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Abstract: Optimal layout problems consist in positioning a given number of components in order to
minimize an objective function while satisfying geometrical or functional constraints. Such kinds of
problems appear in the design process of aerospace systems such as satellite or spacecraft design.
These problems are NP-hard, highly constrained and dimensional. This paper describes a two-stage
algorithm combining a genetic algorithm and a quasi-physical approach based on a virtual-force
system in order to solve multi-container optimal layout problems such as satellite modules. In the
proposed approach, a genetic algorithm assigns the components to the containers while a quasi-
physical algorithm based on a virtual-force system is developed for positioning the components
in the assigned containers. The proposed algorithm is experimented and validated on the satellite
module layout problem benchmark. Its global performance is compared with previous algorithms
from the literature.

Keywords: optimal layout; assignment; satellite module layout problem; hybridization; virtual-force
system; genetic algorithm

1. Introduction
General Context

The design of aerospace engineering systems (e.g., launch vehicles, aircraft and satel-
lites) encompasses multiple stages, from initial concept development to manufacturing.
Each subsequent phase is composed of numerous analyses and optimizations. This enables
designers to determine the most suitable design(s) with respect to the system’s objective(s)
under the hypotheses of the used models. Moreover, in realistic industrial settings, com-
plex systems are often made up of numerous couplings between the several disciplines
that are required for their design [1]. For instance, in the field of aerospace engineer-
ing, the preliminary sizing frequently integrates the coupling between vast fields such as
aerodynamics, propulsion, structure and/or flight mechanics. While a number of those
engineering fields are often tightly integrated at the early design stage, the design of the
internal layout of future systems is, however, often set aside and is rarely part of a fully
integrated design process.

The internal layout refers to the task of determining the most efficient and effective
arrangement of internal components, structures or devices within the given designed space
or system [2]. This problem seeks to optimize the spatial organization of these elements so
as to achieve specific objectives, such as maximizing capacity, minimizing costs, improving
accessibility or enhancing the overall system performance. In fact, internal layout problems
are often solved by hand or by a set of simple heuristic rules (e.g., expert system) able to
mimic the cognitive process of experts. Although this process is performed in the last steps
of the design procedure, it does not guarantee that an overall optimal solution has been
identified at preliminary design stages. Indeed, the arrangement of components often has a
first-order impact on the performance of the system (e.g., for flying qualities of an aircraft
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and power efficiency of an electronic chip) and can thus be critical to the feasibility of a
concept. Therefore, the primary focus revolves around the automated optimization of the
internal layout of complex systems to ensure its compatibility within multidisciplinary
design processes.

Optimal layout problems cover a large spectrum of applications: packing [3–5], facility
layout [6–8], wind farms [9–11], coverage [12–14], complex systems layout problems [15–17],
etc. This paper focuses on complex aerospace systems’ layout problems. In the field of
complex systems design, internal optimal layout problems [15–17] consist in optimizing the
arrangement of components (e.g., various equipment, structure elements and electronics)
within the internal structure or physical space of a complex system. The primary goal of
addressing internal layout problems is to achieve an arrangement that optimizes various
criteria, such as the flying qualities, operational efficiency, accessibility and workflow. More-
over, some geometrical and functional constraints must be satisfied, such as overlapping
constraints, balancing constraints or proximity and distance between some components.

Most of the time, the set of components must be positioned within a single container [18].
In this case, the layout problem consists in finding the optimal positions and orientations
of the components. However, layout problems can also involve positioning the set of com-
ponents within several containers [19]. Consequently, the layout problem transforms into
the task of assigning each component to a specific container while concurrently identifying
the optimal arrangement for the assigned containers. Considering the multi-container con-
figuration gives rise to additional challenges as it complicates the single-container optimal
layout problem’s design search space in terms of both dimensionality and combinatorics.

Thus, this paper focuses on solving multi-container optimal layout problems. As an
illustrative benchmark, the optimal layout of a multi-container satellite module is consid-
ered. More precisely, the simplified model of the telecommunication satellite INTELSAT-III
is employed [19–21]. This application case has been widely studied in the literature and
constitutes a representative optimal layout problem. Figure 1 shows different views of
the satellite module. The layout problem is mostly referred to as a Satellite Module Lay-
out Problem (SMLP) in the literature. This involves determining the optimal assignment
scheme for components within the module’s containers as well as identifying the optimal
positions and orientations of these components within the container. The objective is to
minimize the overall inertia of the system. The following geometrical constraints have to be
satisfied: non-overlapping constraint, balancing constraints and angle of inertia constraints.
Functional constraints must also be satisfied in order to keep some components apart from
a given distance (e.g., to ensure to satisfy specifications about the radiative environment).
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Figure 1. Views of the simplified model of the INTELSAT-III satellite module, as detailed in [20]. The
redder the components, the heavier their corresponding masses.

Over the past twenty years, many approaches have been developed to deal with
optimal layout problems. The first range of techniques are exact methods that guarantee



Appl. Sci. 2024, 14, 8120 3 of 39

the optimality of the solution. Among them, the CPLEX solver [22], the Branch and Bound
algorithm [23–25] and Dynamic Programming [26–28] have been used to solve Quadratic
Assignment Problem [29] and Mixed Integer Linear Programming [30] formulations.

Heuristics have then been developed in order to provide good quality results in a
more reasonable computational time in comparison to exact methods. They mainly consist
of construction [31–33] and improvement-based algorithms [34–36].

The most used approaches employed for optimal layout problems involve the utiliza-
tion of metaheuristic algorithms. These problem-independent techniques are designed to
explore the search space more comprehensively compared to previously employed heuris-
tic methods, often yielding better solutions. Among them, Simulated Annealing [37–40],
Tabu Search [41–43], Genetic Algorithm [16,44–46], Particle Swarm Optimization [47–49],
Covariance Matrix Adaptation–Evolution Strategy [47,50], etc. have been used to solve
various forms of optimal layout problems. Those techniques have also been hybridized
between themselves [51–53] or with heuristic methods [17,54] in order to take advantage of
the strengths of different algorithms and improve their overall computational performance.

Another range of techniques are quasi-physical methods, which have their origins in
both physics and mathematics and aim at mimicking the laws of physics. Most of the time,
they correspond to energy [55] or force-based algorithms [3,56,57].

Eventually, machine learning methods have been applied to layout optimization
problems, although their exploration and investigation in this domain are still relatively
limited at present [58]. For instance, Bayesian Optimization [59], Neural Networks [60] or
Reinforcement Learning [61] have been used to solve optimal layout problems.

In the literature, mostly single-container optimal layout problems are solved. More-
over, considering the SMLP, very few studies include the optimization of the components’
assignment. Most of the time, the components are allocated to the containers with an
assignment scheme based on human knowledge and a method is derived to solely solve
the layout of the assigned containers [20]. Finally, the existing approaches are mostly
based on metaheuristic methods. However, it has been highlighted in [62–64] that meta-
heuristic techniques may present some weaknesses for solving problems with complex
combinatorial spaces or a large number of constraints. In that respect, this paper aims
to develop a two-stage algorithm combining a genetic algorithm and a quasi-physical
approach for component assignment and layout optimization. In this approach, a genetic
algorithm is devoted to the assignment task at the upper level of the algorithm while a
quasi-physical algorithm based on a virtual-force system is derived to optimize the layout
of the assigned containers.

The rest of the paper is organized as follows: Section 2 reviews the existing methods for
optimal layout problems with a focus on the SMLP. Section 3 introduces the mathematical
formulation of the multi-container SMLP. In Section 4, the proposed algorithm is described.
Finally, the proposed approach is applied in Section 5 to the multi-container SMLP and the
results are analyzed and compared to classical methods with previously published results.

2. State of the Art

This section is devoted to the review of existing methods for solving optimal layout
problems. They are usually classified into different categories: exact methods, heuris-
tic methods, metaheuristics, hybrid approaches, quasi-physical methods and machine
learning techniques.

2.1. Methods for Optimal Layout Problems
2.1.1. Exact Methods

The exact methods stand for methods that ensure the optimality of the solution. In
that respect, many exact methods have been deployed in order to solve the mathematical
models developed to define several optimal layout problems. The very first approach to
solve layout problems is the Quadratic Assignment Problem (QAP) model, first introduced
in [29]. QAP is developed in order to find the optimal positions of equal-area components
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on discrete locations [65,66]. An alternative way to formulate layout problems is Mixed
Integer Linear Programming (MILP), first introduced in [30]. The MILP model uses a
continuous/discrete representation and is thus more representative of the layout problem
structure than the QAP model [67–69]. Branch and Bounds (B&B) resolution methods have
also been used in order to solve the aforementioned mathematical formulations and have
been successfully applied to optimal layout problems [23–25]. Finally, Dynamic Program-
ming techniques have been used in order to solve instance cutting or packing problems [26–28].

2.1.2. Heuristic Methods

In order to obtain results in a reasonable computational budget in comparison to exact
methods, a lot of research has focused on heuristic methods. Heuristic algorithms, while
lacking a guarantee of optimality, are dedicated to the search for interesting solutions. One
of the oldest heuristics is the Construction Method. The principle of construction-type
heuristics is to build a single solution from scratch by iteratively selecting and locating
the items until the layout is complete. Two representative construction-based heuristic
algorithms are the CORELAP [70] and the ALDEP algorithms (Automated Layout Design
Program) [31–33]. Another type of heuristic mechanisms corresponds to the Improvement
algorithms, which start with an initial feasible layout and then try to improve it by exchang-
ing items. The most widely used improvement-based heuristic procedure is the CRAFT
(Computerized Relative Allocation of Facilities Technique) algorithm, which has been
successfully applied to many different optimal layout problems [35,36,71]. Certain studies
have integrated both construction and improvement heuristics as in [72–74] through the
development and application of a greedy randomized adaptive search procedure (GRASP)
to various optimal layout packing problems.

2.1.3. Metaheuristics

Metaheuristics are problem-independent techniques that aim at exploring the search
space more than heuristic methods and, thus, often provide more interesting solutions.
Consequently, during the past 20 years, mostly metaheuristic algorithms have been used in
order to solve optimal layout problems.

In [75], Singh et al. reviewed methods that have been applied to facility optimal layout
problems, which are mainly metaheuristic techniques. Among them, Simulated Annealing
(SA) [37–40], Tabu Search (TS) [41–43], Variable Neighborhood Search (VNS) [76–78], Ge-
netic Algorithms (GA) [15,18,79,80], Particle Swarm Optimization (PSO) [48,49], Differential
Evolution [11,81], Covariance Matrix Adaptation–Evolution Strategy [47,50], Ant Colony
Optimization [82,83], Scatter Search [84,85] and Quality–Diversity algorithms [86–88] have
been successfully applied to various optimal layout problems.

2.1.4. Hybrid Approaches

With the increase in the number of design objectives, constraints or design variables,
other techniques have been proposed in order to improve the computational performance
of the previously mentioned algorithms. Among them, cooperative co-evolutionary al-
gorithms (CCEAs), first introduced by Potter and De Jong [89], based on the divide-and-
conquer method along with the biological model of co-evolution of cooperating species
have been developed. CCEAs allow users to tackle a complex optimization problem by
decomposing it into multiple subproblems, each solved with a separate evolutionary algo-
rithm. A complete problem solution is constructed by merging the representative members
of each subpopulation (associated to one subproblem) through cooperative co-evolution
mechanisms. Ma et al. recently proposed a survey on CCEAs [90]. Those algorithms were
successfully applied to optimal layout problems [19,21,91]. Metaheuristics have also often
been hybridized between themselves, as in [52,53,70]. Finally, those techniques have been
hybridized with exact methods and heuristic techniques in [17,54,92].
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2.1.5. Quasi-Physical Methods

Quasi-physical methods are techniques that have both physical and mathematical
roots and aim to mimic physical laws. Most of the time, they correspond to energy- or force-
based algorithms. Among them, local search strategies based on an energetic and physical
modeling have been used to solve various packing problems [55,56,93]. The Gravitational
Search algorithm (GSA) can also belong to this category as it is based on the law of gravity
and mass interactions. It has been successfully applied to optimal layout problems [94,95].
Finally, one other quasi-physical approach is referred to as the virtual-force method and
consists in applying forces to the items in order to induce virtual movements thanks to
dynamic physical laws. Virtual-force systems-based methods have mostly been applied to
coverage and packing problems, where elastic models resulting in virtual forces are applied
to the items’ positions in order to satisfy the overlapping or balancing constraints [3,56,57].

2.1.6. Machine Learning Techniques

Recently, machine learning methods have been applied to layout optimization prob-
lems even if they are less investigated. Burggräf et al. conducted a study on the use of
machine learning as resolution techniques for facility layout problems in [58]. Among
machine learning techniques, Neural Networks [60], Reinforcement Learning [61,96] and
Bayesian Optimization [59,97,98] have been explored for solving optimal layout problems.

2.2. Layout Problem for Aerospace Systems

The creation of a new spacecraft involves a series of steps, beginning with conceptual
studies and culminating in its manufacturing [99]. At the conceptual stage, the focus is on
evaluating different possible designs for the spacecraft’s electrical and mechanical systems
to select one that meets the mission’s goals. Therefore, the optimal layout of aerospace
systems is crucial, as it significantly influences the overall performance of the system [100].

The pioneering works by Ferebbe et al. [101,102] are among the earliest to propose
numerical optimization methods for automating the equipment layout determination
process in the conceptual phase of spacecraft design.

Several papers have focused on optimizing the structural layout of aerospace
systems [103–106]. Moreover, a series of studies [16,20,107,108] investigated the effec-
tiveness of various numerical methods when applied to the optimization of the locations of
a given set of components within telecommunication satellites. These studies primarily
focused on positioning equipment based on the spacecraft’s mass properties, such as the
position of the mass center and the magnitude and direction of the principal axis of inertia,
while adhering to geometric constraints. In [109–111], thermal considerations and the
minimization of wiring between equipment were introduced as additional objectives in the
exploration of candidate solutions within the design space.

2.3. Focus on Satellite Module Layout Problems

The application case considered in this paper is the Satellite Module Layout Problem
(SMLP) [19,21,112]. The SMLP has been studied for the past 20 years and is considered as a
representative optimal layout problem for the aerospace industry. Mainly, metaheuristic
techniques have been developed in order to deal with this benchmark, sometimes assisted
by other methods.

Grignon et al. [113] adopted a Pareto genetic algorithm for optimizing the compactness,
assembly and maintenance of a small SMLP composed of seven components and a single-
container. Shafaee et al. [114] proposed a hybrid algorithm combining a genetic algorithm
and sequential quadratic programming (SQP) to solve the layout of spacecraft propellant
systems comprising six components.

Those studies involved less than a dozen components. With the increase in the num-
ber of components, objective functions and constraints, cooperative co-evolutionary and
hybrid algorithms were developed in order to deal with up to 60 components. Teng et al.
developed a dual-system cooperative co-evolutionary algorithm (named Oboe-CCEA) for
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the SMLP based on both the cooperative co-evolutionary framework and the variable-
grain model [20]. Li et al. proposed a hybrid multi-mechanism optimization approach
(HMMOA) for the satellite layout optimization problem [115]. Cui et al. developed a new
dual-system cooperative co-evolutionary algorithm for the SMLP based on the cooperative
co-evolutionary framework [112].

The previous studies dealt with multi-container configurations of the SMLP, as de-
scribed in Figure 1. However, the assignment of the components to the containers was
fixed and determined thanks to human expert knowledge. The mentioned methods only
focused on solving the layout of the components in the four containers. Some recent
studies optimized the assignment of the components in addition to their layout. Xu et al.
proposed an integrated assignment and layout method for an SMLP [116]. This approach
adopts Tabu Search and Differential Evolution to solve the component assignment and
layout optimization problems. However, the number of components was limited to 19.
Cui et al. proposed a two-stage algorithm called Dynamic FS to solve both assignment
and layout tasks of the multi-container SMLP [19]. Heuristic rules are used to assign
the components. They are mathematically translated into a multi-objective optimization
problem and an NSGA-II algorithm is employed to optimize it. The assignment list is then
determined using a fuzzy decision-making method. The layout task is performed using the
NDCCDE/DPSO algorithm from [112], which corresponds to a dual-system cooperative
co-evolutionary algorithm.

Most of the previous methods used to tackle optimal layout problems and, more
particularly, Satellite Module Layout Problems rely on metaheuristic frameworks. Meta-
heuristic algorithms provide various frameworks that can be easily adapted to the problems
at hand and benefit from a large number of references in the literature. However, it has
been highlighted in [62–64] that pure metaheuristic techniques may present some weak-
nesses for solving problems with complex combinatorial spaces or a large number of
constraints. Moreover, a small number of studies tackle both assignment and layout tasks
of the considered SMLP benchmark [19].

Consequently, in this paper, a two-stage algorithm combining the Genetic Algorithm
for optimizing the assignment and a quasi-physical approach for optimizing the layout
of multi-container optimal layout problems is proposed. It is applied to the SMLP as
a benchmark.

3. Formulation of the Satellite Module Layout Problems
3.1. Geometry of the Containers and the Components

The satellite module corresponds to two bearing plates defined by their radius Rout
and their thickness Hp. They are disposed at the heights H1 and H2 in a cylindrical module
of height H3. Thus, four surfaces Sk, k ∈ {1, 2, 3, 4} are laid out. A central column of
radius Rin results in circular exclusion zones centered at the z axis on each surface. The
whole module is characterized by its mass msat and its geometrical inertia along each axis—
Ix,sat, Iy,sat and Iz,sat—resulting in a global inertia defined as Isat = Ix,sat + Iy,sat + Iz,sat. The
center of gravity of the empty module is positioned at (xsat, ysat, zsat). Figure 2 illustrates
the multi-container configuration.

N = 60 components are to be positioned, divided into Ncub cuboids and Ncyl cylinders,
as proposed in [20]. They are listed in Table A1 in Appendix A alongside the numerical
values of the dimensions and dynamical features of the container.
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Figure 2. Geometrical definition of the multi-container configuration. The Oxyz system of coordinates
is linked to the satellite module while the O′x′y′z′ system of coordinates is linked to the system of
components. O′ stands for the current center of gravity of the components. The O′′x′′y′′z′′ system
of coordinates is linked to one component i, which is located on one plate with the position of its
center of inertia (xx,i, xy,i) and its orientation xα,i. The redder the components, the heavier their
corresponding masses.

3.2. Design Variables

In the multi-container configuration, the components must be assigned to one of the
four surfaces and be laid out on the corresponding surface. Therefore, the design variables
are the following, where purely continuous variables are denoted pc and discrete variables
are denoted by pd.

• For each component, the number of its assigned surface pd
s = {pd

s,i}, i ∈ {1, ..., N},
where pd

s,i are defined as unordered discrete variables;
• The location of the center of inertia of each component on the assigned surface consid-

ered as continuous variables pc
l = {pc

x,i, pc
y,i}, i ∈ {1, ..., N};

• The orientations of cuboid components on the assigned surface are considered as
discrete variables with values of 0° or 90°, pd

α = {pd
α,i}, i ∈ {1, ..., Ncub}.

Thus, the number of design variables nvar is defined as:

nvar = N + 2Ncyl + 3Ncub = 3Ncyl + 4Ncub (1)

3.3. Objective Function

The objective function to minimize is the total inertia of the module. Three systems of
coordinates are considered:

• Ox′′y′′z′′: the local coordinate system related to each component. O′′ corresponds to
the center of inertia of the component and the axes are defined with the symmetry
planes of the components.

• O′x′y′z′: the coordinate system related to the system of components. O′ stands for
the current centroid of the system of components and the axes are defined with the
symmetry planes of the module.

• Oxyz: the coordinate system related to the module. O is the geometric center of the
container and the axes are defined using its symmetry planes.

The three coordinate systems are illustrated in Figure 2.
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The global inertia Itot to minimize is calculated in the O′x′y′z′ coordinate system, as
proposed in [19,20,108], and defined as

Itot(pc
l , pd

α, pd
s ) = Ix′x′(p

c
l , pd

α, pd
s ) + Iy′y′(p

c
l , pd

α, pd
s ) + Iz′z′(p

c
l , pd

α, pd
s ) (2)

With the same formalism as the previous section, the solid inertias specific to each
component with relation to their system of coordinates O′′x′′y′′z′′ are written Ix′′ ,i, Iy′′ ,i
and Iz′′ ,i.

The inertia of the module along each axis of the Oxyz coordinate system are written as
follows:

Ixx(pc
l , pd

α, pd
s ) = Ix,sat +

N

∑
i=1

Ix′′ ,i cos(pd
α,i)

2 + Iy′′ ,i sin(pd
α,i)

2 + mi(pc
y,i

2 + pd
z,i(p

d
s )

2
) (3)

Iyy(pc
l , pd

α, pd
s ) = Iy,sat +

N

∑
i=1

Iy′′ ,i cos(pd
α,i)

2 + Ix′′ ,i sin(pd
α,i)

2 + mi(pc
x,i

2 + pd
z,i(p

d
s )

2
) (4)

Izz(pc
l , pd

α, pd
s ) = Iz,sat +

N

∑
i=1

Iz′′ ,i + mi(pc
x,i

2 + pc
y,i

2) (5)

where (pc
x,i, pc

y,i, pd
z,i) are the coordinates of component i in the Oxyz system of coordinates.

The coordinates along the z-axis, pd
z,i, are discrete and calculated thanks to the value of

the pd
s variables corresponding to the assigned container. Then, the inertias are calculated

along the axes of the O′x′y′z′ coordinate system using the Huygens theorem:

Ix′x′(p
c
l , pd

α, pd
s ) = Ixx(pc

l , pd
α, pd

s )− (y2
c + z2

c )mtot (6)

Iy′y′(p
c
l , pd

α, pd
s ) = Iyy(pc

l , pd
α, pd

s )− (x2
c + z2

c )mtot (7)

Iz′z′(p
c
l , pd

α, pd
s ) = Izz(pc

l , pd
α, pd

s )− (x2
c + y2

c )mtot (8)

where (xc, yc, zc) are the coordinates of the center of gravity of the module in the Oxyz
system of coordinates and mtot = (msat + ∑N

i=1 mi) is the mass of the whole module.

3.4. Constraint Functions

The following geometrical and functional constraints are considered:

• Overlapping constraints between components: No overlapping between components
is allowed on each surface. As in [19,20,108], the plates are supposed to be sufficiently
spaced to avoid any overlapping between components positioned on the surfaces S2
and S3. The overlapping constraint between components is formulated as follows:

hC
overlap(p

c
l , pd

α, pd
s ) =

Ns

∑
k=1

Nk−1

∑
i=1

Nk

∑
j=1

∆AC
ij,k(p

c
l , pd

α, pd
s ) (9)

where Ns = 4 is the number of surfaces, Nk is the number of components on surface k
and ∆AC

ij,k corresponds to the 2-dimensional projections (along the z axis) of compo-
nents i and j on the surface k and is a function of the centers of inertia and orientations
of the components.

• Overlapping constraints between the components and the exclusion zones: No over-
lapping between the components and the exclusion zones is allowed on each surface.
The overlapping constraint is expressed as

hE
overlap(p

c
l , pd

α, pd
s ) =

Ns

∑
k=1

N

∑
i=1

∆AE
i,k(p

c
l , pd

α, pd
s ) (10)

where ∆AE
i,k is the area of intersection between the two-dimensional projection (along

the z axis) of a component and the exclusion zone on the surface k and is a function of
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the centers of inertia and orientations of the components (as well as the positions and
shapes of the exclusion zones).

• Balancing constraints: The center of gravity (CG) of the whole laid out module must
be positioned near the center of gravity of the empty module within a given tolerance
along the x and y axes. Then, the balancing constraint can be formulated as follows:

gCG(pc
l , pd

α, pd
s ) =

√
(xc − xsat)2 + (yc − ysat)2 − δCG (11)

where (xc, yc, zc) are the coordinates of the current CG of the whole module, also
referred to as O′ in the system Oxyz; (xsat, ysat, zsat) are the coordinates of the empty
satellite module in the Oxyz system; and δCG represents a tolerance that corresponds
to a sphere centered at the empty satellite module center of gravity and is set to the
numerical value of 3.0, without loss of generality.

• Constraints relative to the angles-of-inertia: In the multi-container configuration, a
geometrical constraint corresponding to the angles of inertia is added, with a cor-
responding tolerance δAI . The constraint relative to the angles of inertia is defined
as follows:

gAI(pc
l , pd

α, pd
s ) =

√
θx′y′(pc

l , pd
α, pd

s )
2 + θx′z′(pc

l , pd
α, pd

s )
2 + θy′z′(pc

l , pd
α, pd

s )
2 − δAI (12)

where θx′y′ , θx′y′ and θy′z′ are the angles of inertia defined as

θx′y′(p
c
l , pd

α, pd
s ) = arctan

(
−

2Ix′y′(pc
l , pd

α, pd
s )

(Iy′y′(pc
l , pd

α, pd
s )− Ix′x′(pc

l , pd
α, pd

s )

)/
2 (13)

θx′z′(p
c
l , pd

α, pd
s ) = arctan

(
−

2Ix′z′(pc
l , pd

α, pd
s )

(Ix′x′(pc
l , pd

α, pd
s )− Iz′z′(pc

l , pd
α, pd

s ))

)/
2 (14)

θy′z′(p
c
l , pd

α, pd
s ) = arctan

(
−

2Iy′z′(pc
l , pd

α, pd
s )

(Iy′y′(pc
l , pd

α, pd
s )− Iz′z′(pc

l , pd
α, pd

s ))

)/
2 (15)

where the inertias Ix′y′ , Iy′z′ and Iy′z′ are expressed as

Ix′y′(p
c
l , pd

α, pd
s ) =

N

∑
i=1


mi pc

x,i p
c
y,i +

Ix′′i + mi(pc
y,i

2 + pd
z,i

2
)

− Iy′′i −mi(pc
x,i

2 + pd
z,i

2
)

2
sin(2pd

α,i)


− xcycmtot

(16)

Ix′z′(p
c
l , pd

α, pd
s ) =

N

∑
i=1

mi pc
x,i p

d
z,i − xczcmtot (17)

Iy′z′(p
c
l , pd

α, pd
s ) =

N

∑
i=1

mi pc
y,i p

d
z,i − yczcmtot (18)

• Functional constraints: These are also defined in terms of incompatibility between sev-
eral components. Thermal as well as electromagnetic thresholds are defined such that
some components responsible for thermal or electromagnetic fields must be spaced
away at given distances. More precisely, a set CH of pairs of incompatible heat compo-
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nents {i, j} ∈ CH and a set CE of pairs of incompatible electromagnetic components
{i, j} ∈ CE are defined. Thus, the thermal functional constraint is defined as

gH(pc
l , pd

α, pd
s ) =

Card(CH)

∑
k=1

dH − dk(p
c
l , pd

α, pd
s ) (19)

where Card(CH) is the cardinal of the set CH corresponding to the list of incompatible
pairs of thermal radiative components, dk is the distance between the two components
of pair k if positioned on the same surface and dH is the minimal distance between the
two components of each pair of CH .
With the same formalism, the electromagnetic functional constraint is defined as

gE(pc
l , pd

α, pd
s ) =

Card(CE)

∑
k=1

dE − dk(p
c
l , pd

α, pd
s ) ≤ 0 (20)

where Card(CE) is the cardinal of the set CE corresponding to the list of incompatible
pairs of electromagnetic components, dk is the distance between the two components
of pair k if positioned on the same surface and dE is the minimal distance between
the two components of each pair of CE. The list of thermal and electromagnetic
incompatible components is specified in Appendix A.

3.5. Mathematical Formulation

Thus, multi-container SMLPs can be mathematically defined as follows:

min
pc

l ,pd
α ,pd

s

Itot(pc
l , pd

α, pd
s )

w.r.t. pc
l ∈ Fpc

l
⊆ Rnpc

l , pd
α ∈ Fpd

α
⊆ Nn

pd
α , pd

s ∈ Fpd
s
⊆ Nn

pd
s

s.t. hC
overlap(p

c
l , pd

α, pd
s ) = 0

hE
overlap(p

c
l , pd

α, pd
s ) = 0

gCG(pc
l , pd

α, pd
s ) ≤ 0

gAI(pc
l , pd

α, pd
s ) ≤ 0

gH(pc
l , pd

α, pd
s ) ≤ 0

gE(pc
l , pd

α, pd
s ) ≤ 0

(21)

Remarks on the Inertia Equations

In all the papers dealing with the SMLP [19,20,48,108,112,117], the inertias are calcu-
lated along with the axes of the O′x′y′z′ system corresponding to the coordinate system
linked to the current centroid of the whole module. They are obtained by calculating
the inertia in the Oxyz system and then by applying Huygens theorem, which leads to
Equations (6)–(8). However, as the objective function is to minimize the sum of the three
aforementioned equations, it will also lead to a maximization of the three positive second
terms:

(y2
c + z2

c )mtot,
(x2

c + z2
c )mtot,

(x2
c + y2

c )mtot.

Thus, the formulation of the inertia also contributes to maximize the coordinates of the
global center of gravity of the module. As the balancing constraint (Equation (10)) bounds
these coordinates to a tolerance zone, the optimization process will lead to a positioning of
the center of gravity to the boundaries of the balancing constraint. However, the goal of the
optimization process would rather be to minimize the inertia along with positioning the
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center of gravity as close as possible to a position of reference, which often corresponds
to the geometrical center of the module or to the center of gravity of the empty module
if different.

Moreover, the first terms of the inertia equations are calculated in the Oxyz system
of coordinates, which is linked to the bottom of the satellite. Minimizing these quantities
includes minimizing the terms mi pc

x,i
2 and mi pc

y,i
2 but also mi pd

z,i
2
. Then, the optimization

process based on these inertia equations might overload the bottom surfaces S3 and S4,
which leads to an unbalanced satellite module.

Consequently, in order to avoid the two aforementioned issues, the inertia equations
should be written in the system of coordinates linked to the position of reference where
the center of gravity has to be positioned, as developed in Appendix B. However, in the
present study, for the sake of numerical comparison with existing works, the equations
employed in the literature, i.e., Equations (6)–(8), are used in the following experiments.

4. Two-Stage Algorithm Combining Genetic Algorithm and Quasi-Physical Approach
4.1. General Structure of the Algorithm

In the case of the multi-container SMLP as well as in the majority of cases addressed
in the literature [19,118–122], the assignment and layout tasks are fully separated. Con-
sequently, an objective function related to the assignment that only relies on the design
variables of the assignment scheme can be defined, while a layout objective function takes
as argument the pc

l and pd
α layout design variables as well as the assignment scheme found

by the upper optimization problem and described by the pd
s variables. The resulting formu-

lation is a nested problem, with an outer problem handling the assignment variables and
an inner problem handling the variables dealing with the positions and orientations of the
components. The mathematical formulation of the resulting nested optimization problem
is as follows:

min
pd

s

fassignment(pd
s )

s.t. hassignment(pd
s ) = 0

gassignment(pd
s ) ≤ 0

h∗layout(p
c
l
∗, pd

α
∗
, pd

s ) = 0

g∗layout(p
c
l
∗, pd

α
∗
, pd

s ) ≤ 0

w.r.t. pd
s ∈ Fz ⊆ Nn

pd
s

{pc
l
∗, pd

α
∗} = argmin flayout(p

c
l , pd

α, pd
s )

w.r.t. pc
l ∈ Fpc

l
⊆ Rnpc

l , pd
α ∈ Fpd

α
⊆ Nn

pd
α

hlayout(p
c
l , pd

α, pd
s ) = 0

glayout(p
c
l , pd

α, pd
s ) ≤ 0

(22)

where fassignment, hassignment and gassignment are, respectively, the objective function, the
equality and the inequality constraint functions related to the assignment, taking as argu-
ment only the pd

s design variables. flayout is the objective function related to the layout,
taking all design variables as arguments. h∗layout and g∗layout ensures that a feasible layout
has been found by the inner optimization problem. The star symbol (∗) stands for optimal
values of optimization variables (and corresponding constraints) provided by the inner
optimization problem.

To address the formulation detailed in the equation system (22), a two-stage algorithm
is proposed. The upper and lower stages aim at solving the assignment task and the layout
task, respectively. Each stage is described as follows.



Appl. Sci. 2024, 14, 8120 12 of 39

4.2. Assignment Task
4.2.1. Formulation of the Assignment Subproblem

The upper stage solves the assignment task. It takes as input the list of geometrical
features of the components and the containers (dimensions, masses and exclusion zones).
The output of the upper stage is an archive of NAS assignment schemes corresponding to
NAS lists of assigned containers to each component. Thus, the design variables to optimize
are pd

s = {pd
s,i}i∈{1,...,N}, where pd

s,i ∈ {1, . . . , n}.
In order to minimize the global inertia, the components should be distributed among

the containers such that their center of gravity along the z axis is centered at the center
of gravity of the empty module. Then, the assignment objective function consists in
minimizing the terms of the global inertia equations depending on the pc

z,i variables while
positioning the center of gravity of the components along the z axis in a tolerance zone
centered at the empty module center of gravity and while not exceeding a 65% occupation
rate per container (without loss of generality). Indeed, for the SMLP problem, larger
occupation rates might lead to unfeasible layout configurations [123]. The corresponding
optimization subproblem is formulated as follows:

min
pd

s

N

∑
i=1

mi(pd
z,i(p

d
s )− ze)

2

w.r.t. pd
s ∈ Fpd

s
⊆ {1, 2, 3, 4}N

s.t. gCG(pd
s ) ≤ 0

gj
O(p

d
s ) ≤ 0 for j ∈ {1, 2, 3, 4}

(23)

where pd
z,i are the positions of the center of inertia of the components of mass mi that are

defined by the values of pd
s in the assignment list. ze is a position of reference, which is taken

as the center of gravity of the empty module. The inequality constraints are, respectively,
as follows:

• The balancing constraint:

gCG(pd
s ) =

∣∣∣∣∣∑
N
i=1 mi pd

z,i

∑N
i=1 mi

− ze

∣∣∣∣∣− δCG,z (24)

The value of δCG,z represents the size of the tolerance zone for the positioning of the center
of gravity along the z-axis. Without loss of generality, it is taken as equal to 3.0, which cor-
responds to the size of the tolerance zones along the x- and y-axes [19,20,48,108,112,117]
so that the center of gravity must be positioned in a sphere of tolerance with a radius
of 3.0 mm centered at the geometrical center of gravity of the empty module.

• The occupation rate constraints defined for each surface j:

gj
O(p

d
s ) =

Acomponents
j

Acontainer
j

−ORlim (25)

where Acomponents
j is the total area of the components assigned to container j and

Acontainer
j is the area of container j. ORlim corresponds to the occupation rate that

should not be exceeded in each container. It is taken equal to 0.65 to ensure a compro-
mise between container filling and problem feasibility, as shown in [123,124].

4.2.2. Algorithm for the Assignment Task

The problem to solve is a constrained categorical combinatorial problem. The size of
the design space is nN . Metaheuristics have been widely employed to solve this kind of
problem [125]. Among these methods, Genetic Algorithms are preferred due to their capac-
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ity for global exploration, especially when dealing with multi-modal objective functions.
Additionally, Genetic Algorithms can effectively handle a substantial number of variables,
distinguishing them from other methods such as Bayesian Optimization. Moreover, they
have been widely employed to solve highly combinatorial problems and can inherently
deal with categorical variables in comparison to other metaheuristic techniques like PSO.

4.3. Layout Task
4.3.1. Formulation of the Layout Subproblem

The lower stage solves the layout task. This stage takes as input the assignment list
provided by the upper stage. The outputs are the lists of positions and orientations of
each component in its assigned container. In the multi-container SMLP, the layout of each
container can be independently solved. In other words, the constraints are individually
defined for each container and there is no constraint function that requires a simultaneous
resolution of the containers’ layouts. Consequently, the design variables to optimize are
pc

l = {pc
x,i, pc

y,i}, i ∈ {1, ..., N} and pd
α = {pd

α,i}, i ∈ {1, ..., Ncub}, where pd
α,i ∈ {0, 90}. Those

variables are optimized with respect to the assignment scheme pd
s from the upper level.

The corresponding optimization subproblem solved for each container is formulated
as follows:

min
pc

l ,pd
α

Itot,SC(pc
l , pd

α, pd
s )

w.r.t. pc
l ∈ Fpc

l
⊆ Rnpc

l , pd
α ∈ Fpd

α
⊆ {0, 90}n

pd
α

s.t. hC
overlap,SC(p

c
l , pd

α, pd
s ) = 0

hE
overlap,SC(p

c
l , pd

α, pd
s ) = 0

h f unctional,SC(p
c
l , pd

α, pd
s ) = 0

gCG,SC(pc
l , pd

α, pd
s ) ≤ 0

(26)

where Itot,SC stands for the inertia of one container and hC
overlap,SC, hE

overlap,SC, h f unctional,SC and
gCG,SC are the overlapping, functional and balancing constraints calculated for
one container.

4.3.2. Algorithm for the Layout Task

The proposed algorithm to solve the layout of each assigned container is a Component
Swarm Optimization algorithm based on a Virtual-force system (CSO-VF) [124]. This
algorithm is in line with other quasi-physical algorithms based on the virtual-forces system,
as discussed in [3,56,57,126].

The main focus of the algorithm is to define dedicated operators for the evolution of
a dynamical system of the components based on the fundamental principle of dynamics
to efficiently satisfy the constraints while minimizing the objective function. In CSO-
VF, each component is assumed to be a particle in a swarm. At each iteration of the
algorithm, depending on the virtual forces that are applied to the particle, each component
moves within the container until the objective function is minimized and all constraints
are satisfied.

It is important to note that this type of algorithms differs from classical Particle Swarm
Optimization (PSO) algorithms. Indeed, in the CSO-VF algorithm, each particle of the
swarm corresponds to a single component; thus, to a subset of the entire solution while in
PSO algorithms, a particle corresponds to an entire solution, i.e., an entire layout.

Virtual-Force System

In the CSO-VF algorithm, each component i is described by its dynamic features:

• Its translational and rotational accelerations ai and Li;
• Its translational and rotational speeds vi and ωi;
• Its position pc

l,i and orientation pd
α,i.
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NF forces (Fk
i , k ∈ {1, ..., NF}, for component i) with a resultant Fi as well as NT torques

(Tk
i , k ∈ {1, ..., NT}, for component i) with a resultant Ti are applied to the component in

order to induce a movement at each iteration, as depicted in Figure 3. It must be noted that
the torques are applied to non-circular components only.

𝐩𝛼,𝑖
𝑑

𝐩𝑙,𝑖
𝑐 , 𝐯𝑖 , 𝐚𝑖

𝐩𝛼,𝑖
𝑑 , 𝛚𝑖 , 𝐋𝑖

Figure 3. Definition of a component.

At the end of an iteration, the resulting force Fi and torque Ti are calculated for each
component using Equations (27) and (28). The Fundamental Principles of the Dynamics of
rotation and translation are applied in order to update the positions and orientations of
the swarm of components at step t + 1 (separated from step t by ∆t, which corresponds to
a time unit) according to Equations (29)–(31) (detailed for component i with mass mi and
solid inertia Ii).

Fi =



NF

∑
k=1

Fk
i if

∥∥∥∥∥ NF

∑
k=1

Fk
i

∥∥∥∥∥ ≤ Fmax

∑NF
k=1 Fk

i∥∥∥∑NF
k=1 Fk

i

∥∥∥ Fmax otherwise.
(27)

Ti =



NT

∑
k=1

Tk
i if

∥∥∥∥∥ NT

∑
k=1

Tk
i

∥∥∥∥∥ ≤ Tmax

∑NT
k=1 Tk

i∥∥∥∑NT
k=1 Tk

i

∥∥∥Tmax otherwise.
(28)

where Fmax and Tmax are hyperparameters corresponding to the maximum values of the
norm of the resulting force and torque vectors, respectively.

ai,t+1 =
Fi
mi

(29)

vi,t+1 = vi,t + ai,t+1∆t (30)

pc
l,i,t+1 = pc

l,i,t + vi,t+1∆t (31)

Li,t+1 =
Ti
Ii

(32)

ωi,t+1 = ωi,t + Li,t+1∆t (33)

pd
α,i,t+1 = pd

α,i,t+1 + ωi,t+1∆t (34)
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Each of the forces and torques of the VFS aims at solving for the constraints and
optimizing the objective function(s). If the objective or constraint functions take as argu-
ments the positions of the components, a force is applied. If they take as arguments the
orientations of the components, a torque is applied.

The forces and torques applied to a component i are employed to achieve the following:

• Minimize an objective function: force Fobjective
i and torque Tobjective

i ;

• Solve for the overlapping constraints between components i and j: force Foverlap
ij and

torque Toverlap
ij ;

• Solve for the overlapping constraints between component i and an exclusion zone

(EZ): force Foverlap
i/EZ and torque Toverlap

i/EZ ;
• Solve for the overlapping constraints between component i and the container: force

Fcontainer
i and torque Tcontainer

i ;

• Solve for the functional constraints between two components i and j: force F f unctional
i

and torque T f unctional
i ;

• Solve for the balancing constraint: force FCG
i (CG stands for center of gravity);

• Solve for the angle of inertia constraint: force FAI
i and torque TAI

i ;
• More generally, solve for any constraint function: force Fconstraint

i and torque Tconstraint
i .

Generally speaking, any force or torque can be added to the VFS in order to address
additional constraints or objective functions. This makes the proposed algorithm very
generic to other layout problems.

The forces and torques of the virtual-force system are detailed and formulated as
follows (for a component i):

• The overlappingconstraint force and torque between two components: If

two components i and j are overlapping each other, repulsive forces Foverlap
ij and

Foverlap
ji are applied to each of them, as illustrated in Figures 4 and 5. The overlap force

is expressed as

Foverlap
ij =

−
pc

l,j − pc
l,i

∥pc
l,j − pc

l,i∥+ ϵ
vmax − vi if ∆Sij(pc

l,i, pc
l,j) ̸= 0,

0 otherwise.

(35)

where vmax is a hyperparameter corresponding to the maximum value of the norm of
the speed vector, ϵ ensures numerical stability and 0 = (0, 0) is the null vector. ∆Sij is
the area of intersection between components i and j.
Moreover, similar to [127], additional torques are applied to non-circular components
in order to solve the overlapping constraint, as illustrated in Figure 4.

𝐷𝑖

𝐷𝑗

𝑥

𝑦

𝑧

𝑂𝑖

𝑂𝑗

𝑂𝑖𝑛𝑡

𝐅𝑖𝑗
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑖

𝑗

𝐅𝑗𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐓𝑖𝑗
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝝎𝑗

𝝎𝑖

𝐓𝑗𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Figure 4. Definition of the overlapping forces and torques.
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The overlapping forces are initially applied at the Oint point, which corresponds to the
geometrical center of the polygon of intersection between the two components. Then,
the resulting torque applied at the point Oi is given by

Toverlap
ij = OiOint ∧ Foverlap

ij (36)

where OiOint is the vector from Oi to Oint and the symbol∧ stands for the vector product.
• The overlapping constraint force and torque between a component and an exclusion

zone: If a component is overlapping an exclusion zone, a repulsive force Foverlap
i/EZ is

applied to the component, as illustrated in Figure 5. As the exclusion zone can be seen
as a fixed component, the corresponding force and torque expressions are similar to
the previous overlapping forces and torques between the two components and written
with Equations (35) and (36).

• The overlapping constraint force and torque between a component and the container:
If a component is not fully overlapping the container, an attractive force Fcontainer

i is
applied to the component, as illustrated in Figure 5. The container force is expressed as

Fcontainer
i =


pc

l,C − pc
l,i

∥pc
l,C − pc

l,i∥+ ϵ
vmax − vi, if ∆Si/C(p

c
l,i, pc

l,C) < Si,

0 otherwise.

(37)

where pc
l,C corresponds to the position vector of the geometrical center of the container.

∆Si/C is the intersection area between the component i and the exclusion zone, and Si
is the surface of the component i. The related torque is calculated as follows:

Tcontainer
i = OiOout ∧ Fcontainer

i (38)

where Oi is the center of inertia of component i and Oout is the geometrical center of
the area of the component i situated outside the container.

x

x

x

𝐅12
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐅21
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

1

2

3

4

𝐅3/𝐸𝑍
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐅4
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝐓4
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝐓3/EZ

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐓12
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐓21
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Figure 5. Illustration of the forces and torques to solve overlapping constraints between two compo-
nents, between a component and an exclusion zone, and between a component and the container.

• The functional constraint force and torque between two components: If a component i

is too close to an incompatible component j, a repulsive force F f unctional
i is applied to

the component i, as illustrated in Figure 6. The functional force acts as an overlapping
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force between the component i and the influence zone of the component j. Then, the
functional force is expressed as

F f unctional
i =

−
pc

l,j − pc
l,j

∥pc
l,j − pc

l,i∥+ ϵ
vmax − vi, if ∆Si/SZj(p

c
l,i, pc

l,j) ̸= 0,

0 otherwise.

(39)

where ∆Si/SZj is the intersection area between component i and the functional security
zone surrounding component j.
The related torque is calculated as follows:

T f unctional
i = OiOzj ∧ F f unctional

i (40)

where Oi is the center of inertia of component i and Ozj is the geometrical center
of the area of component i overlapping the functional security zone surrounding
component j.

x

𝐅5
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙

𝐓5
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙

5

6

SZ

Figure 6. Illustration of the functional force and torque.

• The balancing constraint force: In order to position the center of mass of the compo-
nents in a tolerance zone centered at the geometrical center of the container, gradient-
based forces are applied along the opposite of the gradient of the position of the global
center of mass according to the position of the center of inertia of each component. This
force is named FCG

i and is illustrated in Figure 7. The balancing force is expressed as

FCG
i =

− αCG∇hF
CG(p

c
l,i), if

√
(xCG − xe)2 + (yCG − ye)2 ≤ δCG,

0 otherwise.
(41)

where αF
CG is a “step-size” hyperparameter of the algorithm and ∇hCG(pc

l,i) corre-
sponds to the gradient of the position of the center of gravity of the components with
respect to the position of the considered component i. {xCG, yCG} are the coordinates
of the current center of gravity; {xe, ye} are the coordinates of the position of reference
on which the tolerance zone defined by δCG is centered. This type of force is inspired
by gradient-based descent algorithms.
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X

x

𝐅7
𝐶𝐺

7

8

𝐅8
𝐶𝐺

X 𝛿𝐶𝐺

Figure 7. Illustration of the balancing forces. The green area corresponds to the tolerance zone where
the current center of gravity must be positioned. The red cross is the current center of gravity of
the components.

• The differentiable constraint function force and torque: Generally, any differentiable
constraint function (DF), as the angle of inertia constraints, can be addressed thanks to
gradient-based forces and torques, expressed as

FDF
i = −αF

DF∇hDF(pc
l,i) (42)

TDF
i = −αT

DF∇hDF(pd
α,j) (43)

for constraints expressed as g(·) ≤ 0 and where αF
DF and αT

DF are “step-size” hyper-
parameters of the algorithm. ∇hDF(pc

l,i) corresponds to the gradient of any differen-
tiable constraint function with respect to the position of the considered component i.
∇hDF(pd

α,j) corresponds to the gradient of any differentiable constraint function with
respect to the orientation of the considered component i.

• The objective function forces and torques: To minimize one objective function f ,
a gradient-based force and a gradient-based torque can be applied. The objective
function force and torque are expressed as

Fobj
i = −αF

obj∇ fobj(p
c
l,i) (44)

Tobj
i = −αT

obj∇ fobj(p
d
α,i) (45)

where αF
obj and αT

obj are “step-size” hyperparameters of the algorithm. ∇ fobj(pc
l,i)

corresponds to the gradient of the objective function with respect to the position of
the considered component i, and ∇ fobj(pd

α,i) stands for the gradient of the objective
function with respect to the orientation of the considered component.

It must be noted that in the case where the orientation variables are discrete (i.e.,
non-cylinder components taking orientation values in a defined subset), they are handled
as relaxed continuous orientations. The updated orientation is calculated as a continuous
variable and a threshold is set to define the discrete orientation from the subset. For instance,
in the case where the non-cylinder components take their orientation in the subset (0°,90°),
if the positive updated continuous orientation is greater (respectively, lower) than 45° the
updated discrete orientation is 90° (respectively, 0°).
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Swap Operator

The swap operator introduced in CSO-VF is an extended version of the previous swap
operators [128–130]. The swap operator exchanges the positions of a pair of components
after a given number of iterations if it is improving the objective function(s) or decreasing
the violation of some selected constraint(s). Thus, the swap operator can be used to
find promising configurations in terms of constraint satisfaction and objective function;
therefore, it does not necessarily need the configuration to be somewhat stuck in order to be
employed in CSO-VF algorithm. For instance, the swap operator can be used to exchange
components such that the global center of gravity of the system quickly enters the given
tolerance zone, as illustrated in Figure 8.

SWAPx x

x

x

x

x

Figure 8. Example of the swap operator employed to improve the balancing constraint. The green
area is the tolerance zone in which the current center of gravity of the components, illustrated thanks
to the red cross, must be placed. The redder the components, the heavier their corresponding masses.
The swapped components are highlighted in yellow.

Thus, the swap operator implemented in the CSO-VF algorithm has the following
characteristics:

• The swap operator can exchange all the components by pairs.
• Two components are swapped if the swap leads to an improvement of the objec-

tive function or a decrease in the violation of some chosen constraint(s) while not
deteriorating the other constraint(s) from a relaxation factor r.

• The swap operator is called straight from the first iteration. Then, it can occur through-
out the optimization process.

The swap operator is called at a frequency depending on the convergence status.
Indeed, the swap operator induces a reconfiguration. Consequently, too frequent swaps
might prevent the layout from converging. On the contrary, too spaced swaps might lead
to configurations being stuck for too many iterations and, thus, to a stagnating or slow
convergence rate. The equations related to the call frequency of the operator are detailed in
Appendix C.

Initialization

As the CSO-VF algorithm locally refines a solution for non-convex problems with
multiple local minima, the initialization of the design variables might have a critical
impact on the optimization process. Rather than a random initialization of the posi-
tions and orientations of the components, optimized Latin Hypercube Sampling (LHS) is
employed [131–133]. This technique should improve the constraint resolution as well as
provide a feasible solution more rapidly, i.e., in less iterations than would otherwise be
necessary with a random initialization.
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Multistart

As each instance of the algorithm depends on the initialization, a multistart technique
is employed. Indeed, Nstart independent initializations are run and the output of the
CSO-VF algorithm corresponds to the best layout obtained out of the Nstart initializations.

Various termination criteria can be used in the CSO-VF algorithm. In the following,
a maximum number of iterations is set as a termination criterion. Figure 9 describes the
CSO-VF algorithm.

Positions and orientations 
initialization

Set hyperparameters

Calculate overlap forces and torques
Calculate functional forces and 

torques
Calculate other constraints forces 

and torques

Calculate balancing forces

Calculate objective forces and 
torques

Is it time for the  
Swap operator?

Apply Swap operator

Dynamics law 
Update positions/orientations

Update positions

Initalization

Constraints 
forces

Objective 
forces

Update 

Swap 
operator

Yes

No

Is the 
termination

criterion reached
?

No

Yes

End
Figure 9. The CSO-VF algorithm.

4.4. Algorithm Framework

Figure 10 illustrates the proposed algorithm applied to the SMLP problem.
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UPPER STAGE: Assignment task

Genetic Algorithm
Input: components, containers, operators and parameters

Output: the archive of 𝑁𝐴𝑆 assignment schemes

LOWER STAGE: Layout tasks

Input: components, containers, assignment scheme
Output: positions and orientations of the components

Is the stopping criterion
reached ?

Yes

No

S1

For all containers configurations: 
Check feasibility

Calculate global inertia

CSO-VF

Input: components, containers

Ouput: best laid out containers

𝐴𝑆1 𝐴𝑆2 𝐴𝑆𝑘 𝐴𝑆𝑁𝐴𝑆−1 𝐴𝑆𝑁𝐴𝑆
……

Assignment schemes archive

𝑘 = 𝑖 + 1

𝑘 = 𝑖

S2

CSO-VF

S3

CSO-VF

S4

CSO-VF

Figure 10. The two-stage algorithm for the multi-container SMLP. In the algorithm framework, i
stands for the current iteration.

The algorithm proceeds as follows: the upper stage optimizes the assignment list
using the Genetic Algorithm. The output corresponds to an archive with NAS assignment
schemes corresponding to the NAS final best solutions and sorted based on their objective
function values. Subsequently, the CSO-VF algorithm is called to optimize the layout of
each of the containers for the first assignment scheme of the archive. The CSO-VF instances
dedicated to each container are launched in parallel. Then, all the possible combinations
of laid out containers are compared in terms of feasibility and objective function values,
and the combination leading to the smaller global inertia corresponds to the output of
the algorithm. In the specific case where no feasible combination is found, the following
assignment list from the archive is considered, the containers’ layouts are optimized once
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again, and so on. The termination criterion is defined as a maximum number of sequential
resolutions, i.e., the size NAS of the archive given by the upper level.

5. Application to the Satellite Module Layout Problem

In this section, the two-stage algorithm is applied to the multi-container SMLP. The
upper and lower stages settings are first configured and their performances are shown and
analyzed. The global results and performance are also shown and compared with existing
results from the literature.

5.1. Configurations of Both Stages
5.1.1. Upper Stage Settings

The operators of the GA are set using a parametric study, and the hyperparameters are
optimized using Bayesian Optimization [134]. Among the obtained settings, the population
size is set to 250 individuals and the number of generations is set to 700.

5.1.2. Lower Stage Settings

The lower stage solving the layout task for each container corresponds to the CSO-
VF algorithm. For each container, P = 10 independently initialized instances solve the
corresponding single-container optimal layout problem.

The number of iterations should be adapted along with the occupation rate of the
container given that rising occupation rates make it increasingly difficult to solve the
constraints. Consequently, the maximum number of iterations allocated for each container
is a function of its occupation rate determined by the assignation of the components to
the container. The number of iterations varies linearly with the occupation rate and is
calculated as follows:

Nit(OR) = 15, 000 ·OR (46)

where Nit is the number of iterations and OR is the occupation rate from 0 to 1.
Moreover, the hyperparameters of the CSO-VF algorithm are optimized using Bayesian

Optimization, following the same procedure as for the upper stage. The CSO-VF instances
dedicated to each container are launched in parallel. Then, all the possible combinations
of laid out containers are compared in terms of feasibility and objective function values,
and the combination leading to the smaller global inertia corresponds to the output of the
algorithm. In the specific case where no feasible combination is found, another assignment
list is proposed and the containers’ layouts are optimized once again. In this study, the
maximum number of attempts is set to 1, i.e., the algorithm must find a solution in one
assignment scheme.

5.2. Results and Analysis

The previously detailed algorithm is applied to the described multi-container SMLP
and the results are compared to those published in the following:

• Ref. [20]: a dual-system cooperative co-evolutionary algorithm (called Oboe-CCEA)
is developed for the multi-container SMLP based on both Potter’s coevolutionary
framework [89] and the variable-grain model [135]. However, the assignment is an
input of the algorithm, i.e., it is not optimized but taken from [108] and based upon
human experience. It must be noted that this study does not consider the functional
constraints gH and gE. The rest of the mathematical formulation remains identical.

• Ref. [19]: a two-stage algorithm called Dynamic FS is developed to solve both as-
signment and layout tasks of the multi-container SMLP. Heuristic rules are used to
assign the components. They are mathematically translated into a multi-objective
optimization problem and an NSGA-II algorithm is employed to solve it. The as-
signment list is then determined using a fuzzy decision-making method. The layout
task is performed using the NDCCDE/DPSO algorithm [112], which corresponds to a
dual-system cooperative co-evolutionary algorithm.
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5.2.1. Global Performance

The algorithm detailed in Section 4 is run over 50 independently initialized instances.
The obtained results are compared with those published in [19,20] according to the follow-
ing indicators and reported in Table 1:

• The mean value of the final obtained layout objective functions, i.e., their global inertia;
• The standard deviation (STD) of the final obtained layout inertia;
• The best layout obtained in terms of inertia (among the 50 repetitions);
• The worst layout obtained in terms of inertia (among the 50 repetitions);
• The success rate, i.e., the percentage of runs leading to a feasible layout (all the

constraints are satisfied).

Table 2 reports the allocated budget in terms of the number of objective function
evaluations for the assignment and layout tasks and for the three compared algorithms.

Table 1. Numerical results for the multi-container SMLP obtained thanks to the three compared algorithms.
In bold, the best obtained results according to each algorithm. For each metric, bold characters are used to
highlight the best obtained value.

Metrics Oboe-CCEA [20] Dynamic FS [19] GA+CSO-VF

Mean of final inertia 718.93 694.06 682.96

STD of final inertia 2.64 2.96 2.73

Best layout 712.99 689.00 676.75

Worst layout 726.59 700.37 688.45

Success rate 60% 80% 100%

Table 2. Allocated budget in terms of function evaluations for the assignment and layout tasks and
the three compared algorithms. ”x” is written when the metric is irrelevant.

Oboe-CCEA [20] Dynamic FS [19] GA+CSO-VF

Assignment x 1× 106 1.75× 105

Layout 1× 106 1× 106 2.7× 105

The proposed algorithm allows to improve the average final inertia by 5% and 1.6%,
respectively, in comparison to the Oboe-CCEA algorithm with the fixed component assign-
ment scheme based on human experience and to the Dynamic FS algorithm with optimized
assignment schemes. It also improves the best obtained layout by 5.08% and 1.78%, respec-
tively, in comparison with the two same algorithms. Moreover, it must be highlighted that
the worst layout obtained using the GA assisted-CSO-VF algorithm remains better than the
best layouts obtained by both the Oboe-CCEA and Dynamic FS algorithms. The success
rate reaches 100% for the proposed algorithm against 80% for the Dynamic FS algorithm
and 60% for the Oboe-CCEA algorithm. In other words, the proposed algorithm provides a
feasible solution for each of the 50 runs. It means that, for each run, at least one feasible
layout has been found by the lower stage, corresponding to an optimized assignment list
given by the upper stage. On the contrary, a success rate not equal to 100% shows that the
corresponding algorithm fails to provide a feasible solution at every run.

However, the Oboe-CCEA has the smaller standard deviation, which is increased by
12.1% by the Dynamic FS algorithm and 3.1% by the proposed algorithm. It should be
noted that the objective function considered in this paper is a multimodal function and
that the problem geometry involves rotational symmetry. Consequently, local minima can
be reached. However, the standard deviation of the final objective function values over
the different experiments is quite low, showing that the algorithm finds globally good and
relatively equivalent solutions. In addition, as shown in [124,136], the proposed algorithm
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uses the swap operator as well as multistart to find new configurations in cases of blocked
layout and non-symmetric geometries; thus, it manages to escape from local minima.

Finally, Table 2 shows that the proposed algorithm has a lower computational budget
in terms of number of objective function evaluations for both assignment and layout tasks
than the two other algorithms.

5.2.2. Analysis of the Assignment

This section aims at analyzing the upper stage performance. Table 3 reports the total
masses of each container for the fixed assignment list [20], the best assignment list obtained
using the Heuristic+NSGA-II algorithm proposed in [19] and the best assignment list
obtained using the Genetic Algorithm as detailed in Section 4.2 of this paper. Table 4
reports the coordinates of the center of gravity along the z axis considering only the
components or the whole module, i.e., the components in addition to the empty module,
and for the three aforementioned assignment lists.

Table 3. Masses distributions on surfaces.

Reference Surface 1 Surface 2 Surface 3 Surface 4

Fixed [20] 150.63 231.18 235.22 198.42

Heuristic+NSGA-II [19] 88.33 314.20 317.29 95.63

GA (This paper) 85.95 289.02 326.67 113.78

Table 4. Center of gravity along z axis without and with the empty module. Coordinate along z axis
of the center of gravity of the empty module: 553.56.

zCG Fixed [20] Heuristic + NSGA-II
[19] Proposed Method

Components 543.02 562.9 550.92

Whole module 547.38 559.03 552.01

For the three assignment schemes, it can be noticed that surfaces 2 and 3 are always
the heaviest. This contributes to minimize the global inertia along the z axis. Then, the
bottom plate, i.e., surfaces S3 and S4, is more loaded than the top plate, i.e., surfaces S1 and
S2. Indeed, the geometrical center between the two plates is situated at the coordinate of
565 along the z axis, but all the assignment schemes have centers of gravity located lower.
The assignment scheme proposed in [19] has the most balanced two plates. This is due
to the fact that the heuristic assignment rules described in this paper impose that the two
plates are both balanced (with a delta) in terms of mass and component area. This results
in positioning the center of gravity of the components close to the geometrical center of
the two plates, i.e., close to coordinate 565. However, as the two plates are not centered
at the geometrical center of the empty module in the INTELSAT-III model, this results
in pulling away the center of gravity of the components from the center of gravity of the
empty module. Then, the assignment task resolution proposed in this paper results in the
positioning of the components on the two plates such that both the center of gravity of the
components and of the empty module coincide. This should provide a better global inertia
in the end as well as a more balanced satellite module.

Figure 11 shows the median and inter quartile range (IQR) of 50 independently
initialized convergence curves of the upper level. The IQR is used to evaluate the dispersion
of the results.
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Figure 11. Median and IQR of convergence curves of the upper level for 50 independent runs.

It is notably observed that the IQR remains low during all the optimization pro-
cess, which characterizes a good robustness of the upper level with respect to the final
interquartile range.

5.2.3. Analysis of the Layout

The convergence curves related to each of the containers and for the best optimal
layout (among the 50 repetitions) are shown in Figure 12.

(a) Surface 1. (b) Surface 2.

(c) Surface 3. (d) Surface 4.

Figure 12. Convergence curves for the four containers of the satellite module.
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Figure 12 shows that the convergence speed is higher for Surface 1 and Surface 4 than
for Surface 2 and Surface 3. Indeed, as illustrated in Figures 13 and 14, the Surfaces 2 and 3
located near the geometrical center of the satellite module have the highest occupation
rates due to the assignation of the components to the surface in order to minimize the terms
of the inertia equations along the z axis. The higher the occupation rates, the more difficult
it is to solve the constraints. Consequently, the number of iterations is increased and the
convergence speed is slower. Moreover, for the same reasons, the first feasible layout is
found in less iterations for the less occupied surfaces (1 and 2).

Figure 13 shows the best obtained layout using the Oboe-CCEA algorithm [19] and the
proposed algorithm. Figure 14 illustrates the best obtained layout using the Dynamic FS
algorithm [19] and the proposed algorithm. In both figures, the functionally incompatible
components are highlighted in orange and blue for the heat constraints and orange for
the electromagnetic constraint. Moreover, the redder the components, the heaviest their
corresponding masses.

5.2.4. Global Analysis

The proposed two-stage algorithm combining Genetic Algorithm and CSO-VF pro-
vides general better performance than the Oboe-CCEA and Dynamic FS algorithm regard-
ing two aspects:

• The assignment scheme: The proposed assignment task resolution allows to position
the components such that their center of gravity coincides with the center of gravity
of the empty module, which contributes to a better global inertia.

• The layout: As highlighted in [124], the CSO-VF outperforms the population-based
counterparts like GAs thanks to its ability to solve the constraints with dedicated
operators. Indeed, Figure 14 shows that the CSO-VF algorithm systematically positions
the heavier components closer to the center of the surfaces, which contributes to
minimize the global inertia of each container. On the contrary, it is observed that the
Dynamic FS algorithm sometimes positions small and light components around the
central bus.

However, despite the highlighted strengths of the proposed algorithm, some lim-
itations can also be identified. First of all, the structure of the algorithm requires that
the assignment and layout tasks can be addressed separately, which is not necessarily
the case for all multi-container optimal layout problems. Moreover, the upper stage also
supposes that the assignment task can be mathematically formulated, which involves
problem-specific knowledge in this paper. Finally, in its current formulation, the algorithm
is unable to deal with some constraints that involve several surfaces as their layouts are
solved in independent optimization processes. For instance, overlapping constraints be-
tween components positioned on facing surfaces as well as functional constraints with
three-dimensional safety zones could not be handled.
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6. Conclusions

In this paper, a two-stage algorithm based on a Genetic Algorithm (GA) and a quasi-
physical approach based on a virtual force system (CSO-VF) is proposed for solving
component assignment and layout optimization. The multi-container satellite module
layout problem was detailed in order to evaluate the performance of the proposed two-
stage algorithm in comparison with previous published results. The GA upper stage
responsible for the assignation task was configured using an analysis of the objective
function inertia equations. The CSO-VF was employed as a lower stage to solve the
layout of the components within the four assigned surfaces. This algorithm based on
a quasi-physical approach provides constraint-handling abilities thanks to its dedicated
virtual-forces system and operators.

The proposed two-stage algorithm outperforms the previously published results in
terms of success rate, convergence accuracy and best layout obtained in less objective
function evaluations. The analysis of the equations and the aforementioned strengths of
the CSO-VF algorithm allowed to find both a satisfying assignment scheme and layouts.

Further studies will focus extending the virtual-force system of the CSO-VF algorithm
in order to inherently deal with multi-container configurations. Moreover, it would be
interesting to apply the proposed approach to other application cases.
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Appendix A. Components and Containers

The components used for the multi-container satellite layout benchmark are listed in
Table A1.

Table A1. Components for the fixed search space multi-container satellite benchmark.

Index Geometry Dimension 1 Dimension 2 Height Mass

1 Cuboid 250 150 250 28.13

2 Cuboid 250 150 250 28.13

3 Cuboid 250 150 250 28.13

4 Cuboid 250 150 250 28.13

5 Cuboid 250 150 250 28.13

6 Cuboid 250 150 250 28.13

7 Cuboid 250 150 250 28.13

8 Cuboid 250 150 250 28.13

9 Cuboid 200 160 200 19.2

10 Cuboid 200 160 200 19.2
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Table A1. Cont.

Index Geometry Dimension 1 Dimension 2 Height Mass

11 Cuboid 200 160 200 19.2

12 Cuboid 160 120 250 15.36

13 Cuboid 160 120 250 15.36

14 Cuboid 160 120 150 8.64

15 Cuboid 160 120 150 8.64

16 Cuboid 160 120 150 8.64

17 Cuboid 150 100 100 5.40

18 Cuboid 150 100 100 5.40

19 Cuboid 150 100 100 5.40

20 Cuboid 150 100 100 5.40

21 Cuboid 150 100 100 5.40

22 Cuboid 150 100 100 5.40

23 Cuboid 150 100 100 5.40

24 Cuboid 150 100 100 5.40

25 Cylinder 100 250 23.56

26 Cylinder 100 250 23.56

27 Cylinder 100 250 23.56

28 Cylinder 100 250 23.56

29 Cylinder 100 250 23.56

30 Cylinder 100 250 23.56

31 Cylinder 100 250 23.56

32 Cylinder 100 250 23.56

33 Cylinder 100 200 18.85

34 Cylinder 100 200 18.85

35 Cylinder 100 200 18.85

36 Cylinder 100 160 15.08

37 Cylinder 100 160 15.08

38 Cylinder 100 160 15.08

39 Cylinder 75 160 8.48

40 Cylinder 75 160 8.48

41 Cylinder 75 160 8.48

42 Cylinder 75 160 8.48

43 Cylinder 75 150 7.95

44 Cylinder 75 150 7.95

45 Cylinder 75 150 7.95

46 Cylinder 75 150 7.95

47 Cylinder 75 150 7.95

48 Cylinder 75 150 7.95

49 Cylinder 60 150 5.09

50 Cylinder 60 150 5.09
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Table A1. Cont.

Index Geometry Dimension 1 Dimension 2 Height Mass

51 Cylinder 60 150 5.09

52 Cylinder 60 150 5.09

53 Cylinder 60 150 5.09

54 Cylinder 60 150 5.09

55 Cylinder 60 150 5.09

56 Cylinder 60 150 5.09

57 Cylinder 60 150 5.09

58 Cylinder 60 150 5.09

59 Cylinder 60 150 5.09

60 Cylinder 60 150 5.09

The functional constraint imposes that pairs of components must be positioned a
certain distance apart. The indices of the pairs of components, their types and the minimal
distance between them is reported in Table A2.

Table A2. Functional constraint for the fixed search space multi-container satellite benchmark.

Index 1 Index 2 Type Distance

25 56 Heat 200

25 60 Heat 200

29 49 Heat 200

29 55 Heat 200

37 55 Electromagnetic 300

37 58 Electromagnetic 300

The geometrical and dynamical features of the container illustrated in Figure A1 are
summarized below.
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Figure A1. Geometry of the satellite module.
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H1 = 300 mm (A1)

H2 = 830 mm (A2)

H3 = 1150 mm (A3)

Hp = 20 mm (A4)

Rin = 100 mm (A5)

Rout = 500 mm (A6)

Moreover, the empty module is defined by the following:

• Its mass: 576.53 kg;
• Its center of mass located at (0, 0, 553.56) in the Oxyz system of coordinates;
• Its matrix of inertia:

I0 =

352.2 0 0
0 352.2 0
0 0 106.8


Appendix B. Correction of Inertia Equations

The inertia equations are expressed in the system of coordinates attached to the
current centroid of the system. However, it has been shown that the equations should
rather be expressed in the system of coordinates attached to either the theoretical centroid
of the system or to the geometrical center of the container if no balancing constraints
are considered.

With the simplified model of the INTELSAT-III considered as a benchmark in this
thesis, the inertia should then be expressed in the system of coordinates with its origin
being the center of mass of the empty module and denoted Osatxsatysatzsat, as illustrated in
Figure A2.

O

𝑂𝑠𝑎𝑡
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

z,z’
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x
x𝑂′ 𝑥′

Figure A2. Simplified model of the INTELSAT-III satellite module.In both figures, the functionally in-
compatible components are highlighted in orange and blue for the heat constraints and orange for the
electromagnetic constraint. Moreover, the redder the components, the heaviest their corresponding
masses.
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Thus, the inertia equations for a component i in the Osatxsatysatzsat system of coordi-
nates are expressed as follows:

Ixsat ,i = Ix′′ ,i cos(pd
α,i)

2 + Iy′′ ,i sin(pd
α,i)

2 + mi(pc
y,i

2 + pd
z,i

2
) (A7)

Iysat ,i = Iy′′ ,i cos(pd
α,i)

2 + Ix′′ ,i sin(pd
α,i)

2 + mi(pc
x,i

2 + pd
z,i

2
) (A8)

Izsat ,i = Iz′′ ,i + mi(pc
x,i

2 + pc
y,i

2) (A9)

where {pc
x,i, pc

y,i, pd
z,i} are the coordinates of the ith component’s center of inertia in the

Osatxsatysatzsat system of coordinates. pd
α,i corresponds to its orientation.

If N components have to be laid out in the container, the inertias of the module along
each axis calculated at the point Osat are expressed as follows:

Ix = Ixsat ,0 +
N

∑
i=1

Ixsat ,i (A10)

Iy = Iysat ,0 +
N

∑
i=1

Iysat ,i (A11)

Iz = Izsat ,0 +
N

∑
i=1

Izsat ,i (A12)

where Ixsat ,0, Iysat ,0, Izsat ,0 are the inertias of the empty module calculated in its local system
of coordinates, which coincide with Osatxsatysatzsat.

Appendix C. Swap

The minimal step between two iterations during which the swap is called is smin and
the maximum step is smax. Each time the swap operator is used, it can only be applied
at a subsequent iteration, which is calculated based on smin and smax with the following
procedure:

• While no feasible layout is found, the step is fixed to smin. Then, at any current iteration
tc during which the swap operator is employed, the next swap iteration noted tswap is
calculated as

tswap = tc + smin (A13)

Consequently, the swap operator is called at a lower frequency and helps to find a
feasible solution.

• Once a feasible solution is found, each time the swap operator is called, the conver-
gence curve is interpolated and the next iteration of the swap operator is calculated as

tswap = t + (1− γ)smin + γsmax (A14)

where γ is a factor characterizing the convergence state as

γ = −
arctan

(
d finterp(t)

dt

∣∣∣
t=tc

)
π/2

(A15)

where finterp is the interpolation function of the convergence curve. Therefore, at
the beginning of the convergence, the derivative of the convergence curve might be
high with γ close to 1; thus, the step size is close to smax. On the contrary, when the
convergence stagnates, the factor γ may be close to 0 and the swap is called more
frequently. Consequently, as soon as a feasible solution is found, the swap operator is
employed to explore new configurations when convergence is stagnating and when
the layout is not improving anymore.
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Algorithm A1 gives the pseudo code of the swap operator in the case where the swap
operator is used to improve the objective function fobj to minimize. It can be summarized
as follows: if the current iteration corresponds to tswap, the swap operator is called. If the
objective function is improved and if the corresponding constraint violation CVSwap of
the Ncst constraints’ functions (gk for k ∈ {1, ..., Ncst}) remains lower than or equal to the
previous constraint violation CVNoSwap times the relaxation factor r, then the swap between
the two components occurs.

Algorithm A1 The Swap Operator

Input: tswap, r, p
Output: new vector of positions p
if t is tswap then

for i = 0 to N do
for j = i + 1 to N do

xp,swap ← xp with xp,i and xp,j exchanged.
CVSwap ← 0
CVNoSwap ← 0
for k = 0 to Nk do

CVSwap = CVSwap + gk(xp,swap) #Constraint violation if the swap occurs
CVNoSwap = CVNoSwap + gk(xp) #Constraint violation if not

end for
if fobj(xp,swap) < fobj(xp) and CVSwap ≤ r× CVNoSwap then

xp ← xp,swap
end if

end for
end for
Update tswap

end if
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