Parametric Optimization of Linear Ball Bearing with Four-Point Connection in Steer-by-Wire Steering Column by Means of Genetic Algorithm
Abstract
:1. Introduction
2. Formulation of the Optimization Problem
- —number of balls in a linear bearing,
- —ball spacing.
- —number of design variables,
- —value of the i-th variable from the acceptable range of the design variable ,
- —minimum value of the design variable,
- —maximum value of the design variable,
- —objective function.
- —component functions of the function J, for the first and second natural frequencies, respectively,
- —design variable related to the number of balls in the linear bearing,
- —design variable related to the spacing between balls in a linear bearing,
- —the first natural frequency associated with the vertical mod of the steering column,
- —the second natural frequency associated with the lateral mod of the steering column,
- —first circular natural frequency associated with the vertical mod of the steering column,
- —the second circular natural frequency associated with the lateral mod of the steering column.
Genetic Algorithm
- —population index (iterations),
- —the number of chromosomes in the population,
- —chromosome index,
- —J-th chromosome in the population t.
- —the number of genes in a chromosome,
- —I-th gene on the j-th chromosome.
3. Modal Analysis
- , , —matrices, respectively: the mass, stiffness and damping of the system,
- —vectors, respectively: accelerations, velocities and displacements,
- —external load vector.
- —vibration amplitude vector,
- —circular frequency,
- —frequency,
- —vibration period.
- —natural frequency,
- —system stiffness,
- —system Weight.
4. Mathematical Description for Linear Bearings
4.1. Wear and Preload of Linear Ball Bearing with Four-Point Connection
- —reaction forces on a specific contact surface, where ri is the inner raceway and ro is the outer raceway,
- —preload,
- —external load,
- —contact angle between the bearing ball and the raceway.
4.2. Hertz Contact Theory
- —Hertz pressure,
- —diameter of the spherical contact zone,
- —effective radius of curvature for a ball bearing with two radii of curvature and (Figure 9).
4.3. Mathematical Model of Linear Contact Ball Bearing
- —angle of contact between the bearing ball and the raceway,
- —linear bearing ball diameter,
- —minimum radius of curvature of the balls in a linear bearing,
- —minimum radius of contact between the inner and outer raceways,
- —maximum radius of contact between the inner and outer raceways,
- —bearing cage diameter,
- —tangential factor.
- —equivalent radius factor of contact curvatures,
- —the angle between the planes tangent to the bodies in contact at the point of contact (Figure 12),
- —angular dependence on the radii of contact curvatures and the angle of contact occurrence.
- —equivalent material factor in contact,
- —Poisson ratio for the ball,
- —Poisson’s ratio for treadmills,
- —Young’s modulus for the ball,
- —Young’s modulus for treadmills.
- —maximum Hertz stress in contact,
- —deformation in contact,
- a—maximum semi-axis of elliptical contact of the ball with the raceway,
- b—minimum half-shaft of elliptical contact between the ball and the raceway,
- n—exponential load factor,
- k—exponential stiffness factor,
- C1—load factor of one ball,
- C2—coefficient of stiffness of one ball.
- CF—contact stiffness corresponding to the deformation in contact,
- Fnx—preload for ball with treadmill-given load,
- ynx—strain in contact induced by force-given load.
5. Numerical Problem Definition
5.1. Reference Model
5.2. Simplified Model
5.3. Properties of Springs with Nonlinear Characteristics
5.4. Results of Numerical Analyses
6. Optimization Using a Genetic Algorithm
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Mortazavizadeh, S.A.; Ghaderi, A.; Ebrahimi, M.; Hajian, M. Recent Developments in the Vehicle Steer-by-Wire System. IEEE Trans. Transp. Electrif. 2020, 6, 1226–1235. [Google Scholar] [CrossRef]
- Harris, T.A. Rolling Bearing Analysis, 4th ed.; John Wiley and Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- Houpert, L. A uniform analytical approach for ball and roller bearings calculations. ASME J. Tribol. 1997, 119, 851–858. [Google Scholar] [CrossRef]
- Jones, A.B. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. ASME J. Basic Eng. 1960, 82, 309–320. [Google Scholar] [CrossRef]
- Nayak, S. Fundamentals of Optimization Techniques with Algorithms; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Poteralski, A.; Szczepanik, A.; Beluch, M.; Burczynski, W. Optimization of Composite Structures Using Bio-Inspired Methods; Book Series Lecture Notes in Artificial Intelligence; Springer: Cham, Switzerland, 2014; Volume 8468, pp. 385–395. [Google Scholar]
- Burczynski, T.; Dlugosz, A.; Kus, W.; Orantek, P.; Poteralski, A.; Szczepanik, M. Intelligent computing in evolutionary optimal shaping of solids. In Proceedings of the 3rd International Conference on Computing, Communications and Control Technologies, Austin, TX, USA, 24–27 July 2005; Volume 3, pp. 294–298. [Google Scholar]
- Holland, J.H. Outline for biological theory of adaptive systems. J. ACM 1962, 3, 297–314. [Google Scholar] [CrossRef]
- Arbor, A.; Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Holland, J.H.; Reitman, J.S. Cognitive Systems Based on Adaptive Algorithms, Pattern-Directed Inference Systems; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Elbaz, K.; Shen, S.-L.; Zhou, A.; Yuan, D.-J.; Xu, Y.-S. Optimization of EPB Shield Performance with Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm. Appl. Sci. 2019, 9, 780. [Google Scholar] [CrossRef]
- Zou, F.; Li, J.; Min, W. Distributed Face Recognition Based on Load Balancing and Dynamic Prediction. Appl. Sci. 2019, 9, 794. [Google Scholar] [CrossRef]
- Ge, Z.; Li, J.; Duan, Y.; Yang, Z.; Xie, Z. Thermodynamic Performance Analyses and Optimization of Dual-Loop Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery. Appl. Sci. 2019, 9, 680. [Google Scholar] [CrossRef]
- Cucuzza, R.; Domaneschi, M.; Greco, R.; Marano, G.C. Numerical models comparison for fluid-viscous dampers: Performance investigations through Genetic Algorithm. Comput. Struct. 2023, 288, 107122. [Google Scholar] [CrossRef]
- Geradin, M.; Rixen, D.J. Mechanical Vibrations; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zienkiewicz, O.C. The Finite Element Method in Structural and Continuum Mechanics; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Case, J.; Chilver, A.H. Strength of Materials and Structures; Edward Arnold: Baltimore, MD, USA, 1986. [Google Scholar]
- Singh, P.; Joshi, U.K. Fatigue Life Analysis of Thrust Ball Bearing Using Ansys. Int. J. Eng. Sci. Res. Technol. 2014, 3, 156–162. [Google Scholar]
- Dong, Z.; Zhao, D.; Cui, L. Rotating machinery fault classification based on one-dimensional residual network with attention mechanism and bidirectional gated recurrent unit. Meas. Sci. Technol. 2024, 35, 086001. [Google Scholar] [CrossRef]
- Mikołaj, S. Aspekty transformacji eksploatacyjnej warstwy wierzchniej bieżni łożysk tocznych—Przegląd. Dev. Mech. Eng. 2021, 17, 103. [Google Scholar]
- Palmgren, A. Ball and Roller Bearing Engineering; SKF Industries Inc.: Philadelphia, PA, USA, 1959. [Google Scholar]
- Rivera, G.; Tong, V.C.; Hong, S.W. Contact Load and Stiffness of Four Point Contact Ball Bearings Under Loading. Int. J. Precis. Eng. Manuf. 2022, 3, 677–687. [Google Scholar] [CrossRef]
- Sjoval, S. the load distribution within ball and roller bearing under given external radial and axial load. Teknsik Tidskr. Mek. Hfte 1933, 9, 97–102. [Google Scholar]
- Houser, D.R.; Young, W.; Kinzel, G.L.; Rajab, M. Force transmissibility through rolling contact bearings. In Proceedings of the 7th International Modal Analysis Conference, Las Vegas, NV, USA, 30 January–2 February 1989; pp. 147–153. [Google Scholar]
- Budynas, R.G.; Sadegh, A.M. Roark’s Formulas for Stress and Strain; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Pipaniya, S.; Lodwal, A. contact stress analysis of deep groove bearing 6210 using hertzian contact stress. Int. J. Innov. Res. Eng. Sci. 2014, 7, 8–16. [Google Scholar]
- Pandiyarajan, R.; Starvin, M.S.; Ganesh, K.C. Contact Stress Distribution of Large Diameter Ball Bearing Using Hertzian Elliptical Contact Theory. Procedia Eng. 2012, 38, 264–269. [Google Scholar] [CrossRef]
- Harris, T.A.; Kotzalas, M.N. Advanced Concepts of Bearing Technology; Taylor & Francis Group: Melbourne, Australia, 2006. [Google Scholar]
- Whittemore, H.L.; Petrenko, S.N. Friction and Carrying Capacity of Ball and Roller Bearings; Technologic Papers Bureau of Standards, No. 201; US Government Printing Office: Washington, DC, USA, 1921.
- Bhandari, V.B. Design of Machine Elements, 2nd ed.; Tata McGraw Hill Publication: New York, NY, USA, 2003; Chapter 15. [Google Scholar]
- Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H. Sequential Quadratic Programming Methods for Nonlinear Programming. In Computer Aided Analysis and Optimization of Mechanical System Dynamics; NATO ASI Series (Series F: Computer and Systems, Sciences); Haug, E.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 9. [Google Scholar]
- Exler, O.; Schittkowski, K.; Lehmann, T. A comparative study of numerical algorithms for nonlinear and nonconvex mixed-integer optimization. Math. Program. Comput. 2012, 1, 383–412. [Google Scholar] [CrossRef]
- Exler, O.; Schittkowski, K. A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. 2007, 1, 269–280. [Google Scholar] [CrossRef]
Components | Mass [kg] |
---|---|
Upper block | 1.6 |
Bottom block | 2.67 |
Geometrical Properties | - | |
---|---|---|
Ball diameter | 8 | [mm] |
Tangential factor | 0.625 | [-] |
Cage diameter | 8 | [mm] |
Contact angle | 45 | [°] |
Ball | Inner Race | Outer Race | ||
---|---|---|---|---|
Min radius (R1, R2) | 4 | 5 | 5 | [mm] |
Max radius (R1′, R2′) | - | 1.172 | 6.828 | [mm] |
Material Properties | - | |
---|---|---|
Young modulus for balls (E1) | 200,000 | [MPa] |
Young modulus for bearing race (E2) | 200,000 | [MPa] |
Poisson ratio () | 0.3 | [-] |
Inner Race | Outer Race | |
---|---|---|
cosθ | 0.913 | 0.349 |
Principal curvature 1/R2 | −0.2 | −0.2 |
Principal curvature 1/R2′ | 0.854 | −0.146 |
KD | 1.3 | 9.769 |
CE | 9.1 | 9.1 × 10−6 |
μ | 3.295 | 1.295 |
κ | 0.446 | 0.796 |
λ | 0.493 | 0.728 |
O U T P U T | |||||||||
---|---|---|---|---|---|---|---|---|---|
Herz Contact Stresses | Total Rel. Motion | y: Rel. Motion of Approach | c: Max Semiaxis Ellipt. Contact | d: Min Semiaxis Ellipt. Contact | |||||
Input Ball Force | Inner Race | Outer Race | Total Rel. Motion | Inner Race | Outer Race | Inner Race | Outer Race | Inner Race | Outer Race |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 1349.0 | 500.849 | 0.00160 | 0.00091 | 0.00068 | 0.16174 | 0.12453 | 0.02188 | 0.07655 |
20 | 1699.7 | 631.030 | 0.00254 | 0.00144 | 0.00109 | 0.20379 | 0.15689 | 0.02756 | 0.09644 |
50 | 2306.8 | 856.440 | 0.00468 | 0.00267 | 0.00201 | 0.27658 | 0.21294 | 0.03741 | 0.13090 |
100 | 2906.4 | 1079.04 | 0.00743 | 0.00423 | 0.00319 | 0.34847 | 0.26829 | 0.04714 | 0.16492 |
200 | 3661.9 | 1359.51 | 0.01180 | 0.00672 | 0.00507 | 0.43905 | 0.33802 | 0.05939 | 0.20779 |
500 | 4969.9 | 1845.14 | 0.02174 | 0.01239 | 0.00934 | 0.59589 | 0.45877 | 0.08061 | 0.28201 |
1000 | 6261.7 | 2324.73 | 0.03451 | 0.01967 | 0.01483 | 0.75077 | 0.57802 | 0.10156 | 0.35532 |
2000 | 7889.3 | 2928.98 | 0.05478 | 0.03123 | 0.02355 | 0.94591 | 0.72826 | 0.12796 | 0.44767 |
5000 | 10,707 | 3975.24 | 0.10091 | 0.05753 | 0.04338 | 1.28380 | 0.98840 | 0.17366 | 0.60759 |
10 × 105 | 13,490 | 5008.49 | 0.16019 | 0.09132 | 0.06886 | 1.61749 | 1.24531 | 0.21880 | 0.76551 |
20 × 105 | 16,997 | 6310.31 | 0.25428 | 0.14496 | 0.10932 | 2.03791 | 1.56899 | 0.27568 | 0.96449 |
50 × 105 | 23,068 | 8564.41 | 0.46840 | 0.26703 | 0.20136 | 2.76587 | 2.12945 | 0.37415 | 1.30902 |
10 × 105 | 29,064.6 | 10,790.4 | 0.74354 | 0.42389 | 0.31965 | 3.48478 | 2.68293 | 0.47141 | 1.64926 |
C1 | 155,969 |
C2 | 233,954 |
n | 1.5 |
k | 0.5 |
No. Natural Frequencies | Differences in Natural Frequency [%] | ||
---|---|---|---|
8 Balls in the Bearing | 10 Balls in the Bearing | 12 Balls in the Bearing | |
1 | 0.315 | 0.318 | 0.318 |
2 | 0.290 | 0.576 | 1.041 |
3 | 0.047 | 0.888 | 1.829 |
4 | 1.179 | 1.195 | 1.423 |
5 | 0.781 | 0.897 | 0.904 |
6 | 0.874 | 0.936 | 1.018 |
7 | 0.629 | 1.100 | 1.388 |
8 | 0.818 | 0.963 | 1.151 |
9 | 0.505 | 0.671 | 0.740 |
10 | 0.250 | 0.328 | 0.400 |
Parameter Name | Value |
---|---|
Maximum iterations | 50 |
Minimum iterations | 20 |
Population size | 54 |
Type code | real |
Distribution index | 5 |
Mutation rate | 0.01 |
Elite population [%] | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załęski, A.; Szczepanik, M. Parametric Optimization of Linear Ball Bearing with Four-Point Connection in Steer-by-Wire Steering Column by Means of Genetic Algorithm. Appl. Sci. 2024, 14, 8046. https://doi.org/10.3390/app14178046
Załęski A, Szczepanik M. Parametric Optimization of Linear Ball Bearing with Four-Point Connection in Steer-by-Wire Steering Column by Means of Genetic Algorithm. Applied Sciences. 2024; 14(17):8046. https://doi.org/10.3390/app14178046
Chicago/Turabian StyleZałęski, Arkadiusz, and Mirosław Szczepanik. 2024. "Parametric Optimization of Linear Ball Bearing with Four-Point Connection in Steer-by-Wire Steering Column by Means of Genetic Algorithm" Applied Sciences 14, no. 17: 8046. https://doi.org/10.3390/app14178046
APA StyleZałęski, A., & Szczepanik, M. (2024). Parametric Optimization of Linear Ball Bearing with Four-Point Connection in Steer-by-Wire Steering Column by Means of Genetic Algorithm. Applied Sciences, 14(17), 8046. https://doi.org/10.3390/app14178046