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Abstract: In this work we present a formalism based on scalar Green’s functions to deal with electro-
magnetic scattering problems. Although the formulations of the Mie theory and Born approximations
in terms of electromagnetic scattering are well known and relevant, they have certain disadvantages:
complexity, computational time, few symmetries, etc. Therefore, the study with scalar Green’s
functions allows dealing with these problems with greater simplicity and efficiency. However, the
information provided by the vector formulation is sacrificed. Nevertheless, different cases of electro-
magnetic scattering of dielectric media with different dimensions, geometries and refractive indices
will be presented. Thus, we will be able to verify the capacity of this scalar method in predicting
light-scattering problems.
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1. Introduction

Scattering problems are of great importance in applications such as optical device
design [1], medical imaging [2], object detection [3,4] and materials science. Theories such
as the Mie theory [5,6], the Born approximation [7] and advanced numerical methods are
essential tools for tackling these problems [8–11]. Some of these methods consist of solving
time-dependent Maxwell’s equations [12,13], obtaining Mie’s coefficients [14], employing
method of moments (MoM) or the Galerkin method [15,16]. However, these theories
have certain disadvantages such as complex and computationally expensive calculations,
application to regular surfaces, lack of accuracy with high dielectric constant or small
dimensions, hard dicretization of the equations, etc. [17–20]. Therefore, in the present work,
a scalar formalism with Green’s functions [21–23] is shown. These show the impulsional
response of a linear system. Specifically, in the electromagnetic domain, an impulsional
response represents a point source in space as if it were a Dirac delta. This makes it possible
to describe the electric and magnetic fields and their potentials in terms of these point
sources. This allows us to know the distribution of the reflected, refracted and scattered
fields. On the other hand, the scalar formulation allows us greater computational efficiency
and the possibility of contrasting this methodology with different scattering cases where an
analytical solution is presented. Moreover, scalar methods are particularly applicable in the
analysis of scattering in homogeneous media (or those in which the refractive index varies
slowly over the thickness) and in the characterization of materials through techniques such
as spectroscopy [24]. To this end, the Helmholtz equation will be derived from Maxwell’s
equations, and the solution of this equation will be posed in terms of the scalar Green’s
functions. In some cases, due to the symmetry of the problem, the dimensionality can be
simplified. In the following, different geometries will be presented in order to analyze
the resulting electromagnetic scattering, varying the system’s own parameters such as
dimensions and refractive index.
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2. Theoretical Background

The Green’s function applied to the Helmholtz equation is the solution of the wave
equation for a point source. Thus, if the solution for this point source is known, then the
solution for a general source can be obtained by the superposition principle. This result
follows from the linearity of the wave equation itself, since any source can be described by
the linear superposition of point sources. For our case, we will consider a scalar field E(r),
which has a source s(r). The Helmholtz equation associated with this system would be

(∇2 + k2)E(r) = s(r) (1)

and using the definition of Green’s scalar function, now renamed g(r, r′), we have that(
∇2 + k2

)
g(r, r′) = −δ(r − r′) (2)

Thus, we can establish a relationship between (1) and (2) as

E(r) = −
∫

V
g(r, r′)s(r′)dr′ (3)

This solution will only depend on R = |r − r′| and in general could be written as

g3D(r, r′) = g(r − r′) =
eik|r−r′ |

4π|r − r′| =
eikR

4πR
(4)

Given the Equations (3) and (4), we can write the scalar field associated with such a
source as

E(r) = −
∫

V

eik|r−r′ |

4π|r − r′| s(r
′)dr′ (5)

2.1. 2D Green Function

As in 3D systems, the scalar Green’s function in 2D geometries will only depend on
the relative position between the source and the observer, so it is convenient to define the
relative coordinates.

r − r′ ≡ ρ − ρ′ = (ρ cos ϕ, ρ sin ϕ, 0) = (x − x′, y − y′, z − z′) (6)

Thus, it is reducing the three-dimensional problem to one in the plane. In the 3D case,
the scalar Green’s function refers to a point source of electromagnetic fields, which are
located in (x′, y′, z′) = (0, 0, z′). However, the 2D case refers to the field generated by an
infinite linear charge source observed in a plane z = const. whose axial dependence for
with the term exp (ikzz). So, one can obtain this 2D Green’s function, g2D(r, r′), as the line
integral of this linear source

g2D(r, r′) =
∫ ∞

−∞
g3D(r, r′)eikzz′ dz′ =

∫ ∞

−∞

eik
√

x2+y2+(z−z′)2

4π
√

x2 + y2 + (z − z′)2
eikzz′ dz′ = − i

4
H0(kρρ)eikzz (7)

where H0(kρρ) denotes the Hankel function of the first kind, k = |k| = |(kρ, kz)| is the
wave vector modulus, and kρ = |kρ| is the transverse wave vector modulus, respectively.

2.2. Discretization of the Equations

Consider the Helmholtz scalar equation applied to the electric field and applied to a
Green scalar function

∇2E(r) + k2
0εBE(r) = −k2

0∆ε(r)E(r) (8)(
∇2 + k2

0εB

)
g(r, r′) = −δ(r, r′) (9)

where ∆ε(r) = ε(r)− εB is the dielectric contrast, indicating the difference in dielectric
permittivity between the object ε(r) and the background εB. The procedure followed to
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obtain the scattered pattern is analogous to the one described in Section II.A of [25] except
that we address the scalar case. On the other hand, if we introduce Equation (9) into
Equation (8), electric field E(r) can be obtained by

E(r) = E(1)(r) +
∫

V
g(r, r′) · k2

0∆ε(r′)E(r′)dr′ (10)

where the integration is calculated over the whole volume of the chosen simulated region
and E(1)(r) refers to the incident electric field. The circumstance to be solved that may
arise in the study of a reduced volume is the singularity |r − r′| → 0. Therefore, when
r ≈ r′, the singularity can be avoided if we exclude that infinitesimal element of volume
δV where this singularity is found. We can then treat this singularity separately, rewriting
Equation (10) as

E(r) = E(1)(r) + lim
δV→0

∫
V−δV

g(r, r′) · k2
0∆ε(r′)E(r′)dr′ − L · ∆ε(r)

εB
E(r) (11)

where L is a scalar term derived from the dyad L [25] which depends on the geometry of
the excluded volume δV. Thus, in our work, the observation point r is located outside the
dispersive medium or “scatterer”, whose position is given by r′. To solve Equation (11)
numerically, we must first define a grating of N nodes which represents the system. Each
node i will be centered in a position ri and will present a volume Vi if we are in 3D or an
area in 2D and a value of dielectric contrast. Following, electric field Ei = E(ri) must be
discretized as well as scalar Green’s function gi,j = g(ri, r j).

Ei = E(1)
i +

N

∑
j=1
j ̸=i

gi,j · k2
0∆ε jEjVj + Mi · k2

0∆εiEi − L · ∆εi
εB

Ei i = 1, . . . , N (12)

and
Mi = lim

δV→0

∫
Vi−δV

g(ri, r′)dr′ (13)

Throughout the implementation of the codes and simulations, it has become clear
that the terms where the scalar Green’s function or the geometric factor L appears, these
prevail over Mi. However, many authors for more complex geometries than the ones we
will deal with in the project show that the Mi term is more relevant than the L term Ei as
in [25]. Equation (12) represents a linear system of equations that can be solved with simple
numerical methods. Expressing the system of equations in the form

E(1)
i = Ei ·

[
1 − Mik2

0∆εi + L
∆εi
εB

]
−

N

∑
j=1
j ̸=i

gi,j · k2
0∆ε jEjVjEj Ei = A−1

G E(1)
i (14)

where AG is the interaction matrix which contains the scalar Green’s function and the
dielectric contrast and geometric factor terms of the source L, which is defined by

AG(i, j) =


1 − Mik2

0∆εi + L
∆εi
εB

if i = j

−gi,jk2
0∆ε jVj if i ̸= j

(15)

Following our notation, Ei is the simulated electric field matrix, and E(1)
i is the incident

field. In terms of the segmentation, this is carried out assuming that the dielectric object is
composed of small circular scatterers [26]. We assign at each point a value of the dielectric
constant and slightly vary the refractive index values to avoid convergence problems due
to boundary conditions.
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2.3. Scalar Analytical Solution

The scalar approximation simplifies the analysis of electromagnetic wave scattering
by reducing the problem to a scalar field rather than dealing with the full vector nature of
electromagnetic fields. This approach is especially useful when the variations in the wave
field occur mainly in a single component, allowing for simpler mathematical handling
and greater computational efficiency. By using scalar fields, we can take advantage of
well-established mathematical techniques, such as Fourier series, to express the fields in
terms of their angular harmonics. Since analytical solutions for cylindrical symmetries
are studied in the literature, we opted to use cylindrical dielectric media. In order to
compare the numerical results, the analytical solution presented in Section 2.1 in [27] is
used. Thus, to achieve this, a homogeneous cylinder is considered to obtain the scattered
field in cylindrical coordinates in terms of a Fourier series in the angular coordinate. Lets
us consider an incident wave front in plane y = 0 parallel polarized with respect to the
z-axis; thus, the electric field in cylindrical coordinates expressed as a Fourier series in the
angular coordinate is given by

E(1)(ρ, ϕ) = E0eikx = E0

∞

∑
m=−∞

im Jm(kρ)eimϕ (16)

where E0 is the amplitude of the incident wave, ϕ is the angle that the scattered wave forms
with respect to the incident wave and J is the Bessel function of first kind. Once we have
expressed the incident field in Fourier terms as a function of the angular harmonics, we
can give the expression for the scattered field E(3) as

E(3)(ρ, ϕ) = E0eikρ cos ϕ = E0

∞

∑
m=−∞

imαm Hm(kρ)eimϕ (17)

This Equation (17) satisfies the Sommerfeld radiation condition at infinity. Here, αm
is a constant describing the continuity of the dielectric field derived by the boundary
conditions as obtained in [28] for a perpendicular polarization across the xz-plane, which is
given by

αm =
nJ′m(ka)Jm(nka)− Jm(ka)J′m(nka)

nJm(nka)H′
m(ka)− J′m(kna)Hm(ka)

(18)

where k = 2π/λ is the modulus of grating vector k, n is the refractive index of the dielectric
media and a is the cylinder radius. The scalar approximation provides significant insight
into the scattering problem by simplifying the analysis. However, it should be noted that
the solutions obtained using this scalar approximation are analogous to those derived from
the full vector treatment in the case of TE (Transverse Electric) polarization. In this context,
TE polarization implies that the electric field is perpendicular to the plane of incidence,
making the scalar approximation of the field a valid representation of the vector field under
these specific conditions, as it is described in [25].

3. Numerical Results

First, the analytical solutions obtained by the Fourier series development of the angular
harmonics are compared with the scalar formalism of Green’s function. In order to achieve
this, consider the following coordinate scheme presented in Figure 1. When a plane wave,
polarized perpendicularly, impinges on the cylinder in the xz-plane with a tilt angle ζ, the
intensity pattern of the scattered light is measured on a screen. On the other hand, the
screen where the intensity pattern is collected can be moved along the axial axis y, and the
intensity can be gathered at different distances from the cylinder.
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Figure 1. Coordinate system for a scattering cylinder.

In the following simulations, we can see the axial evolution of the normalized intensity
of the scattered light with λ = 633 nm in Figure 2a, moving toward the screen with
respect to the cylinder, and the pattern of the scattered light on the screen at a distance
of y = 10 mm, as shown in Figure 2b. We can see that the proposed numerical method
with the Green’s function approximates and behaves in an analogous way to the analytical
solution proposed by Equation (17). Moreover, in Figure 2a, we observe that for values
close to y = 0, the behavior of the axial intensity curve presents some abrupt changes in the
intensity, which is in agreement with the scalar theory of diffraction being in the Fresnel
regime close to the source.

(a) Axial variation of intensity pattern (b) Radial variation of intensity pattern

Figure 2. Cylinder with circular base a = 40 µm and with refractive index of n = 1.5.

Modifying the dimensions of the dielectric medium, in this case reducing its dimen-
sions by half (a = 20 µm), we can observe how the pattern of the scattered beam on
the screen widens with respect to the intensity pattern for a cylinder twice the size; see
Figure 3b with respect to Figure 2b. This result shows that the light scattered by the dielec-
tric medium actually has its origin in the diffraction that the cylinder itself performs when
incident on light [29]. On the other hand, the axial behavior of the intensity of the scattered
beam, as seen in Figure 3a, shows less variation as it approaches the source and decays
faster than a larger scattering medium in comparison with Figure 2a. These two comments
are consistent with the scalar theory of light diffraction. On the other hand, the solution
obtained by the scalar Green’s method fits the analytical solution better (17).
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(a) Axial variation of intensity pattern (b) Radial variation of intensity pattern

Figure 3. Cylinder with circular base a = 20 µm and with refractive index of n = 1.5.

Once it has been demonstrated that the numerical method fits the analytical prediction,
we decided to try different geometries and to analyze the scattered field in the plane. Thus,
the following results represent the light scattering of different dielectric surfaces. For
this purpose, a 2D scalar Green’s function given by Equation (9) is used. In Figure 4a,
we consider a cylinder with an elliptical base with a semi-major axis a = 30 µm and
semi-minor axis b = 10 µm with refractive index n = 1.5. A planar wave front with a
wavelength of λ = 633 nm propagating in air impinges normally on the dielectric surface,
ζ = π/2. We can observe the pattern of the scattered field E(3) once the electromagnetic
wave interacts with the dielectric cylinder. It should be noted that the incident beam is on
the y-axis according to the coordinate system of Figure 4. This presents two clear scattered
wave fronts, which refers to the reflection of the incident wave E(1). On the other hand, in
Figure 4b, the intensity of the refracted field inside the dielectric cylinder is represented.

(a) External electric field E(3) (b) Inner electric field E(2)

Figure 4. Cylinder with elliptical base (a = 30 µm and b = 10 µm) with refractive index of n = 1.5.

Trying other geometries, we opted for a prism with a rectangular base 20 × 30 µm2.
We have in the following Figure 5a the scattered field by this new dielectric medium for
a refractive index n = 1.5 and the internal field for different refractive indices, n = 1.5
in Figure 5b and n = 1.05 in Figure 5c. We can observe how the homogeneity of the
transmitted electromagnetic wave has a certain dependence on the difference between
refractive indices of the dielectric medium with respect to the external medium; in this
case, air n = 1. These results make sense, because the intensity of the field transmitted
by the dielectric medium depends on the refractive index due to the Fresnel equations,
so the greater the relative difference in refractive indices, the less electric field will be
transmitted and the less scattered field there will be at the output of the dielectric medium.
Furthermore, we can see how the areas of highest intensity are at the interface between
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refracting surfaces, and this intensity decreases as the electric field propagates through the
interior of the prism as it occurs in the dielectric cylinder. Good agreement between the
scalar Green method and vector form [30,31] is observed.

(a) Scattered electric field E(3) with n = 1.5

(b) Inner electric field E(2) with n = 1.5 (c) Inner electric field E(2) with n = 1.05

Figure 5. Rectangular prism with base a = 20 µm, b = 30 µm and different refractive index.

4. Discussions

The simplicity of the equations derived from Green’s functions combined with the
proposed numerical method makes this approximate method a good approach to deal
with electromagnetic scattering problems. The literature opts for more complex formalism
and more computationally expensive resolution methods such as FDTD or commercial
software such as COMSOL, HFSS. . . However, the methodology presented in this work
allows to reduce the computational costs by reducing the size of the electric field matrices
and therefore the execution time due to the scalar formalism employing Matlab software.
Moreover, this numerical method has been compared with other analytical solutions
proposed in the literature, and it has been found to fit properly. In addition, phenomena
such as light diffraction have been verified by modifying the dimensions of the selected
dielectric element, which in this work is a homogeneous cylinder. Thus, a distinction
between Figures 2 and 3 is the size of the dielectric cylinder. Figure 2 features a cylinder
with a radius twice that of Figure 3. This difference in dimensions leads to variations
in the diffraction patterns. As expected, the larger cylinder in Figure 2 exhibits a more
complex interference pattern due to the increased number of available scattering modes
and finer subdivision of Fresnel zones. Consequently, the axial representation in Figure 2a
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shows pronounced peaks, reflecting the influence of the dimensionality factor in the matrix
equation. In contrast, Figure 3a presents a smoother profile, more closely resembling the
analytical result, which is likely attributed to the reduced size and its corresponding impact
on the system of equations. Another aspect shown is the transmission of light through a
dielectric medium.

5. Conclusions

To sum up, we can say that Green’s method makes it possible to recreate the phenom-
ena of both diffraction and refraction of light. The results highlight the effectiveness of
this approach, particularly in simpler setups, by providing accurate predictions with less
computational complexity. On the other hand, future research will be carried out to study
more complex geometries or inhomogeneous dielectric media. However, as it is a scalar
method, information about the degree of polarization of the scattered field is missed. This
aspect could be addressed with a vectorial numerical method based on a tensor formalism
with Green’s functions.
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