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Abstract: Generative adversarial networks (GANs) create images by pitting a generator (G) against
a discriminator (D) network, aiming to find a balance between the networks. However, achieving
this balance is difficult because G is trained based on just one value representing D’s prediction,
and only D can access image features. We introduce a novel approach for training GANs using
explainable artificial intelligence (XAI) to enhance the quality and diversity of generated images in
histopathological datasets. We leverage XAI to extract feature information from D and incorporate it
into G via the loss function, a unique strategy not previously explored in this context. We demonstrate
that this approach enriches the training with relevant information and promotes improved quality
and more variability in the artificial images, decreasing the FID by up to 32.7% compared to tradi-
tional methods. In the data augmentation task, these images improve the classification accuracy of
Transformer models by up to 3.81% compared to models without data augmentation and up to 3.01%
compared to traditional GAN data augmentation. The Saliency method provides G with the most
informative feature information. Overall, our work highlights the potential of XAI for enhancing
GAN training and suggests avenues for further exploration in this field.

Keywords: generative adversarial networks; explainable artificial intelligence; GAN training; data
augmentation; histopathological classification; vision transformers

1. Introduction

The performance of machine learning systems heavily relies on data representation.
Traditionally, in computer vision, data were represented using handcrafted methods de-
signed to extract specific image features. However, this type of representation requires
considerable effort from experts to design and develop techniques that do not always
provide the expected return or performance [1]. In recent years, with the increase in the
computational power of hardware devices, deep learning algorithms have emerged as
a relevant alternative to handcrafted methods. Deep learning automatically transforms
raw data, such as pixels from a digital image, into a feature vector, allowing the best data
representation to be learned automatically through training. This approach is advantageous
because it learns hierarchical representations that capture intricate patterns and structures
through multiple layers of abstraction. Also, deep learning models can be fine-tuned for
various tasks through transfer learning, making them highly versatile across different
domains [1,2].

Appl. Sci. 2024, 14, 8125. https://doi.org/10.3390/app14188125 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14188125
https://doi.org/10.3390/app14188125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4123-8264
https://orcid.org/0009-0007-3758-7457
https://orcid.org/0009-0005-5855-5126
https://orcid.org/0000-0003-0290-7354
https://orcid.org/0000-0002-9291-8892
https://orcid.org/0000-0003-3537-0178
https://orcid.org/0000-0001-8580-7054
https://doi.org/10.3390/app14188125
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14188125?type=check_update&version=1


Appl. Sci. 2024, 14, 8125 2 of 20

Training representation learning methods, particularly advanced architectures like
neural networks and transformers, can be challenging because they require a large amount
of labeled data. Many real application contexts, including the medical context, suffer from
low availability of labeled images and adverse conditions, such as class imbalance and a
lack of standardization in dimensions and formats [3,4]. These facts compromise adequate
training and may cause overfitting. One way to address these problems is by utilizing
automatic data generation methods, such as generative adversarial networks (GANs) [5,6].
GANs allow the generation of synthetic images through competitive training between
two neural networks, the generator (G) and the discriminator (D) [5]. During training, G
tries to generate images that resemble authentic data, while D tries to classify correctly
whether the images are original or generated. The adversarial training strategy is based on
game theory, in which the objective is to reach the Nash equilibrium [7], where neither G
nor D can unilaterally improve their outcomes. This situation occurs when G generates
images that are so realistic that D cannot reliably determine if an image is real or fake. At
this point, G has learned to produce data that effectively fools the discriminator [8]. Data
augmentation through GANs is particularly important in small medical image datasets
because it helps to address the issue of overfitting, where models become too tailored to
the limited training data and fail to generalize well to new, unseen cases. By generating a
wider variety of images, GANs create a more representative training set, which can lead to
more robust and accurate models.

However, training GANs is challenging due to issues related to backpropagation,
particularly in how G’s weights are updated. During backpropagation, the gradients
of G are derived from D’s predictions, but G has no information on how the images’
features contribute to the classification. Because of this, adversarial training tends to be
an unbalanced game where D generally has the advantage over G [9,10]. Consequently, D
tends to assign higher scores to original images during training, and G fails to fool D even
after the model converges [8,9]. Studies in the literature traditionally aimed to improve
GAN training by modifying the discriminator. For instance, in DCGAN, the first GAN
proposal with convolutional layers, the authors used batch normalization and leaky ReLU
activations between D’s intermediate layers to make it more stable [11]. The loss function,
however, was the Jensen–Shannon divergence [5], which can lead to mode collapse and
vanishing gradients [8,11]. The WGAN-GP [12] addresses these problems by using the
Wasserstein distance as a loss function, which provides a more meaningful measure of the
difference between the probability distributions. WGAN-GP also introduces a gradient
penalty term that penalizes the norm of D’s gradients, encouraging more diverse generated
samples by enforcing a more uniform distribution of gradients throughout the data space.
The RAGAN [13] introduces the relativistic discriminator that estimates the probability
that an authentic sample is more realistic than a fake sample and vice versa. It considers
the relative realness of real and fake samples, providing more informative feedback to G.
RAGAN delivers a more nuanced signal to G, allowing it to understand better how to
generate plausible samples on its own and the actual data distribution.

Recent techniques have focused on improving the generator’s training rather than
the discriminator. The approaches involve providing more information about the images’
features to G and making the competition between G and D more balanced. For instance,
Wang et al. [9] proposed a training technique that raises the spatial awareness of G. The
strategy consists of sampling multi-level heatmaps from D using Grad-CAM and inte-
grating them into the feature maps of G via the spatial encoding layer. The authors used
D as a regularizer, aligning the spatial awareness of G with D’s attention maps. Bai et
al. [10] argue that since G’s weights are updated only with gradients derived from D, D
acts as a referee rather than a player. The authors propose a new training approach with
a generator-leading task to make the adversarial game fairer. In this task, D must extract
features G can decode to reconstruct the input.

Another possible solution is to combine GANs with explainable artificial intelligence
(XAI) in the loss function. In a classification task, XAI generates explanations indicating
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which parts of the input were considered the most critical in assigning the input to a label.
Moreover, it is possible to use the model’s gradients to derive these explanations [14].
A widely used method is Saliency [15], which creates explanations by calculating the
gradients of the output concerning the input features. It allows for highlighting of regions
where a slight change in the input would significantly change the prediction. However, this
approach can produce noisy explanations. The Gradient⊙Input [16] addresses this issue
by calculating the elementwise multiplication of gradients by the input. The input acts as
a model-independent filter, which reduces noise and smooths the explanations. Another
widely used method is DeepLIFT [16], which attributes importance to the input features by
comparing the activations that the actual input and a reference input cause in each neuron.
It uses the difference between the activations as importance scores for the input features.
Gradient-based XAI generates detailed, fine-grained explanations at the pixel level with
significant computational efficiency compared to XAI based on feature perturbation [17,18].

The images generated by a combination of GAN and XAI in the loss function can be
used in a data augmentation task and potentially improve the classification performance
of state-of-the-art methods, such as Transformer-based models [19–22]. These methods
leverage self-attention mechanisms to enable holistic image understanding and achieve
top-notch performance in visual recognition tasks [23–29]. ViT [19] is a prime example. It
operates on a patch-based representation of images using the self-attention mechanism
to capture global dependencies and learn long-range relationships between the patches.
PVT [20] introduces a hierarchical approach operating at different spatial resolutions to
capture fine-grained details and high-level semantic information. It uses local–global
and global–local attention modules. The local–global attends to local and global features
within the same input region, while the global–local attends to the global representation
while incorporating local information. DeiT [21] focuses on training efficiency on smaller
datasets. It employs data augmentation and knowledge distillation, in which a teacher
model guides the training of the Transformer-based student model. A learnable distillation
and class tokens allow the student to learn from the original and the teacher’s predictions.
CoAtNet [22] is a hybrid architecture that uses convolutional layers to extract local features
in the initial stages and comprises self-attention layers to model long-range dependencies
and global context within the image in later stages. Positional encodings are added to the
embeddings in the attention stages to retain spatial information, which helps the model
understand the relative positions of features within the image.

Therefore, considering the advances previously described, we present a new way
to train GANs using XAI in backpropagation. Our approach involves extracting XAI
explanations from D to identify the most critical features of the input and feeding this
information into G via the loss function. We used traditional architectures as a basis
and modified the loss function to propagate a matrix instead of just an error value. This
matrix was derived from the explanations and the discriminator error. We investigated
the proposal’s relevance in the histopathology context, which is known to be challenging
due to the low availability of labeled images caused by privacy concerns and labeling
costs [30–34]. We performed the data augmentation of relevant datasets, such as breast,
colon, and liver histological images, and classified them using Transformers. Through
experiments, we show that our proposal improves the quality and variability of the artificial
images compared to traditional GANs, promoting an increase in the generalization and
classification performance of state-of-the-art Transformer-based methods. This focus is
essential to understanding the added value that XAI brings to GANs, particularly in
providing valuable feature information to G during the training. Our work aimed to fill a
specific gap in the literature by demonstrating how XAI can be a powerful tool in enhancing
GAN performance. This research makes the following significant contributions:

1. An approach that feeds G with substantial information concerning the images’ features,
increasing the quality and variability of the generated images.
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2. A training strategy that produce images with more realistic features, promoting
an increase in the generalization and classification performance of state-of-the-art
Transformer-based methods.

3. The indication of the best combination between the GAN and XAI to generate and
classify the histological images explored here.

2. Methodology

We named the proposed method XGAN, and a schematic summary of its structure
is illustrated in Figure 1. It comprises a generator (G) and a discriminator (D). G receives
a random signal vector z and outputs an image G(z), while D classifies authentic x and
artificial images G(z). The model uses XAI to extract feature information from D and feed
it back to G to perform a new form of training called educational training. To conduct
this training, we propose a new loss function Led

G that uses traditional adversary losses
(Ladv

G ) combined with XAI explanations (E) to backpropagate important information to the
generator. The new loss function was defined as follows:

Led
G = Ladv

G ∗ E, (1)

in which ∗ is the multiplication operation.

G

D

XAI

z G(z)

x

D(.)

E

adv

ed

*

D

adv

G

G

Figure 1. Schematic summary of the proposed model.

The gradient determines how much to adjust each weight of G so that the loss function
walks towards the optimum. Incorporating E within the gradient enables emphasis on
areas corresponding to objects of interest while dampening the influence of less relevant
regions. Our method proposes a student-versus-teacher relationship. In this relationship, E
corresponds to a test answer in which the professor (D) informs the student (G) of their
test score, indicating features drawn close to reality and those not similar to the original
images. Thus, instead of propagating just one value that indicates D’s classification error,
we propagate a matrix with relevant information for each pixel in the image.

To propagate a matrix, an operation known as the vector-Jacobian product is required,
defined as

J · v⃗, (2)

where v⃗ is a multidimensional vector of the same dimension as the explanations E with 1 in
all positions, and J is the Jacobian matrix, a matrix of partial derivatives that indicates how
the output changes concerning the input. AutoDiff uses the Jacobian matrix to perform the
backpropagation process by stacking the partial derivatives for each output concerning
each input variable. Considering that a neural network is a function f : Rn → Rm that
maps n-dimensional input vectors (x) to m-dimensional output vectors (y), the matrix J is
defined as
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J =


∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

. . . ∂ym
∂xn

. (3)

The Jacobian matrix indicates how the output changes when a small amount of the
input changes. In the proposed method, J also informs the change that each pixel of the
artificial image causes in the prediction of D, assigning greater weights to the more relevant
pixels via E.

We used the DCGAN, WGAN-GP, and RAGAN models to define the adversarial loss
functions Ladv

D and Ladv
G , and the XAI methods Saliency, DeepLIFT, and Gradient⊙Input to

generate the explanations E. We give more details about the models and methods in the
following sections.

2.1. Adversarial Loss Functions
2.1.1. DCGAN

We calculate the DCGAN adversarial loss for D (LDCGAN
D ) through the binary cross-

entropy:

LDCGAN
D = Ex∼p(x)[log(D(x))] +Ez∼p(z)[log(1 − D(G(z)))], (4)

where D(x) is D’s output for real samples x, z is a random noise vector, and D(G(z)) is
D’s output for the generated images G(z). For real samples x, D tries to maximize the
probability of assigning them a value close to 1, while for artificial samples G(z), D tries to
assign a value close to zero. In contrast, the LDCGAN

G tries to maximize the probability of D
assigning a value close to 1 to the generated samples; it was defined as

LDCGAN
G = Ez∼p(z)[log(1 − D(G(z)))]. (5)

2.1.2. WGAN-GP

The LWGAN-GP
D was defined in terms of the Wasserstein distance LW and the gradient

penalty LGP:

LWGAN-GP
D = −LW + LGP, (6)

in which LW is the difference between the expected values of D’s output for real and
generated samples:

LW = Ex∼p(x)[D(x)]−Ez∼p(z)[D(G(z))], (7)

and

LGP = λEx̂∼p(x̂)[(∥∇x̂D(x̂)∥2 − 1)2] (8)

where x̂ is a sample along a straight line between a real sample and a generated sample,
and λ is a hyperparameter that controls the strength of the penalty.

For G, LWGAN-GP
G was defined as the negation of the expected value of D’s output for

generated samples:

LWGAN-GP
G = −Ez∼p(z)[D(G(z))]. (9)

2.1.3. RAGAN

The LRAGAN
D was defined as the sum of the DCGAN loss and the relativistic discrimi-

nator loss:
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LRAGAN
D = LDCGAN

D + Lrel , (10)

where

Lrel = −1
2
Ex∼p(x),z∼p(z)[log(D(x)− D(G(z))]. (11)

The LRAGAN
G was defined as

LRAGAN
G = −1

2
Ez∼p(z)[log(1 − D(G(z))]−Ex∼p(x)[log(D(x)]. (12)

2.2. XAI Methods

For this work, we used gradient-based XAI techniques to extract the most critical
features from D’s gradients. We opted to use this type of XAI due to its computational
efficiency and capacity for creating fine-grained pixel-level explanations [14]. We used the
Saliency, DeepLIFT, and Gradient⊙Input methods to generate the explanations E.

To calculate the Saliency [15] explanation (ESaliency) for a fake image G(z), we calcu-
lated the partial derivative of associated output D(G(z)) concerning the input G(z):

ESaliency =
∂D(G(z))

∂G(z)
. (13)

To determine the Gradient⊙Input [16] explanation (EGradient⊙Input), we calculated the
elementwise multiplication of gradients by the input:

EGradient⊙Input =
∂D(G(z))

∂G(z)
⊙ G(z). (14)

Finally, to define DeepLIFT [16], we calculated the importance scores of the input
(G(z)) by comparing their contributions to the output against a reference input (x0). We
used the minimal activation, that is, all zeros, as a reference. Thus, considering t as an
output neuron and η1, η2, · · · , ηn as the set of neurons necessary to calculate t, ∆t = t − t0

is the difference between the outputs caused by G(z) and x0. We calculated the explanation
EDeepLIFT as follows:

EDeepLIFT =
n

∑
i=1

C∆ηi∆t = ∆t, (15)

where ∆ηi is the difference between neuron activations caused by G(z) and x0, and C∆ηi∆t
is the contribution score of ∆ηi to ∆t.

2.3. Datasets

The CR dataset [35] (Figure 2) consists of 165 RGB images of colorectal tissue obtained
from 16 representative sections of colorectal cancer at stages T3 or T4. The samples are
divided between benign (74 images) and malignant tumors (91 images). Image acquisition
was performed by digitally photographing histological sections with a Zeiss MIRAX MIDI
slide scanner. The pixel resolution was 0.620 µm, corresponding to a 20× magnification.
The images have different sizes, ranging from 567 × 430 to 775 × 522 pixels.

The LA and LG datasets [36] (Figures 3 and 4) comprise RGB images of liver tissue
obtained from mice. The LG consists of 265 images obtained from male (150) and female
(115) mice subjected to calorie-restricted diets. The LA dataset is composed of 529 images
divided into four classes, each representing a different age group of female mice on ad
libitum diets: 1 month (100), 6 months (115), 16 months (162), and 24 months (152) of age.
The samples were obtained using a Carl Zeiss Axiovert 200 microscope and a 40× objective.
All images have a resolution of 417 × 312 pixels. Both datasets were available through the
Atlas of Gene Expression in Mouse Aging Project (AGEMAP).
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(a) (b) (c) (d)

Figure 2. Example images from the CR dataset: (a,b) benign tumors, (c,d) malignant tumors.

(a) (b) (c) (d)

Figure 3. Example images from the LA dataset: (a) 1 month, (b) 6 months, (c) 16 months, and
(d) 24 months.

(a) (b) (c) (d)

Figure 4. Example images from the LG dataset: (a,b) male and (c,d) female.

The UCSB dataset [37] (Figure 5) is a critical case of image scarcity. It consists of
58 RGB images of breast tissue divided into two groups: benign breast cancer (32) and
malignant breast cancer (26). The samples provided by the Center of Bio-Image Informatics
at the University of California at Santa Barbara have a quantization rate of 24 bits and a
size of 768 × 896 pixels.

(a) (b) (c) (d)

Figure 5. Example images from the UCSB dataset: (a,b) benign tumors, (c,d) malignant tumors.

2.4. Performance Evaluation

We evaluated the performance of the proposed model in two steps. First, we quantita-
tively assessed the quality of the artificial images using the Fréchet inception distance (FID)
and the inception score (IS) metrics. Second, we performed the data augmentation and
classified the images using the Transformer models ViT, PVT, DeiT, and CoAtNet for each
dataset, evaluating the accuracy of each case. The idea was to compare how the XAI models
can improve the quality of the generated images compared to the original architectures and
how this impacts the classification of the Transformer models.

2.4.1. Image Quality Evaluation

Many metrics are available to evaluate the quality of artificial images, and each
has strengths. However, interpreting the results can be challenging and requires careful
consideration. For example, a specific FID variation (Gromov–Fréchet Distance) was
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designed to compare metric space shapes, particularly in shape analysis and topology.
It has valuable applications such as shape matching or comparing complex geometric
objects. However, GAN-generated images are typically evaluated based on the similarity
of their distributions to authentic images, where the focus is on pixel values, textures, and
high-level features captured by neural networks rather than the geometric structure of the
underlying data.

Some assessments could also be performed via precision–recall (PR) metrics. These
metrics are derived from the F1 score or area under the PR curve and can provide insights
into a GAN’s performance in generating realistic and diverse images. For instance, PR
metrics can provide a valuable perspective by assessing the trade-off between the precision
(how many of the generated images are relevant or high-quality) and recall (how many of
the relevant images are generated) of the model. However, some disadvantages compared
to FID and IS are observed. PR metrics require the definition of thresholds to determine
what constitutes a realistic or diverse image, which can be complex and context-dependent.
The choice of threshold can significantly affect the results, making PR metrics less consistent
across different models and datasets. The interpretation of PR curves might be more
complex than single-valued metrics like FID or IS.

The FID and IS are particularly pertinent for assessing image quality because they have
been widely adopted in the field and are well-suited for comparing generative models by
evaluating the fidelity and diversity of the generated images. FID, for instance, compares
the distribution of generated images with real images, capturing the similarity in a way
that aligns with human perception. IS measures how distinct and meaningful the generated
images are using the classification confidence of a pre-trained network.

In this work, we applied the FID metric [38] to assess the quality of artificial images
quantitatively. This metric measures the distance between the distributions of real and
generated images. Thus, lower FID scores indicate higher similarity between the distri-
butions, meaning that the generated images closely resemble the original ones. The FID
measures the similarity between two multivariate Gaussian distributions, defined by the
mean and covariance matrix of activation features extracted from Inception v3’s 2048th
layer. Mathematically, the FID score is defined by

FID = ∥µr − µf∥2 + Tr(Σr + Σf − 2(Σr · Σf)
0.5), (16)

where µr and µf are the mean features of real and fake images. Σr and Σf are the covariance
matrices of real and fake image features, and Tr(·) denotes the trace of a matrix.

We also applied the IS metric [39] to estimate the diversity of the generated images. A
higher IS suggests greater variety in the assigned classes, although it does not necessarily
indicate a high degree of realism. In the IS calculation, fake images were evaluated based
on the activations of the final classification layer of a pre-trained Inception v3 model.
This model assigns a probability distribution to each image over predefined classes in the
ImageNet dataset. Diverse images are expected to have probabilities spread across multiple
classes. The IS was calculated by taking the average entropy of all generated images and
computing its exponential value:

IS = exp(Ex[DKL(p(y|x)||p(y))]), (17)

where p(y|x) is the probability of class y being assigned to the generated image x, p(y) is
the marginal probability of class y in the dataset, Ex denotes the expectation taken over all
generated images, DKL(p(y|x)||p(y)) is the Kullback–Leibler divergence between p(y|x)
and p(y), and exp(·) represents the exponential function.

2.4.2. Classification Evaluation

To train and evaluate the GAN and XGAN models, we employed a strategy based on
regions of interest (ROIs). Figure 6 illustrates the classification evaluation process. Initially,
we reserved 20% of the dataset for testing and divided the remaining 80% into five stratified
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folds. Each fold’s images were cropped into 64 × 64-pixel ROIs to ensure that ROIs from
the same image did not appear in both the training and validation sets. We conducted
classification using cross-validation, with four folds for training and one fold for validation.
For data augmentation, we used the GAN and XGAN models exclusively in the training
group to prevent overfitting, with an augmentation rate equal to 100% of the training
set size. We fine-tuned Transformer models, initially trained on the ImageNet dataset,
for the datasets under investigation. Classification performance was evaluated using the
accuracy metric, which measures the proportion of correctly classified samples. Finally, we
compared the classification performance of Transformer models with and without data
augmentation using the proposed XGAN and the original GAN architectures.

fold 1

...

fold 2

fold 5
test set

Training

set

Validation

set

ImageNet

Transformers

Fine-tuned

Transformers
Accuracy

GAN

Figure 6. Schematic illustration of the classification evaluation process.

2.5. Execution Environment

The proposed method was implemented using Python 3.9.16 and the Pytorch 1.13.1
API. The experiments were performed on a computer with a 12th Generation Intel®

Core™i7-12700, 2.10 GHz, NVIDIA® GeForce RTX™3090 card, 64 GB of RAM, and a
Windows operating system with 64-bit architecture.

It is important to consider that we have developed our code in PyTorch, which is well
known for its flexibility and strong support within the MLOps ecosystem. PyTorch’s inte-
gration capabilities with various MLOps tools and platforms, such as TensorBoard, MLflow,
and Kubernetes, make incorporating continuous integration and deployment (CI/CD)
pipelines, model versioning, and automated monitoring straightforward. This compati-
bility ensures that our work can be efficiently transitioned into production environments,
facilitating real-time processing and decision making.

3. Results and Discussion

We used XAI explanations to improve the training of GANs and generate artificial
images with higher quality and variability. Figures 7–10 show some examples of the original
images and those generated by the GAN and XGAN models for the CR, LA, LG, and UCSB
datasets, respectively. We conducted experiments using the FID and IS metrics to assess
quantitatively the quality and variability of the artificial images. Table 1 shows the results
of these experiments. The results are organized by base architecture: DCGAN, RAGAN,
and WGAN-GP. Scores in bold indicate the best results regarding the base architecture. The
green and red arrows indicate whether the FID and IS obtained with XGAN are better or
worse than those obtained with the original architecture.
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Table 1. FID and IS scores for CR, LA, LG, and UCSB datasets. Scores in bold indicate the best results
regarding the base architecture, with arrows indicating whether XGAN performs better (green arrow)
or worse (red arrow) than the original architecture.

CR LA LG UCSB

FID IS FID IS FID IS FID IS

DCGAN

No XAI 59.13 2.41 127.94 1.57 108.18 1.40 72.77 2.78
Saliency 57.01 ↓ 2.43 ↑ 128.07 ↑ 1.48 ↓ 114.01 ↑ 1.38 ↓ 70.72 ↓ 2.72 ↓
DeepLIFT 62.45 ↑ 2.38 ↓ 134.21 ↑ 1.46 ↓ 98.24 ↓ 1.42 ↑ 62.34 ↓ 2.83 ↑
Gradient⊙Input 60.32 ↑ 2.43 ↑ 133.88 ↑ 1.51 ↓ 93.88 ↓ 1.39 ↓ 69.90 ↓ 2.72 ↓

RAGAN

No XAI 68.39 2.40 107.15 1.52 95.91 1.45 68.42 2.62
Saliency 50.39 ↓ 2.45 ↑ 124.82 ↑ 1.58 ↑ 88.30 ↓ 1.42 ↓ 63.21 ↓ 2.79 ↑
DeepLIFT 46.02 ↓ 2.50 ↑ 104.08 ↓ 1.50 ↓ 101.78 ↑ 1.40 ↓ 69.73 ↑ 2.62 ↑
Gradient⊙Input 58.57 ↓ 2.56 ↑ 105.83 ↓ 1.61 ↑ 95.12 ↓ 1.40 ↓ 66.68 ↓ 2.65 ↑

WGAN-GP

No XAI 82.81 2.21 191.59 1.51 137.46 1.45 81.07 2.44
Saliency 72.01 ↓ 2.28 ↑ 152.19 ↓ 1.59 ↑ 128.26 ↓ 1,43 ↓ 92.27 ↑ 2.50 ↑
DeepLIFT 76.86 ↓ 2.29 ↑ 158.51 ↓ 1.56 ↑ 153.10 ↑ 1,57 ↑ 89.34 ↑ 2.55 ↑
Gradient⊙Input 74.50 ↓ 2.17 ↓ 178.23 ↓ 1.35 ↓ 143.97 ↑ 1,50 ↑ 87.65 ↑ 2.74 ↑

Considering the CR dataset (Figure 7), it is possible to note in Table 1 that XDCGAN
+ Saliency achieved the best FID and IS regarding the DCGAN-based architectures. The
values were 57.01 and 2.43, respectively. Considering the RAGAN-based models, it is worth
noting that all combinations of XRAGAN improved the FID and IS compared with RAGAN.
The XRAGAN + DeepLIFT was the highlight, providing the lowest FID, 46.02, representing
a 32.70% decrease compared to RAGAN (68.39). The XWGAN-GP also improved the FID in
all cases. The combination XWGAN-GP + Saliency provided the lowest FID, 72.01, 13.04%
lower than WGAN-GP (82.81).

On the LA dataset (Figure 8), XDCGAN did not improve the FID and IS. DCGAN
achieved the best quality, with an FID of 127.94 and an IS of 1.57. However, considering
RAGAN-based models, XRAGAN + DeepLIFT and XRAGAN + Gradient⊙Input improved
the FID and IS slightly. The best combination was XRAGAN + DeepLIFT, which provided
an FID improvement of 2.8%, 104.08 against 107.15 with RAGAN. On the other hand,
XWGAN-GP improved the FID in all cases. XWGAN-GP + Saliency provided the best FID,
152.19, representing a 20.56% decrease compared to WGAN-GP.

Regarding the LG dataset (Figure 9) and the performance using DCGAN-based archi-
tectures (Table 1), XDCGAN + Gradient⊙Input achieved the best FID, 93.88, representing a
13.22% decrease compared to DCGAN (108.18). Considering RAGAN-based models, XRA-
GAN + Saliency and XRAGAN + Gradient⊙Input improved the FID and IS. XRAGAN +
Saliency provided the best FID, 88.30, representing an 8.99% decrease compared to RAGAN
(95.91). When using WGAN-GP as the base architecture, XWGAN-GP + Saliency provided
the best FID, 128.26, 6.52% less than WGAN-GP (137.46).

Finally, considering the UCSB dataset (Figure 10), XDCGAN + DeepLIFT achieved an
FID of 62.34 and an IS of 2.83. This combination was the best FID and IS among the DCGAN-
based architectures, representing about a 14.33% FID improvement. Considering the
RAGAN-based models, XRAGAN + Saliency and XRAGAN + Gradient⊙Input improved
the FID and IS. XRAGAN + Saliency provided the best FID, 63.21, representing a 7.61%
decrease compared to RAGAN (68.42). This combination also produced more diverse
images. The IS score was 2.79. XWGAN-GP showed no improvement compared to WGAN-
GP. The best case was WGAN-GP, with an FID of 81.07. However, XWGAN-GP provided
the best IS, 2.74.

We used the generated images to augment the datasets and train the Transformer
models. Our goal was to verify whether the XAI methods’ feature information could
improve the Transformer models’ classification performance. We followed the strategy
described in Section 2.4.2. Tables 2–5 show the classification results on the CR, LA,
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LG, and UCSB datasets, respectively. Each table’s first row presents the classification
accuracy without data augmentation (without DA), and results using a GAN in the data
augmentation are organized by base architecture: DCGAN, RAGAN, and WGAN-GP.
We considered the classification performance without data augmentation and with data
augmentation using original architectures (DCGAN, RAGAN, and WGAN-GP with no
XAI) as a baseline. We compared the results obtained with XGAN (XDCGAN, XRAGAN,
and XWGAN-GP) with the defined baselines to determine whether the proposed method
is capable of improving the classification performance of Transformer-based models via
data augmentation and whether educational training using XAI is capable of enhancing
the quality and classification performance of a given base GAN architecture. Thus, bold
values indicate the best accuracy given a base architecture.

DCGAN

WGAN-GP

Benign Malignant

Original

RAGAN

Saliency

DeepLIFT

GradientInput

XRAGAN

Saliency

DeepLIFT

GradientInput

XWGAN-GP

Saliency

DeepLIFT

GradientInput

XDCGAN

Figure 7. Examples of generated images for the CR dataset.
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DCGAN

WGAN-GP

Original

RAGAN

Saliency

DeepLIFT

GradientInput

XRAGAN

Saliency

DeepLIFT

GradientInput

XWGAN-GP

Saliency

DeepLIFT

GradientInput

XDCGAN

One month Six months 16 months 24 months

Figure 8. Examples of generated images for the LA dataset.

Considering the classification results regarding the CR dataset (Table 2), the combi-
nation with the best FID among the DCGAN-based architectures, XDCGAN + Saliency,
also provided the best classification performance. This combination provided the best
accuracy with all Transformer models: 84.14% with ViT, 87.70% with DEiT, 92.24% with
PVT, and 93.44% with CoAtNet. With CoAtNet, XDCGAN + Gradien⊙Input also achieved
an accuracy of 93.44%, the same as XDCGAN + Saliency. The IS value with this combi-
nation (2.43) may have influenced this result, promoting more significant variability in
artificial images, and consequently, better model generalization. Considering the RAGAN-
based models, it is possible to note that XRAGAN + DeepLIFT provided the lowest FID
(46.02) and the highest accuracy in most cases, 84.30% with ViT and 91.92% with PVT.
Also, XWGAN-GP + Saliency provided the lowest FID (72.01) and achieved the highest
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accuracy with ViT (84.41%), DEiT (88.09%), and CoAtNet (93.64%). The XWGAN-GP +
Gradient⊙Input provided the second-lowest FID (74.01) and achieved the highest accuracy
with PVT (92.13%).

DCGAN

WGAN-GP

Male Female

Original

RAGAN

Saliency

DeepLIFT

GradientInput

XRAGAN

Saliency

DeepLIFT

GradientInput

XWGAN-GP

Saliency

DeepLIFT

GradientInput

XDCGAN

Figure 9. Examples of generated images for the LG dataset.

Regarding the LA dataset, XDCGAN could not improve the FID (Table 1). XDCGAN
+ Saliency, however, achieved the second-lowest FID (128.07), and it is worth noting in
Table 3 that this combination provided the best accuracy with DEiT (95.45%). It is also
worth noting that the architecture with no GAN improved the classification performance
with ViT, which achieved 95.04% without data augmentation. Nevertheless, taking into
account the RAGAN-based architectures, the combination with the best FID, the XRAGAN
+ DeepLIFT, provided the best classification performance with PVT, 97.71% against 97.32%
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with RAGAN, and 96.44% without data augmentation. XWGAN-GP improved DEiT, PVT,
and CoAtNet classification performance compared to WGAN-GP. For instance, WGAN-
GP + Saliency achieved an accuracy of 97.79% with DEiT and 98.24% with PVT. This
result represents an improvement of 3.81% and 1.87% compared to the models without
data augmentation, respectively, and 3.01% and 1.23% compared to WGAN-GP. Also,
the combination XWGAN-GP + DeepLIFT, which provided the second-best FID and IS,
achieved the best accuracy with CoAtNet, 99.34%.

DCGAN

WGAN-GP

Benign Malignant

Original

RAGAN

Saliency

DeepLIFT

GradientInput

XRAGAN

Saliency

DeepLIFT

GradientInput

XWGAN-GP

Saliency

DeepLIFT

GradientInput

XDCGAN

Figure 10. Examples of generated images for the UCSB dataset.
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Table 2. Accuracy metric for the CR dataset.

ViT DEiT PVT CoAtNet

without DA 81.29% 87.89% 91.81% 93.19%

DCGAN

No XAI 82.67% 87.48% 91.80% 92.30%
Saliency 84.14% 87.70% 92.24% 93.44%
DeepLIFT 79.97% 87.63% 91.48% 93.15%
Gradient⊙Input 82.89% 87.25% 91.98% 93.44%

RAGAN

No XAI 83.53% 88.44% 91.02% 92.73%
Saliency 81.87% 88.33% 90.98% 93.88%
DeepLIFT 84.39% 87.28% 91.92% 93.06%
Gradient⊙Input 80.56% 87.28% 91.86% 92.64%

WGAN-GP

No XAI 81.60% 86.52% 91.15% 91.95%
Saliency 84.41% 88.09% 91.98% 93.64%
DeepLIFT 78.25% 87.91% 91.54% 93.36%
Gradient⊙Input 83.34% 87.96% 92.13% 93.13%

Table 3. Accuracy metric for the LA dataset.

ViT DEiT PVT CoAtNet

without DA 95.04% 94.2% 96.44% 99.12%

DCGAN

No XAI 93.14% 94.91% 97.75% 99.32%
Saliency 92.29% 95.45% 96.98% 98.93%
DeepLIFT 93.46% 94.38% 97.16% 99.5%
Gradient⊙Input 92.33% 93.48% 96.83% 99.26%

RAGAN

No XAI 94.74% 94.34% 97.32% 99.33%
Saliency 92.61% 94.04% 97.42% 98.44%
DeepLIFT 94.00% 93.33% 97.71% 99.22%
Gradient⊙Input 93.77% 94.98% 97.65% 99.16%

WGAN-GP

No XAI 94.04% 94.93% 97.05% 99.07%
Saliency 94.09% 97.79% 98.24% 98.77%
DeepLIFT 94.36% 97.46% 97.63% 99.34%
Gradient⊙Input 94.73% 95.46% 97.56% 98.49%

Table 4 shows the accuracy of the LG dataset. Once again, no architecture was able to
improve classification with ViT. However, the two best XDCGAN models in terms of FID
(Table 1), XDCGAN + Gradient⊙Input (99.33) and XDCGAN + DeepLIFT (98.24), achieved
the highest accuracy with PVT (99.20%) and DEiT (97.43%), respectively. The XRAGAN
model showed improvements in FID and IS when combined with Saliency (Table 1). This
combination achieved the highest accuracy with DEiT (96.77%) and PVT (99.08%). Also, the
combination XRAGAN + Gradient⊙Input achieved 99.79% with CoAtNet. The XWGAN-
GP model also improved FID and IS when combined with Saliency. It achieved the highest
accuracy with DEiT (97.17%) and CoAtNet (99.81%). The XWGAN-GP + Gradient⊙Input
combination provided the second-lowest FID and achieved the highest accuracy with
PVT (98.94%).

Table 5 shows the accuracy of the UCSB dataset. The XDCGAN + Gradient⊙Input
achieved the best results with DEiT (75.14%) and PVT (78.36%). Regarding the XRAGAN
models, XRAGAN + Saliency and XRAGAN + Gradient⊙Input achieved the lowest FID
(Table 1). XRAGAN + Saliency achieved the highest accuracy with DEiT (75.88%) and
XRAGAN + Gradient⊙Input with PVT (77.36%). The XWGAN-GP + Gradient⊙Input
combination provided the lowest FID (87.65) and achieved the highest accuracy with DEiT
(77.42%), PVT (77.77%), and CoAtNet (76.59%).



Appl. Sci. 2024, 14, 8125 16 of 20

Table 4. Accuracy metric for the LG dataset.

ViT DEiT PVT CoAtNet

without DA 97.05% 94.88% 98.63% 99.50%

DCGAN

No XAI 96.56% 96.51% 98.80% 99.48%
Saliency 95.64% 96.72% 99.01% 99.86%
DeepLIFT 95.47% 97.43% 96.82% 99.34%
Gradient⊙Input 95.78% 96.82% 99.20% 99.50%

RAGAN

No XAI 95.24% 97.05% 98.73% 99.74%
Saliency 95.50% 96.77% 99.08% 99.69%
DeepLIFT 95.33% 96.42% 98.73% 98.02%
Gradient⊙Input 95.19% 96.53% 98.94% 99.79%

WGAN-GP

No XAI 91.11% 95.99% 98.66% 99.60%
Saliency 96.32% 97.17% 98.87% 99.81%
DeepLIFT 96.79% 96.75% 98.89% 99.17%
Gradient⊙Input 95.19% 96.53% 98.94% 99.79%

Table 5. Accuracy metric for the UCSB dataset.

ViT DEiT PVT CoAtNet

without DA 75.00% 73.36% 77.27% 76.17%

DCGAN

No XAI 72.21% 74.59% 77.84% 75.01%
Saliency 72.36% 74.78% 77.14% 74.49%
DeepLIFT 72.04% 75.01% 76.50% 74.76%
Gradient⊙Input 71.44% 75.14% 78.36% 74.03%

RAGAN

No XAI 71.30% 73.38% 77.00% 72.77%
Saliency 72.91% 75.88% 75.82% 75.21%
DeepLIFT 71.75% 73.08% 76.98% 74.85%
Gradient⊙Input 71.61% 75.12% 77.92% 75.44%

WGAN-GP

No XAI 72.86% 75.03% 77.14% 73.54%
Saliency 70.91% 74.54% 76.98% 72.94%
DeepLIFT 73.51% 75.20% 76.63% 73.96%
Gradient⊙Input 71.66% 77.42% 77.77% 76.59%

Based on the classification results, we analyzed the best combinations of XAI and
GAN for the histological datasets. This analysis aimed to determine the number of cases in
which the XGAN combinations provided the best performance given a base architecture.
Table 6 shows a ranking of the best combinations. Considering all datasets, the combina-
tion XWGAN-GP + Saliency outperformed WGAN-GP in seven cases. The second and
third places also included the Saliency method: XDCGAN + Saliency, with six cases; and
XRAGAN + Saliency, with four cases. The subsequent three cases were combinations with
the Gradient⊙Input and DeepLIFT methods: XWGAN-GP + Gradient⊙Input with five
cases, XDCGAN + Gradient⊙Input with four cases, and XRAGAN + Gradient⊙Input
and XRAGAN + DeepLIFT both with three cases. Finally, the two worst cases were com-
binations with DeepLIFT: XWGAN + DeepLIFT and XDCGAN + DeepLIFT, with only
one case each. Based on these facts, the XAI method that provided the best informa-
tion for the generator was Saliency, followed by Gradient⊙Input and DeepLIFT. These
findings can guide researchers and experts in using GANs and XAI to develop artificial
augmentation techniques.
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Table 6. Ranking of the combinations, showing best cases.

Position Combination Number of Best Cases

1 XWGAN-GP + Saliency 7
2 XDCGAN + Saliency 6
3 XRAGAN + Saliency 4
4 XWGAN-GP + Gradient⊙Input 5
5 XDCGAN + Gradient⊙Input 4
6 XRAGAN + Gradient⊙Input 3
6 XRAGAN + DeepLIFT 3
7 XWGAN + DeepLIFT 1
7 XDCGAN + DeepLIFT 1

It is important to observe that to expand our investigation, new experiments can be
performed with different models and datasets, including other types of medical images. On
the other hand, incorporating more datasets from various medical fields poses significant
challenges, especially when considering GAN architectures. For instance, an architecture
that works well for one type of medical image may not be optimal for another, requiring
extensive experimentation and customization to achieve the best results. In addition,
acquiring and processing datasets from different medical domains involves overcoming
various logistical, ethical, and technical hurdles, which adds to the complexity of such an
expansion. In this context, our approach opens up new possibilities for enhancing data
augmentation techniques and improving the overall performance of Transformer-based
models in histopathological datasets. It provides new patterns and insights for specialists
interested in machine learning.

Finally, we recognize the importance of discussing the computational complexity of the
methods employed. However, performing a complexity analysis of algorithms, especially
when integrating XAI with GANs, can be challenging due to the intricate nature of these
models and the variability in computational demands across different setups. Moreover,
the primary focus of our research was to explore the integration of XAI techniques with
GANs to improve the quality of generated images rather than to provide a comprehensive
analysis of the computational complexity. Despite the complexity analysis challenges,
we consciously used gradient-based XAI methods in our research. Gradient-based XAI
is the fastest among the various XAI types, making it a practical choice for our study.
These methods work by calculating gradients concerning the input features, which helps
to identify the input areas that most influence the model’s output. This approach is
computationally efficient because it leverages the gradients already computed during the
backpropagation process in neural networks.

4. Conclusions

In this work, we proposed a new approach for training GANs using XAI to improve
generation quality and data augmentation performance on histopathological datasets. We
used XAI methods, such as Saliency, DeepLIFT, and Gradient⊙Input, to extract feature
information from the discriminator and feed it to the generator during the training. We
evaluated the proposed method on four histopathological datasets, CR, LA, LG, and UCSB,
using the FID and IS metrics to assess the quality of generated images and the accuracy met-
ric to compare the classification performance of four Transformer models, ViT, DEiT, PVT,
and CoAtNet, with and without data augmentation. The multiple experiments provided a
solid foundation to understand the effectiveness of our approach in this specific domain.

The results showed that the proposed method increased the quality and diversity
of the generated images. In most cases, the XGAN provided better FID and IS values
than traditional GAN models. For instance, it was possible to decrease the FID by up to
32.70% compared to the traditional architectures. This gain in quality positively affected
the classification performance of the Transformer models. Accuracy was increased by up to



Appl. Sci. 2024, 14, 8125 18 of 20

3.81% compared to the models without data augmentation and up to 3.01% compared to
the models with traditional GAN data augmentation. We also showed that Saliency was the
best method for providing information to the generator, followed by Gradient⊙Input and
DeepLIFT. The XWGAN-GP + Saliency combination was a highlight, as it outperformed
WGAN-GP in seven cases.

These results are significant because they show XAI’s potential to improve the quality
of image generation by using GANs on histopathological datasets. We demonstrated that
the features provided by XAI explanations contribute to better generalization in the training
of Transformer models, promoting an improvement in their classification power. Also, we
identified that the saliency method provided the best features and was the most relevant
method for composing a combination with GAN models. These findings provide insights
and guidelines for researchers and experts interested in developing artificial augmentation
techniques for histopathological datasets.

In future work, some insights can be investigated: 1. new tests using different com-
binations of GAN models; 2. apply other evaluation metrics, such as the precision–recall
metrics, for generative models; 3. integrate MLOps approaches and pipelines for biomedi-
cal image processing; 4. tests using larger datasets with a significantly higher number of
samples, including those from different medical domains, to comprehensively evaluate the
performance of our proposed method and its generalization capabilities; 5. new analysis by
delving deeper into the reasons behind the varying performance of different GAN and XAI
combinations to provide a more thorough examination of their specific advantages and
limitations; 6. statistical analysis, including significance testing, to verify the improvements
in classification performance and complexity analysis of the proposed method to guide
optimization processes.
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