by the proposed algorithm is smaller than those of all DE algo-
rithms. Therefore, this shows that the proposed algorithm is more robust than the other
algorithms compared in this study.

Table 17. Standard deviation of fitness function values for discrete SaNSDE, NSDE and PSO with
population size NP = 50 and LP = 1000.

Case I K SaNSDE NSDE PSO

1 4 3 0 1.8973 0
2 5 5 0 2.1081 0
3 5 5 0 4.8304 0
4 10 10 0 0 0
5 10 10 15.3291 17.8063 13.9583
6 10 20 29.247 18.7675 27.3229
7 20 20 76.4957 39.7672 74.9163
8 30 10 0 0 32.1102
9 30 20 0 0 115.8959
10 40 10 0 0 90.0067



Appl. Sci. 2024, 14, 8044 28 of 32

Table 18. Standard deviation of fitness function values for DE1, DE2, DE3, DE4, DE5 and DE6 with
NP = 50 and LP = 1000.

Case I K DE1 DE2 DE3 DE4 DE5 DE6

1 4 3 0 0 0 0 0 0
2 5 5 0 1.5811 0 0 0 1.5811
3 5 5 3.1622 12.1586 7.3098 17.1298 7.9728 16.1386
4 10 10 0 5.0596 25.5757 20.6812 8.2535 5.0596
5 10 10 35.323 98.8249 16.0407 92.1441 106.6155 153.1257
6 10 20 54.118 56.1074 69.6333 80.8964 117.6617 144.5901
7 20 20 202.1124 486.4097 361.1803 510.4664 539.5477 486.2034
8 30 10 24.7512 292.6231 18.0027 24.708 228.503 38.1465
9 30 20 41.3173 73.7039 0 47.8294 61.3681 56.0769

10 40 10 16.1551 107.1078 21.7411 26.8692 242.5954 193.7009

The above results show that the proposed algorithm can ensure that the variation in
solutions is smaller than in the other algorithms compared in this study with only a few
exceptions regardless of the population size.

5. Discussion

In this study, we proposed a SaNSDE algorithm for planning processes in sustain-
able CPSs and conducted experiments to illustrate its effectiveness and properties. These
included a comparative study with other competitive algorithms to illustrate the effective-
ness of the proposed self-adaptive algorithm. In addition, we studied the sensitivity of the
proposed self-adaptive algorithm with respect to algorithmic parameters, including the
learning period parameter, LP, and the population size parameter, NP.

Several other algorithms, including the PSO algorithm, six standard DE algorithms
and a variant of the neighborhood search-based DE algorithm, were applied to solve ten
instances. The results obtained by these algorithms were compared with those obtained by
applying the SaNSDE algorithm to the same set of instances. Three series of experiments
were conducted based on a small population size of 10, a moderate population size of 30
and a larger population size of 50 in this study. In terms of the number of best solutions
found, the SaNSDE algorithm outperformed the other algorithms regardless of whether
the population size was set to 10, 30 or 50.

To study the impacts of the learning period parameter, LP, on the performance, we
conducted several experiments by changing the values of LP. To understand the effects
of the learning period parameter, we performed three series of experiments based on the
same set of test cases by setting the learning period parameter, LP, to 10, 1000 and 2000,
respectively. We analyzed the outcomes by comparing performance. The results indicate
that the proposed SaNSDE algorithm is not sensitive to the learning period parameter
LP for Case 1 through Case 4, Case 9 and Case 10. The sensitivity of the average fitness
values obtained by the proposed SaNSDE algorithm is less than 5% for most cases, with
the exception of Case 7. Another observation of the results is that LP should be large
enough to obtain better average fitness values. If the parameter LP is too small, it is
difficult to learn the best strategy within the learning period. As a result, the probability
of creating a potential candidate solution using the best strategy will be low. In this case,
the performance will be degraded. If LP is big enough, the probability of learning the
best strategy within the learning period will be higher. Hence the probability of creating a
potential candidate solution by learning the best strategy will be higher. In this case, the
performance tends to be improved. The results presented in Section 4.3 indicate that for
the algorithm to perform better, LP must be large enough. This poses an interesting and
challenging future research direction to prove that the performance can be improved by
setting LP to a large value through theoretical analysis.

To study the effects of population size on the performance of the proposed algorithm,
we performed three series of experiments for all test cases for NP = 10, 30 and 50. The
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results show that the average fitness values of Case 1, Case 2 and Case 3 are the same. For
Case 4 through Case 10, the differences between the average fitness values for NP = 10, 30
and 50 are small in terms of percentage. This indicates that the proposed SaNSDE algorithm
is not sensitive to population size. In summary, the above results show that the proposed
algorithm can ensure that the variation in solutions is smaller than in the other algorithms
compared in this study with only a few exceptions regardless of the population size.

There are two problems formulated in this paper. The first problem formulation is for
a general planning problem, whereas the second one is a special case of the first problem
formulation for a sequential processes planning problem. As sequential processes are
found in many production systems, we first started with the development of an effective
problem solver for the second problem formulation and verification for sequential processes
in this paper. As the solution algorithms take the same form, with the exception of the
fitness function, the solution algorithm for the second problem (for sequential processes)
can be tailored for other types of production processes. This includes the development
of efficient methods to compute a penalty due to the violation of constraints ℜ(x, B, R) ,
a penalty due to the violation of constraints T(x, B) and a penalty due to the violation
of constraints Ψ(x, B). Based on the discussion above, the proposed algorithm has the
potential to be extended to deal with other types of production processes. Tailoring the
proposed algorithm to deal with other types of production processes and studying its
effectiveness are nontrivial interesting future research directions.

Due to the need to verify the proposed algorithm, many examples (test cases) were
created for the verification of the proposed algorithm. The characteristics of these examples
are similar to the ones in real situations. Our previous experiences with other problems
showed that if the parameters used by the proposed SaNSDE algorithm worked for many
instances of the test cases, these parameters usually worked well for real application
scenarios. In addition, the results of the experiments conducted in this study show that the
performance of the proposed algorithm is insensitive with respect to algorithmic parameters.
Therefore, the parameters used by the proposed SaNSDE algorithm are expected to work
for real application scenarios. In summary, the preliminary results of this study pave the
way for solving the real planning problem in sustainable CPSs by applying the proposed
algorithm. Testing whether the parameters used in the experiments of this study can work
for real data is an interesting future research direction.

6. Conclusions

Although CPSs provide a flexible architecture for enterprises to accommodate changes
in processes, resources and demand, the development of a methodology to realize the flexi-
bility advantage of CPSs is required to plan its processes to meet the goals of production in
terms of time, energy consumption and constraints. We formulated a general optimization
problem for planning processes in sustainable CPSs, taking into account the factors of
time, energy consumption and related constraints. We proposed a solution methodology
to solve this problem based on a self-adaptive Differential Evolution approach with a
neighborhood search mechanism. To verify the proposed methodology, we applied it to
processes with sequential workflows. We tailored the problem formulation of the proposed
general framework for processes with sequential structures. We studied the effectiveness
of the proposed solution algorithm in terms of performance and robustness.

We assessed the performance and robustness of this approach by performing exper-
iments for several cases. By comparing the results of the experiments, it was indicated
that the proposed method outperforms several other algorithms in the literature in terms
of the number of best solutions found regardless of the population size. To illustrate the
robustness of the proposed self-adaptive algorithm, experiments with different settings
of algorithmic parameters were conducted. Two parameters were considered in the ex-
periments to assess the robustness of the proposed algorithm, including population size
and learning period. The population size was set to 10, 30 or 50 for all the algorithms
used in the experiments of this study. Three series of experiments were performed for
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all test cases for NP = 10, 30 and 50. The results show that the average fitness values of
three of the test cases are the same and the differences between the average fitness values
are small in terms of percentage. This indicates that the proposed SaNSDE algorithm is
not sensitive to population size. That is, the proposed self-adaptive algorithm is robust
with respect to population size. To study the effects of the learning period parameter, we
performed three series of experiments by setting the learning period parameter, LP, to 10,
1000 and 2000, respectively, and then analyzed the outcomes by comparing performance
and efficiency. The results of the series of experiments were obtained based on the same set
of test cases. The results show that the sensitivity of the average fitness values obtained by
the proposed SaNSDE algorithm is less than 5% for most cases with only one exception.
This indicates that the proposed SaNSDE algorithm is robust with respect to the learning
period parameter. The preliminary results presented in this paper show that combining a
self-adaptive mechanism with neighborhood search in the Differential Evolution approach
leads to an effective algorithm in comparison with other competitive algorithms. To apply
the proposed algorithm in industrial settings, a further study on the scalability of the
proposed algorithm with respect to the problem size needs to be conducted.

In this paper, we applied the proposed method to study the effectiveness of different
evolutionary algorithms for sequential production processes. As we limited our scope to
sequential processes in this paper to illustrate the solution methodology, the computational
experiences of these results hold for sequential processes. However, the application of the
proposed method is not limited to sequential production processes. The general problem
formulation for planning processes in CPSs proposed in this paper can be applied to
a variety of production processes. Based on the reasoning in the Discussion section of
this paper, the proposed algorithm has the potential to be extended to deal with other
types of production processes. Tailoring the proposed algorithm to deal with other types of
production processes and studying its effectiveness are nontrivial interesting future research
directions. Another future research direction is to develop other evolutionary algorithms
and compare their effectiveness with respect to the algorithms studied in this paper.
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