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Abstract: Mechanical and electrical equipment is an important component of urban rail transit
stations, and the service capacity of stations is affected by its reliability. To solve the problem
of predicting faults in station mechanical and electrical equipment with sparse data, this study
proposes a fault prediction framework based on SSA-CNN-LSTM. Firstly, this article proposes a
fault enhancement method for station electromechanical equipment based on TimeGAN, which
expands and generates data that conform to the temporal characteristics of the original dataset, to
solve the problem of sparse data in the original fault dataset. An SSA-CNN-LSTM model is then
established to extract effective data features from low-dimensional data with insufficient feature
depth through structures such as convolutional layers and pooling layers in a CNN, determine the
optimal hyperparameters, automatically optimize the model network size, solve the problem of the
difficult determination of the neural network model size, and achieve accurate prediction of the fault
rate of station electromechanical equipment. Finally, an engineering verification was conducted on
the platform screen door (PSD) systems in stations on Shanghai Metro Lines 1, 5, 9, and 10. The
experiments showed that the proposed prediction method improved the RMSE by 0.000699, the
MAE by 0.00042, and the R2 index by 0.109779 when predicting the fault rate data of platform screen
doors on all of the lines. When predicting the fault rate data of the screen doors on a single line,
the performance of the model was better than that of the CNN-LSTM model optimized with the
PSO algorithm.

Keywords: platform screen door system; fault prediction; sparse and weak feature data; data
augmentation; CNN-LSTM

1. Introduction
1.1. Background

The electromechanical systems in stations are important parts of urban rail transit
systems, as they provide services for the safe and orderly passage of passengers through
stations. When station electromechanical equipment fails, the station service capacity de-
clines, and serious faults can even induce safety accidents. Especially in the fully automatic
operation mode, more equipment and interfaces are present in station electromechani-
cal systems, which places higher requirements for the safe and stable operation of these
systems. A platform screen door (PSD) system is critical equipment in modern metro
engineering, and it is installed at the edge of the platform to protect the safety of pas-
sengers and prevent accidents caused by passengers falling from the platform [1,2]. A
PSD system consists of two parts: the mechanical structure and electrical equipment. The
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mechanical part includes a door body structure and a door machine system, while the
electrical part includes a monitoring system and a power supply system [3]. Platform screen
door systems play a significant role in ensuring passengers’ safety and the service level
of rail transit operations. At present, the maintenance methods for PSD systems mainly
include corrective maintenance, preventive maintenance, and predictive maintenance [4].
Corrective maintenance is a maintenance method in which assets are passively repaired
after a fault, and maintenance requirements are determined through on-site inspection [5].
Preventive maintenance usually relies on a fixed schedule or mileage interval [6]. However,
these two maintenance methods lack consideration of the actual operation of a station’s
electromechanical equipment, which may cause the system to reduce availability due to
imperfect maintenance, thereby reducing its performance [7]. Predictive maintenance is
based on characteristics that are predicted or known as a result of repeated analyses and the
evaluation of important parameters of project degradation, and state-based maintenance is
performed to extend the service life of the system [8,9]. It has become the main technical
way to meet the needs of urban rail transit networks and automatic operation and to
improve the level of operation service.

Predictive maintenance is a data-driven maintenance strategy that requires a large
amount of high-quality data [10]. As PSD systems are an important component of sta-
tion electromechanical equipment, fault data are only recorded when malfunctions occur.
Existing research mainly uses the fault rate to achieve fault prediction for PSD systems.
The original fault data only affect the calculation of the fault rate and do not affect the
amount of fault rate data. The data volume of the fault rate is related to the time span
of the original fault dataset, and it is a type of low-frequency data, making it difficult
to meet the data requirements of predictive maintenance. In recent years, the SMOTE
algorithm has been widely used for data augmentation; Wang et al. used the SMOTE
method based on the Euclidean distance from the center to enhance the data in an access
control terminal fault dataset [11]. Trinh and Kwon used the boundary SMOTE method to
enhance data on the faults and residual life of machinery [12]. Duan et al. used the average
radius SMOTE method to enhance a gear fault dataset [13]. The SMOTE method finds
the nearest neighbors for each minority class sample and randomly interpolates between
them to generate new samples, thereby achieving sample class balance before training the
classifier [14]. However, the SMOTE method is mainly aimed at solving the problem of class
imbalance [15]. The main problem of fault data enhancement of station electromechanical
equipment is the generation of time-series data with temporal correlations that conform
to the fault mode of platform screen doors, which is difficult to achieve with the SMOTE
method. With the development of artificial neural network (ANN) technology, generative
adversarial networks (GANs) based on recurrent networks have been used for data aug-
mentation. Li et al. proposed an adaptive TSA-GAN for time-series prediction and verified
it on the UCR 2015 time-series dataset [16]. TimeGAN proposed by Yoon et al. enables a
GAN to capture the gradual dependence of time data by introducing a loss function [17].
Therefore, the use of a GAN for time-series optimization provides a new way to solve the
problem of it being difficult to generate data that conform to the temporal distribution
pattern of the original sequence when using traditional data enhancement methods.

In addition to a large amount of high-quality data, efficient and accurate prediction
algorithms or models also have an important impact on the effectiveness of predictive
maintenance. Traditional models, which are represented by autoregressive models and
their variants, are mainly based on time-series models, which perform well in processing
steady-state data [18]. This kind of model is mainly based on a linear autoregression
of the time series itself. In real application scenarios, the time series obtained from data
sources often have non-stationary and nonlinear characteristics, which limit the universality
and accuracy of autoregressive models in practical applications. In order to improve the
generalization and accuracy of prediction models, models based on neural networks (NNs)
are widely used because of their strong learning and prediction abilities for inaccurate and
nonlinear laws [19]. Guo et al. applied an error fusion of multiple sparse autoencoders
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(EFMSAEs) to a time series of rolling bearings and predicted faults in mechanical systems
through LSTM [20]. Guo et al. used an informer to predict electrical line-tripping faults [21].
Therefore, prediction models based on neural networks provide a new way to solve the
problem of traditional prediction models having difficulties in generalizing and improving
prediction accuracy.

1.2. Objectives and Scope

This study proposes an intelligent fault rate prediction framework for rail transit
platform screen door systems. Firstly, a data enhancement method based on TimeGAN is
adopted. Automatic coding components, including embedding and recovery functions,
and adversarial components, including generators and discriminators, are jointly trained
to learn sequence features, generated sequences, and cross-time iterations simultaneously.
This method can solve the problem of sparse data in the original rail transit platform
screen door fault dataset and generate augmented data that conform to the temporal
characteristics of the original dataset. Secondly, a prediction model based on CNN-LSTM is
used to extract effective data features from low-dimensional data with insufficient feature
depth through a CNN, and shared convolution kernel parameters are used to reduce
the model parameters. At the same time, the sparrow search algorithm (SSA) is used to
optimize the key parameters of LSTM to solve the problem in which the scale of the neural
network model is difficult to determine so as to improve the accuracy of the prediction
of long-range dependent time series. Finally, the prediction framework mentioned above
is applied to the fault rate prediction of platform screen door systems on four lines of the
Shanghai rail transit system.

The rest of this article is organized as follows: Related work is described in Section 2.
In Section 3, the proposed method for fault rate prediction in a rail transit PSD system is
introduced. In Section 4, data from four lines of the Shanghai rail transit system are used in
an engineering application to verify the effectiveness and accuracy. Finally, the conclusion
and prospects are summarized in Section 5.

2. Literature Review
2.1. Data Augmentation Technology

Data augmentation technology can be divided into traditional methods of simple
integration or adjustment of data and methods based on deep learning. Traditional en-
hancement methods include algorithms for the transformation and amplification of the
data themselves and fusion methods for multiple and heterogeneous types of data to
fuse data from different sources. Conversion and amplification algorithms for the data
themselves come from the field of image recognition, in which different types of conversion
are performed on the data, such as clipping, scaling, or translation [22–24]. However,
due to the particularity of time-series data distributions, such algorithms cannot be di-
rectly applied for the enhancement of time-series data. Improved basic data enhancement
methods for time series include jitter, arrangement, etc. The jitter method is designed to
take advantage of the noise in data and simulate it to generate new samples. Zha et al.
used the jitter method to enhance time-series data on wind power generation, thereby
extending a sparse and unbalanced original dataset that recorded the working state of
wind power equipment. Arrangement is performed to generate new data by specifying
a time window and rearranging data from it [25]. Sun et al. improved the arrangement
method and proposed a dynamic time-warping algorithm to enhance test data on rolling
bearings of electromechanical equipment [26]. However, the learning of jitter for noise
requires one to adapt to a variety of situations; otherwise, it will lead to negative learning.
The arrangement method has the problem of not retaining time dependence, which may
cause invalid samples to be generated. Multi-source heterogeneous data fusion refers to the
integration of data from multiple data sources, such as different devices, sensors, systems,
and networks, to make up for the shortcomings of a single data source and obtain data
with higher dimensions. Sun et al. proposed a multi-source heterogeneous data fusion
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model based on a CatBoost feature layer and data layer, which fused sensor measurement
data, offline inspection data, and video monitoring data from electromechanical equipment
in a production line [27]. However, most of the fault data for platform screen door systems
come from manual inspection, and the data sources are limited, so it is difficult to carry out
effective heterogeneous data fusion.

Data enhancement methods based on deep learning are mainly based on the vari-
ational autoencoder (VAE) and generative adversarial network (GAN). The variational
autoencoder (VAE) is composed of two parts: an inference network and a generation
network. It realizes the approximate reasoning of a complex distribution by minimizing
the KL divergence between two distributions and realizes the generation of continuous
and smooth data. Fan et al. used the VAE to enhance fault detection data from semicon-
ductor wafer manufacturing equipment and used the augmented data for classification
learning [28]. In practical applications, the data distribution of time series is usually com-
plex and contains a variety of internal associations. However, the VAE often assumes
that the data distribution is a Gaussian distribution, which may lead to its inability to
accurately capture the true distribution pattern of data in the process of data enhancement.
The proposal of the generative adversarial network (GAN) solves the problem of it being
difficult for generated data to simulate the real distribution pattern of the original data.
Shi et al. used a GAN architecture to generate data from two different types of fault data
sequences. The generator and discriminator of each GAN were composed of many-to-many
LSTM models, so the model was able to process the input time information [29]. Sabir et al.
augmented the data of DC signal samples by modifying the original convolution to cre-
ate a one-dimensional deep convolution GAN (DCGAN), which solved the problem of
it being difficult for the traditional GAN architecture to be directly used for time-series
prediction [30]. Yoon et al. proposed TimeGAN, which adds a loss function to a GAN
to capture the gradual dependence of data and solves the problem of the generator and
discriminator of the traditional GAN model not accurately reproducing the time changes
in the original data by using the recursive network [17].

2.2. Time-Series Prediction Based on Neural Networks

Because neural networks can automatically extract data features and have strong
generalization abilities, they are widely used in the field of time-series prediction. At
present, the mainstream neural network prediction methods can be divided into three
categories in terms of their structure: the artificial neural network (ANN), convolutional
neural network (CNN), and recurrent neural network (RNN), as well as a variant thereof:
the long short-term memory network (LSTM).

ANN-based models are usually composed of input neurons, hidden neurons, and
output neurons. Jain et al. used traditional techniques for trend reduction and season-
alization, and they used the results to train ANNs. The model was able to capture the
nonlinear properties of complex time series and improve the prediction accuracy [31].
Moldovan and Buzugan used an ANN to predict the location and type of fault in faulty
cables in a distribution system, and the prediction accuracy on a 20 kV distribution line
dataset was 98% [32]. Compared with ANNs, CNNs have a stronger ability to extract
relevant features due to the introduction of convolutional layers, which can effectively
process multivariate time series [33]. Kashiparekh et al. proposed a pre-training model
based on a CNN to classify time series. The model used a convolution filter to capture
time features on multiple time scales and classified and predicted datasets that included
electrical equipment and sensors [34]. Wu et al. proposed a convolutional neural network
based on an adaptive adversarial network (ADACNN) and applied it to intelligent fault
identification in the bearing mode for electromechanical equipment. Compared with a
general CNN, it achieved a 4% accuracy advantage [35].

As a special neural network model, the recurrent structure of an RNN can capture the
dependencies in time-series data. Che et al. proposed an RNN-based model to deal with
multivariate time series with missing values. By using partial PSD system data at different
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time intervals and modeling them to capture the long-range time dependence, the predic-
tion effect was improved [36]. Bezyan and Zmeureanu used an RNN to predict fault data
in a ventilation machinery system and electromechanical heating system, respectively [37].
However, RNNs have problems such as gradient explosion and disappearance, and they
can only remember short-term information when processing long sequences [38]. In order
to solve the above problems, Hochreiter and Schmidhuber proposed a variant—the long
short-term memory network (LSTM)—based on an RNN [39]. Xu et al. used Attention-
LSTM, which was based on an attention mechanism, to predict the fault rate of mechanical
equipment. Experiments on a bearing fault dataset showed that the model had high pre-
diction accuracy [40]. However, due to the introduction of more parameters, LSTM has
a problem where the network size is difficult to determine in practical applications [41].
Liu et al. used the PSO algorithm to optimize the LSTM parameters, solved the problem of
the optimal scale of the LSTM model being difficult to determine, and predicted oil and gas
faults in power grid transformer equipment [42].

2.3. Knowledge Gaps

The literature review reveals the following knowledge gaps:

(1) Data augmentation methods that transform and amplify the data themselves, such as
jitter and arrangement, need to learn about the distribution pattern and noise of the
data themselves in advance, and it is difficult for them to retain the time dependence
of the original data. In addition, enhancement methods based on multi-source het-
erogeneous data fusion have certain requirements for the number and availability of
data sources. Therefore, it is difficult to use traditional data enhancement methods for
the enhancement of time-series data with a single data source and complex internal
correlations, such as in fault rate prediction for electromechanical equipment.

(2) Although neural network models, especially LSTM, have been greatly optimized in
terms of structural defects and have strong generalization capabilities and robustness,
they have more hyperparameters, and the network scale is difficult to determine
and optimize.

This study proposes a CNN-LSTM prediction framework based on TimeGAN data
enhancement and optimized with the sparrow search algorithm (SSA) to predict the fault
rate of platform screen door systems. Through TimeGAN, data that conform to the time
characteristics of the original fault data are generated, and the fault dataset is augmented.
The high-dimensional features of the fault sequence are extracted by the CNN, and LSTM
is selected for fault rate prediction due to the need for long-term sequence prediction. The
SSA is used to optimize the model parameters to achieve an accurate prediction of the fault
rate of platform screen door systems.

3. Methodology
3.1. Fault Prediction Framework for Platform Screen Doors Based on SSA-CNN-LSTM

The prediction framework proposed in this study is shown in Figure 1, and it includes
three main parts: data preprocessing, data enhancement, and fault rate prediction. In the
data preprocessing stage, the fault rate and the average fault interval time are used as a
fault evaluation index so as to objectively and accurately quantify the fault situation of the
platform screen door system. After the component-level fault data records of the initial
dataset are deduplicated and invalid features are cleaned, the calculation is performed
according to the definition of the evaluation index, thereby converting the original dataset
into system-level fault data containing the evaluation index.
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Figure 1. Fault prediction framework for platform screen doors based on SSA-CNN-LSTM.

The preprocessed data are augmented using TimeGAN, which learns the input plat-
form screen door fault data through an automatic encoder network composed of an embed-
ding function and a generating function, and it uses a supervised network to supervise and
classify the original data and the generated data. Finally, the generated data are identified
using an adversarial network composed of a recovery function and a discriminant function,
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and the generated data that conform to the spatial and temporal distribution of the original
screen door fault data are given as output.

The proposed prediction model leverages a CNN to initially extract meaningful fea-
tures from the augmented dataset. After the convolution layer, normalization layer, acti-
vation function layer, and pooling layer, the deep features in the original platform screen
door fault data are extracted, which solves the problem of the depth of data features being
insufficient and the difficulty in extracting effective features. Then, the sparrow search
algorithm is used to determine the optimal parameters of LSTM and optimize its prediction
effect. Finally, LSTM is used with the optimal parameters to predict the fault rate and
improve the prediction accuracy.

3.2. Data Preprocessing

Table 1 shows the configuration of the original dataset for the training of the fault rate
prediction model for platform screen door systems. The dataset includes fault time and
space information that was automatically recorded by the Shanghai Rail Transit Command
and Control Center, as well as fault records and maintenance records that were manually
collected by the operation and maintenance personnel.

Table 1. Configuration of the raw dataset for predicting screen door system faults.

Data Source Data Information

Monitoring Data Temporal Information Fault occurrence time
Fault station

Maintenance Data

Fault Logging

Fault content
Malfunction equipment

Fault mode
Fault cause

Door function status

Maintenance Record

Maintenance content
Response time
Handling time

Processing response time
Processing delay time

3.2.1. Design of Fault Assessment Indicators

Faults in PSD systems are usually caused by faults in the door machine system, faults
in the control system, or other external factors, such as the intrusion of a foreign body.
In order to quantitatively describe the reliability of the platform screen doors in a rail
transit station, in combination with the data contained in the original dataset, the fault rate
and average fault interval time were selected as indicators to represent the reliability of
screen doors.

The fault rate refers to the probability that a product that has not yet failed at time t
fails within a unit of time after time t, which is recorded as λ(t). For finite samples, the
number of samples is N, n(t) samples fail after time t, and the fault number of the product
at time (t + ∆t) is n(t + ∆t); then, the estimated fault rate is

λ(t) =
n(t + ∆t)− n(t)

N∆t
(1)

After a fault in a subway platform screen door, the faulty module is replaced, and
the replaced module is returned to the factory for maintenance, which is equivalent to an
update of the overall sample after maintenance. In this study, the fault rate in the next cycle
(unit time) is approximately equal to the number of faults divided by the total number
of samples.
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The mean time between faults (MTBF) refers to the average time of normal operation
between two faults. It is an important index for reflecting the reliability of equipment. The
calculation formula is

MTBF =
Equipment operating time×Quantity

Fault times
(2)

3.2.2. Data Processing

Since the original dataset is a component-level fault record, it is necessary to process
the component-level fault data into system-level fault data according to the above indi-
cators. The specific data processing flow is shown in Figure 2, and it includes cleaning
invalid features, deduplication, sorting, conditional clustering and counting, and time
interval calculation.
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The original dataset includes dimensions such as the occurrence time, site, fault device,
fault content, fault type, work content, and response time. With reference to the determined
indicators, redundant dimensions such as work content and response time are removed,
and feature dimensions such as occurrence time and site are retained. After that, the fault
time is deduplicated according to the time, and the first fault record is retained. Then,
the data after deduplication are sorted in chronological order to obtain the preliminary
processed data. The preliminary processed data are clustered by year and month, and
then, the monthly faults are counted to obtain the number thereof. Then, according to the
fault rate calculation formula, the monthly fault rate can be obtained by dividing the total
number of faults. On the other hand, the fault interval time is calculated using seconds
for the preliminarily processed data, and the monthly average is calculated. Finally, the
monthly average fault interval days are converted, and the processed dataset is formed
together with the monthly fault rate obtained through the previous processing.

3.3. Data Augmentation

During the operation of a platform screen door, many factors, such as the door machine
system and the external environment, affect its normal operation. These factors are usually
nonlinear and dynamic, so it is difficult to establish a clear and accurate mathematical
model. In addition, the platform screen door fault dataset also has specific temporal
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characteristics; the fault and maintenance situation of the current month affect the fault data
of the next month. If the fault rate of the current month is high and most of the equipment is
maintained, the fault rate of the next month will decrease, the MTBF will increase, and the
overall fault rate will increase with time. To address the issue of data sparsity, TimeGAN is
employed to identify and learn the significant statistical features derived from historical
data. This approach can be used to understand the intricate structures and characteristics
inherent in time-series data. Furthermore, it generates novel time series by capturing
the distribution of a collection of random noise vectors while preserving the correlations
present within the time series itself, that is, the relationship between the generated data
and the preprocessed data, such as the autocorrelation between the monthly fault rate and
the monthly average fault interval time, as well as the change characteristics of the fault
rate over time.

3.3.1. TimeGAN Construction

TimeGAN consists of an autoencoder network, a supervised network, and an adver-
sarial network. The specific structure is shown in Figure 3.
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• Autoencoder network construction 
The embedding function and the recovery function establish a reversible mapping 

between the feature space and the latent space, thereby facilitating the adversarial net-
work’s capacity to learn the interrelationships inherent within time-series data. The em-
bedding function is articulated as follows: ℎ௧ = 𝑒ሺℎ௧ିଵ, 𝑝௧ሻ (3)
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• Autoencoder network construction

The embedding function and the recovery function establish a reversible mapping
between the feature space and the latent space, thereby facilitating the adversarial network’s
capacity to learn the interrelationships inherent within time-series data. The embedding
function is articulated as follows:

ht = ep(ht−1, pt) (3)

In Formula (3), ep denotes the embedding function, which comprises three layers
of gated recurrent units (GRUs) followed by a fully connected layer. The hidden layer
comprises 24 neurons, which utilize the sigmoid activation function. The variable pt
denotes the code corresponding to the processed fault rate data of PSDs in the potential
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space. The subscript t denotes temporal information. Let ht represent a low-dimensional
temporal feature at time t. The recovery function is characterized as follows:

∼
pt = rp(ht) (4)

p̂t = rp
(
Êsup,t

)
(5)

In Formulas (4) and (5), rp denotes the recovery function, which serves the purpose
of reconstructing ht with respect to the data p̃t, ensuring that it maintains the same di-
mensionality as the processed PSD fault rate data. It further re-establishes the supervisory
space Êsup,t of the generated data to correspond with the data p̂t, maintaining dimensional
congruence with the processed PSD fault rate data.

• Supervised network construction

The potential space coding ht corresponding to the fault data of screen doors after
processing and the fault data Et generated by the generator are expressed in the supervised
space by the following formulas:

ĥsup,t = sp(ht) (6)

Êsup,t = sp(Et) (7)

where sp represents the supervision function, which is composed of three layers of GRUs
and a fully connected layer, and sigmoid is used as the activation function. ĥsup,t and Êsup,t
are the representations in the supervised space of ht and Et.

• Adversarial network construction

The data produced by the generator from the stochastic time series are initially gen-
erated within the latent space. The formula associated with the generator network is
delineated as follows:

Et = gp(Et−1, zt) (8)

In Formula (8), gp denotes the generating function, which comprises a three-layer
architecture of gated recurrent units (GRUs) in conjunction with a fully connected layer.
Let Et denote the PSD fault data generated by the generator at time t, while Et−1 signifies
the data produced in the preceding time step. The variable zt represents a stochastic time
series that possesses the same dimensionality as the preprocessed PSD fault rate data. The
discriminator operates within the potential space to differentiate between three specific
domains: the potential space ht representing the fault data generated by screen doors after
input processing, the potential space Et associated with the generation of fault data, and
the supervised space Êsup,t, which is also concerned with the generation of fault data. The
formula pertinent to the discriminator network is delineated as follows:

creal,t = dp(ht) (9)

c f ake_e,t = dp(Et) (10)

c f ake,t = dp
(
Êsup,t

)
(11)

In Formulas (9)–(11), dp denotes the discriminant function, which exhibits a structural
similarity to the generating function. The discriminant function utilizes the processed fault
data alongside the generated data as input variables for classification purposes. In the
presented formula, the variable t denotes the potential spatial classification outcome derived
from the processed fault data. The term c f ake,t signifies the supervised spatial classification
result associated with the generated data, whereas c f ake_e,t refers to the potential spatial
classification outcome of the generated data.
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3.3.2. PSD Fault Data Augmentation Based on TimeGAN

The platform screen door fault data enhancement process based on TimeGAN is shown
in Figure 4. The optimization of the generator loss, discriminator loss, and embedding
function loss is accomplished through the application of gradient descent methods.
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• Generator loss LG

The generator loss comprises three components: the unsupervised loss, denoted by
Lunsup; the supervised loss, represented by Lsup; and the recovery loss, indicated as LR.
Lunsup denotes the cumulative cross-entropy between c f ake,t and the value of 1, in addition
to the cross-entropy between c f ake,t and the value of 1. This relationship suggests that
the data produced by the generator are discernible by the discriminator. Lsup denotes
the root-mean-square error between the variables ht and ĥsup,t. The underlying principle
involves inputting the preprocessed fault data from the platform screen door system into
the generator and subsequently calculating the error between the generated data and the
initially provided input data. The recovery loss (LR ) quantifies the aggregate difference
between the variance and the mean of the estimated values p̂t and the actual values pt.
This indicates that the recovery function is capable of effectively reconstructing the data.
The calculation of the generator loss (LG ) is conducted as follows [43]:

LG = 0.1× Lunsup + 100
√

Lsup + 100× LR (12)

• Discriminator loss LD

The discriminator loss LD represents the sum of the cross-entropy of creal,t with 1, the
cross-entropy of c f ake,t with 0, and the cross-entropy of c f ake_e,t with 0, which indicates
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that the discriminator can accurately distinguish the generated data from the historical
input data.

• Embedding function loss LE

The embedding function loss LE is composed of the supervised loss Lsup and the
root-mean-square error of p̂t and pt. The calculation method is as follows [43]:

LE = 10×
√

MSE(pt, p̂t) + 0.1× Lsup (13)

3.4. SSA-CNN-LSTM Fault Prediction Model
3.4.1. CNN-LSTM Model

Due to the small feature dimension of the system-level fault data of platform screen
doors, these low-dimensional data will lead to difficulty in neural network feature ex-
traction and affect the final prediction results. The architecture of the CNN-LSTM model
proposed in this study is illustrated in Figure 5. The input data undergo a structured pro-
cessing sequence, which includes a convolutional layer, a pooling layer, a long short-term
memory (LSTM) layer, a flattening layer, and a fully connected layer, ultimately culminating
in the final output. The CNN used in the model consists of one-dimensional convolutional
(Conv 1D) layers and max pooling layers; Conv 1D is commonly used to process sequence
data, including time-series data [44].
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The number of hyperparameters within a neural network significantly influences
the accuracy of its results. Consequently, the sparrow search algorithm was chosen as a
method for the automatic optimization of the hyperparameters with the aim of enhancing
the predictive accuracy of the model.
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3.4.2. SSA-CNN-LSTM Model

In the sparrow search algorithm, the update of the producer’s location can be illus-
trated as shown in Formula (14):

rt+1
i,j =

{
rt

i,j·e
− i

α·itermax i f R2 < ST
rt

i,j + P · L i f R2 ≥ ST
(14)

where t is the current epoch, j = 1, 2, 3, . . . , d. itermax is the largest epoch number. ri,j
denotes the sparrow’s position information in dimension j at the i th iteration. R2 ∈ [0, 1]
and ST ∈ [0.5, 1] represent the warning value and the safety value, respectively. α ∈ (0, 1)
is a random number. P is a random number subject to a normal distribution. L is a matrix
containing only values of 1. When R2 < ST, this indicates the absence of immediate danger,
allowing the scrounger to conduct searches across an extensive area. When R2 ≥ ST,
this signifies the presence of a potential hazard, prompting the issuance of an alarm.
Subsequently, the affected population is relocated to a secure area to ensure their safety.

The update of the scrounger’s location can be illustrated as shown in Formula (15):

rt+1
i,j =

Q·e
rworst−rt

i,j
α·itermax i f i > n

2

rt+1
p +

∣∣∣rt
i,j − rt+1

p

∣∣∣ · A+ · L otherwise
(15)

where rp is the optimal position occupied by the producer, and rworst is the current global
worst position. A is a 1 × d matrix, and each element is randomly assigned 1 or −1;
A+ = AT(AAT)−1. When i > n

2 , this indicates that the i th scrounger with a lower fitness
value is in a poor state and does not obtain food in a very hungry state.

In threatening situations, certain species of sparrows exhibit anti-predatory behaviors.
The dynamics of their location updates can be illustrated as shown in Formula (16):

rt+1
i,j =


rt

best + β·
∣∣∣rt

i,j − rt
best

∣∣∣ i f fi > fg

rt
i,j + K·

( ∣∣∣rt
i,j−rt

worst

∣∣∣
( fi− fw+ε)

)
i f fi = fg

(16)

where rbest denotes the present globally optimal position, and β acts as the step length’s
control factor, which adheres to a normal distribution of random numbers centered at 0
with a variance of 1. K ∈ [−1, 1] represents a random number, while fi signifies the current
fitness value of an individual sparrow. fw and fg correspond to the worst and best fitness
values. ε serves as a minimal constant, preventing a zero denominator. K represents the
motion direction of the sparrow and is used as a step control parameter [45].

The sparrow search algorithm evaluates the fitness value at each population update
to ascertain the classification accuracy of the algorithm. In this study, the fitness value is
defined as the reciprocal of the classification accuracy. The measurement of the classification
accuracy can be articulated in the following manner:

ACC =
M
N

(17)

where M is the number of predicted values and actual values that are the same, N is the
total number of samples, and the fitness function is as follows:

y =
1

ACC
(18)

In this study, an SSA-CNN-LSTM model is constructed by combining the sparrow
search algorithm and the CNN-LSTM model. The operating mechanism of the SSA-CNN-
LSTM model is shown in Figure 6 and can be described as follows [41]:
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1. Data preprocessing: Data annotation, dataset division, and data normalization.
2. SSA parameter initialization: The number of sparrows is set to n, the number of

producers is set to PD, the number of sparrows perceiving danger is set to SD, the
safety threshold is set to ST, and the alarm value is set to R2.

3. The fitness value is calculated, and the locations of the producer and scrounger
are updated.

4. According to anti-predatory behavior, the sparrow population’s location is updated.
5. The data are input into the CNN, and the data pass through the CNN layer and the

pooling layer.
6. The data enter the LSTM neural network and are input to the flattening layer and the

fully connected layer through the LSTM layer.
7. Output results.
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4. Case Study

As of December 2023, the Shanghai rail transit system had a total of 20 operating
lines and 508 stations, with a total operating mileage of 831 km and a maximum daily
passenger volume of 13.294 million. Since January 2020, to better formulate a maintenance
strategy for the platform screen door systems, operators have begun to monitor faults in
electromechanical equipment, such as station screen doors, through a command center
in combination with manual inspection to better understand and prevent faults in the
platform screen door systems.

Operators and managers seek to gain a precise understanding of the prospective fault
trends associated with PSD systems. The application and verification processes employed in
this study are illustrated in Figure 7. The processes encompassed three primary components:
data preprocessing, data augmentation, and the prediction of fault rates.



Appl. Sci. 2024, 14, 8156 15 of 31

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 31 
 

in this study are illustrated in Figure 7. The processes encompassed three primary com-
ponents: data preprocessing, data augmentation, and the prediction of fault rates. 

Line 
1/5/9/10 

PSD fault 
data

Data preprocessing

• Deduplication
• Abnormal value
• Invalid features

Pre-
processed 

data

Data augmentation

• TimeGAN
• Performance 
     evaluation

Augmented 
data

PSD fault rate prediction 

Establish a 
time series 

model

Intelligent 
optimization 

algorithm

Model 
learning

Model 
testing

Training 
sets

Performance 
evaluation

Predicted 
value

Data collection

AFC monitoring data

• Temporal 
information

PSD inspection data

• Fault logging
• Maintenance 

record
Testing 

sets
 

Figure 7. Fault rate prediction process for rail transit PSD system. 

4.1. Data Preprocessing for Shanghai Rail Transit Lines 
The platform screen door systems on Shanghai Rail Transit Lines 1, 5, 9, and 10 were 

taken as the research object, and 44 months of platform screen door fault data were col-
lected from January 2020 to August 2023. Shanghai Metro Line 1 uses 6-car carriages with 
5 doors per carriage, for a total of 28 stations and 1680 platform screen doors; Line 5 uses 
6 carriages with 4 doors per carriage, totaling 19 stations and 912 platform screen doors. 
Line 9 uses 6 carriages with 4 doors per carriage, totaling 35 stations and 1680 platform 
screen doors; and Line 10 uses 6 carriages with 4 doors per carriage, totaling 37 stations 
and 1776 platform screen doors. The data were collected in the form of monitoring infor-
mation from the command center and through manual inspection, and a total of 4708 sam-
ple data were collected. The configuration of data acquisition for screen door faults is 
shown in Table 2, and the original dataset is shown in Table 3. The original data were used 
to form a preprocessed dataset after cleaning invalid features, deduplication, sorting, con-
ditional clustering and counting, and interval calculation. Due to the prediction target be-
ing the monthly fault rate of the platform screen door systems, the fault category or clas-
sification contained in each fault record had no significant correlation with the statistics 
and prediction of the monthly fault rate. Therefore, it was removed when cleaning up the 
dimensions of invalid data. 

Table 2. Data configuration for PSD system faults on Shanghai Rail Transit Lines 1, 5, 9, and 10. 

Categories of Data Parameters 
Monitoring Information 1. Fault time 2. Fault station  

Inspection Information 

3. Fault content 4. Malfunctioning 
equipment 

5. Fault mode 

6. Fault cause 
7. Door function 
status 

8. Maintenance 
content 

9. Response time 10. Handling time 11. Processing 
time 

12. Delay time   

Table 3. Sample data of the original dataset. 

Features Value 
Fault Serial Number 53020 

Time 1 January 2020 12:41 
Station Line 9 Songjiang Sports Center Station 

Figure 7. Fault rate prediction process for rail transit PSD system.

4.1. Data Preprocessing for Shanghai Rail Transit Lines

The platform screen door systems on Shanghai Rail Transit Lines 1, 5, 9, and 10 were
taken as the research object, and 44 months of platform screen door fault data were collected
from January 2020 to August 2023. Shanghai Metro Line 1 uses 6-car carriages with 5 doors
per carriage, for a total of 28 stations and 1680 platform screen doors; Line 5 uses 6 carriages
with 4 doors per carriage, totaling 19 stations and 912 platform screen doors. Line 9
uses 6 carriages with 4 doors per carriage, totaling 35 stations and 1680 platform screen
doors; and Line 10 uses 6 carriages with 4 doors per carriage, totaling 37 stations and
1776 platform screen doors. The data were collected in the form of monitoring information
from the command center and through manual inspection, and a total of 4708 sample
data were collected. The configuration of data acquisition for screen door faults is shown
in Table 2, and the original dataset is shown in Table 3. The original data were used
to form a preprocessed dataset after cleaning invalid features, deduplication, sorting,
conditional clustering and counting, and interval calculation. Due to the prediction target
being the monthly fault rate of the platform screen door systems, the fault category or
classification contained in each fault record had no significant correlation with the statistics
and prediction of the monthly fault rate. Therefore, it was removed when cleaning up the
dimensions of invalid data.

Table 2. Data configuration for PSD system faults on Shanghai Rail Transit Lines 1, 5, 9, and 10.

Categories of Data Parameters

Monitoring Information 1. Fault time 2. Fault station

Inspection Information

3. Fault content 4. Malfunctioning equipment 5. Fault mode
6. Fault cause 7. Door function status 8. Maintenance content
9. Response time 10. Handling time 11. Processing time
12. Delay time

Table 3. Sample data of the original dataset.

Features Value

Fault Serial Number 53020
Time 1 January 2020 12:41

Station Line 9 Songjiang Sports Center Station
Malfunctioning Equipment Platform screen door

Fault Content 1 January 2020 12:53:45 Line 9 AFC: Downward
PSD fault alarm of Songjiang Sports Center
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Table 3. Cont.

Features Value

Maintenance Content Replaced the drive power board, fixed
Response Time (min) 0.027
Handling Time (min) 2.45
Processing Time (min) 0.473

Delay Time (min) 21.869
Fault Cause Drive power board
Fault Mode Door machine system fault

Door Function Status Cannot be operated

After preprocessing, the dataset (shown in Table 4) contained the monthly fault situa-
tion for 44 months, that is, the monthly fault rate and monthly MTBF data corresponding
to each month from January 2020 to August 2023. In subsequent experiments, the entire
processed dataset was input into the TimeGAN model for data augmentation.

Table 4. Sample data from the preprocessed dataset (data set of all lines).

Year and Month Monthly Fault Rate Monthly MTBF

January 2020 0.016203 1913.135
February 2020 0.005787 5011.192

March 2020 0.010912 2840.721
. . . . . . . . .

August 2023 0.011739 2640.666

4.2. Data Augmentation for Shanghai Rail Transit Lines

According to the data enhancement method proposed in Section 3.3, first, the param-
eters of TimeGAN were debugged, a GRU was used as the generator, the hidden layers
were set to 24, there were 3 layers, the batch size was set to 20, and the number of iterations
was set to 10,000, with 24 units of data making up a group; then, the preprocessed data
were input into the TimeGAN model to generate 20 groups of 480 units of data, including
the monthly fault rate and monthly MTBF. This data augmentation operation was applied
to the monthly fault data of all of the lines and the monthly fault data of each of the four
lines, resulting in five datasets. The generated data were evaluated using t-SNE analysis,
the cumulative probability distribution, and the discrimination score. The results of the
t-SNE analysis are shown in Figure 8. It can be seen that the generated data in each dataset
basically overlapped with the original data distribution area and had similar distribution
characteristics, indicating that TimeGAN effectively learned and generated data that con-
formed to the original data distribution pattern. The cumulative probability distribution
results are shown in Figure 9. It can be seen that the cumulative probability distribution
curve of the generated data was able to basically fit the probability distribution curve of the
original data, indicating that the generated data were able to better restore the probability
distribution characteristics of the original data. The discrimination scores of the generated
data are shown in Table 5, and the scores were all below 0.2, indicating that the classification
error rate was low in each dataset, which further proved that the similarity between the
generated data and the original data was close.
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Figure 9. (a) Results of the cumulative probability analysis of the dataset containing all lines;
(b) results of the cumulative probability analysis of the Line 1 dataset; (c) results of the cumula-
tive probability analysis of the Line 5 dataset; (d) results of the cumulative probability analysis of the
Line 9 dataset; (e) results of the cumulative probability analysis of the Line 10 dataset.
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Table 5. Discrimination scores of different datasets.

Data Sets Discrimination Scores

All lines 0.155
Line 1 0.168
Line 5 0.162
Line 9 0.169
Line 10 0.181

4.3. Fault Prediction and Analysis
Prediction Results and Discussion

In accordance with the fault rate data prediction methodology and the augmented
dataset delineated in Section 3.3, 80% of the augmented dataset was designated as the
training set for the model, while the remaining 20% was allocated as the validation set [46].
The sliding window technique was employed to generate a fixed-step fault time series,
which served as the input for the CNN-LSTM model. Subsequently, the parameters of
the model were optimized using the shuffled shrinkage algorithm (SSA) to ascertain the
optimal learning rate, the number of hidden neurons, the number of epochs, and the batch
size for the LSTM model. The ultimate prediction results were derived through an iterative
training process of the model, as illustrated in Table 6.

Table 6. Parameters of LSTM optimized using the SSA.

Parameters
Optimal Value

All Lines Line 1 Line 5 Line 9 Line 10

Learning rate 0.009555 0.007819 0.001427 0.007261 0.006122
Epoch 93 171 151 250 357

Hidden
neurons 32 27 44 39 38

Batch size 36 30 38 22 24

• Comparison of different optimization algorithms

To improve the efficiency and prediction accuracy of neural networks, the particle
swarm optimization (PSO) algorithm is used to effectively search for problems with a large
solution space and find candidate solutions by simulating the motion of a bird swarm. It is
an optimization algorithm that is commonly used in CNN-LSTM models [47].

To evaluate the prediction performance of the SSA-optimized CNN-LSTM model, the
root-mean-square error (RMSE), mean absolute error (MAE), and determination coefficient
(R2) were used. In this study, experiments were carried out on the augmented datasets
containing all lines, Line 1, Line 5, Line 9, and Line 10. The performance of the SSA-
CNN-LSTM and PSO-CNN-LSTM models is compared while using the same time window
sequence and prediction step size as input, and the structure of the CNN-LSTM model
was consistent. Figure 10 shows the prediction results of the SSA-CNN-LSTM and PSO-
CNN-LSTM models for different datasets. It can be seen that the fitting degree of the
SSA-CNN-LSTM prediction results was higher. Table 7 shows a performance comparison
between the two, where the CNN-LSTM prediction model based on SSA optimization
proposed in this study achieved a lower RMSE and MAE than those of traditional particle
swarm optimization (PSO) on all datasets, and it had higher R2 scores. The RMSE is the
square root of the average square of the difference between the predicted and actual values;
the MAE is the average of the absolute sum of all prediction errors. From this, it can be seen
that the smaller the values of the RMSE and MAE, the better the predictive performance of
the model. This shows that the parameters of the CNN-LSTM model optimized using SSA
were more reasonable, and the network scale was better, thus improving the prediction
accuracy for the fault rate of platform screen doors.
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Figure 10. (a) Prediction results for the PSD fault rate in the dataset containing all lines when using
SSA-CNN-LSTM; (b) prediction results for the PSD fault rate in the dataset containing all lines
when using PSO-CNN-LSTM; (c) prediction results for the PSD fault rate in the Line 1 dataset when
using SSA-CNN-LSTM; (d) prediction results for the PSD fault rate in the Line 1 dataset when using
PSO-CNN-LSTM; (e) prediction results for the PSD fault rate in Line 5 dataset when using SSA-CNN-
LSTM; (f) prediction results for the PSD fault rate in the Line 5 dataset when using PSO-CNN-LSTM;
(g) prediction results for the PSD fault rate in the Line 9 dataset when using SSA-CNN-LSTM;
(h) prediction results for the PSD fault rate in the Line 9 dataset when using PSO-CNN-LSTM;
(i) prediction results for the PSD fault rate in the Line 10 dataset when using SSA-CNN-LSTM;
(j) prediction results for the PSD fault rate in the Line 10 dataset when using PSO-CNN-LSTM.

Table 7. Performance comparison of the CNN-LSTM model when using different optimization algorithms.

Criterion Algorithm
Optimal Value

All Lines Line 1 Line 5 Line 9 Line 10

RMSE
SSA 0.001445 0.002493 0.002232 0.003375 0.002724
PSO 0.002636 0.003204 0.002564 0.003669 0.00322

MAE
SSA 0.000778 0.001771 0.00154 0.001917 0.002161
PSO 0.001478 0.002487 0.001672 0.001991 0.00255

R2
SSA 0.92696 0.914977 0.882115 0.743619 0.866218
PSO 0.756944 0.859563 0.844404 0.692574 0.804918
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• Comparison of different prediction models

To verify the performance of the SSA-CNN-LSTM model, this study compared the
prediction performance of SSA-CNN-LSTM and a gated recurrent unit (GRU) on the
augmented datasets with all lines and with the four individual lines. Table 8 shows a
comparison of the performance between the two. It can be seen in the table that the SSA-
CNN-LSTM prediction model proposed in this study achieved lower RMSE and MAE
values than those of the GRU on all datasets, and it had higher R2 scores. This showed that
the SSA-CNN-LSTM model proposed in this study had better performance than that of
the GRU in the face of long-range time-series prediction problems. Figure 11 shows the
prediction results of SSA-CNN-LSTM and the GRU for the different datasets. It can be seen
that the fitting degree of the SSA-CNN-LSTM prediction results was higher.

Table 8. Performance comparison between SSA-CNN-LSTM (SCL) and a GRU.

Criterion Model
Datasets (Augmented)

All Lines Line 1 Line 5 Line 9 Line 10

RMSE
SCL 0.001897 0.002638 0.002232 0.003375 0.002724
GRU 0.003532 0.003842 0.004091 0.003791 0.004281

MAE
SCL 0.000961 0.001681 0.00154 0.001917 0.002161
GRU 0.002305 0.002257 0.002722 0.002598 0.00326

R2
SSA 0.874164 0.904815 0.882115 0.739809 0.860401
GRU 0.639592 0.79047 0.671733 0.652535 0.530113
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Figure 11. (a) Prediction results for the PSD fault rate in the dataset containing all lines when using
SSA-CNN-LSTM; (b) prediction results for the PSD fault rate in the dataset containing all lines
when using the GRU; (c) prediction results for the PSD fault rate in the Line 1 dataset when using
SSA-CNN-LSTM; (d) prediction results for the PSD fault rate in the Line 1 dataset when using the
GRU; (e) prediction results for the PSD fault rate in the Line 5 dataset when using SSA-CNN-LSTM;
(f) prediction results for the PSD fault rate in the Line 5 dataset when using the GRU; (g) prediction
results for the PSD fault rate in the Line 9 dataset when using SSA-CNN-LSTM; (h) prediction results
for the PSD fault rate in the Line 9 dataset when using the GRU; (i) prediction results for the PSD
fault rate in the Line 10 dataset when using SSA-CNN-LSTM; (j) prediction results for the PSD fault
rate in the Line 10 dataset when using the GRU.
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• Ablation experiment

In order to verify the effectiveness of each component in the SSA-CNN-LSTM model,
ablation experiments were designed and conducted. The performance of the model in
removing the CNN layer, the performance when not using the SSA algorithm to optimize
the parameters, and the performance when simultaneously removing the CNN layer
and the SSA optimization algorithm were tested. The experimental results are shown
in Tables 9–11. It can be seen that the prediction accuracy of the model with the CNN
layer was greater than that of the model without the CNN layer, so the CNN layer had an
important influence on the prediction accuracy of the model. In addition, the model using
the SSA for intelligent optimization had higher prediction accuracy in each dataset than
the traditional model that was based on experience for determining the parameters. The
SSA-CNN-LSTM model with both the CNN layer and SSA for optimization achieved the
best prediction accuracy in each dataset. Therefore, the results of the ablation experiments
showed that both the CNN layer and the SSA for optimization in the SSA-CNN-LSTM
model played an important role in the prediction accuracy of the model. Figures 12–16
show the prediction results of different methods in the ablation experiment on the fault
rate of platform screen doors for each dataset, which were consistent with the conclusion
of performance analysis. The poor performance of LSTM may have been due to the unclear
distribution characteristics of the monthly fault rate data for certain lines, such as Line 5
and Line 10. The lack of a CNN layer to assist in feature extraction may have weakened the
learning ability of LSTM for these lines’ monthly fault rate data, resulting in a decrease in
prediction accuracy.

Table 9. RMSE results of the ablation experiment on the SSA-CNN-LSTM model.

Methods
RMSE

All Lines Line 1 Line 5 Line 9 Line 10

SSA-CNN-LSTM 0.001445 0.002493 0.002232 0.003375 0.002724
CNN-LSTM 0.00225 0.002711 0.00256 0.003542 0.00302
SSA-LSTM 0.002305 0.003932 0.003429 0.003949 0.003768

LSTM 0.002803 0.004864 0.004872 0.004057 0.005429

Table 10. MAE results of the ablation experiment on the SSA-CNN-LSTM model.

Methods
MAE

All Lines Line 1 Line 5 Line 9 Line 10

SSA-CNN-LSTM 0.000778 0.001771 0.00154 0.001917 0.002161
CNN-LSTM 0.001103 0.002032 0.001689 0.002155 0.002506
SSA-LSTM 0.001092 0.002516 0.002176 0.002535 0.00287

LSTM 0.001271 0.003457 0.003423 0.00258 0.004082

Table 11. R2 results of the ablation experiment on the SSA-CNN-LSTM model.

Methods
R2

All Lines Line 1 Line 5 Line 9 Line 10

SSA-CNN-LSTM 0.92696 0.914977 0.882115 0.743619 0.866218
CNN-LSTM 0.823035 0.899422 0.844956 0.713404 0.828404
SSA-LSTM 0.81426 0.788502 0.721724 0.643882 0.732897

LSTM 0.725179 0.676328 0.43836 0.624026 0.445717
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Figure 12. (a) Prediction results for the PSD fault rate in the dataset containing all lines when using
SSA-CNN-LSTM; (b) prediction results for the PSD fault rate in the dataset containing all lines when
using CNN-LSTM; (c) prediction results for the PSD fault rate in the dataset containing all lines when
using SSA-LSTM; (d) prediction results for the PSD fault rate in the dataset containing all lines when
using LSTM.
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Figure 13. (a) Prediction results for the PSD fault rate in the Line 1 dataset when using SSA-CNN-
LSTM; (b) prediction results for the PSD fault rate in the Line 1 dataset when using CNN-LSTM; (c) 
prediction results for the PSD fault rate in the Line 1 dataset when using SSA-LSTM; (d) prediction 
results for the PSD fault rate in the Line 1 dataset when using LSTM. 
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Figure 14. (a) Prediction results for the PSD fault rate in the Line 5 dataset when using SSA-CNN-
LSTM; (b) prediction results for the PSD fault rate in the Line 5 dataset when using CNN-LSTM; (c) 

Figure 13. (a) Prediction results for the PSD fault rate in the Line 1 dataset when using SSA-CNN-
LSTM; (b) prediction results for the PSD fault rate in the Line 1 dataset when using CNN-LSTM;
(c) prediction results for the PSD fault rate in the Line 1 dataset when using SSA-LSTM; (d) prediction
results for the PSD fault rate in the Line 1 dataset when using LSTM.
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Figure 14. (a) Prediction results for the PSD fault rate in the Line 5 dataset when using SSA-CNN-
LSTM; (b) prediction results for the PSD fault rate in the Line 5 dataset when using CNN-LSTM;
(c) prediction results for the PSD fault rate in the Line 5 dataset when using SSA-LSTM; (d) prediction
results for the PSD fault rate in the Line 5 dataset when using LSTM.
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Figure 15. (a) Prediction results for the PSD fault rate in the Line 9 dataset when using SSA-CNN-
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Figure 15. (a) Prediction results for the PSD fault rate in the Line 9 dataset when using SSA-CNN-
LSTM; (b) prediction results for the PSD fault rate in the Line 9 dataset when using CNN-LSTM;
(c) prediction results for the PSD fault rate in the Line 9 dataset when using SSA-LSTM; (d) prediction
results for the PSD fault rate in the Line 9 dataset when using LSTM.
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results for the PSD fault rate in the Line 10 dataset when using LSTM.

5. Conclusions

In this study, a prediction algorithm based on SSA-CNN-LSTM was proposed to
predict the fault rate of platform screen door systems. Based on TimeGAN, augmented
data that conformed to the temporal characteristics of the original dataset were generated,
which solved the problem of sparse data in the original rail transit platform screen door
fault dataset. The established SSA-CNN-LSTM fault rate prediction model extracted
effective data features from low-dimensional data with insufficient feature depth through
the convolutional layer, pooling layer, and other structures of a CNN, determined the
optimal hyperparameters, automatically optimized the model network scale, solved the
problem of the scale of the neural network model being difficult to determine, and realized
the accurate prediction of the fault rate of rail transit platform screen door systems.

The results of this study show the following:

(1) The fault rate prediction model for rail transit platform screen doors based on SSA-
CNN-LSTM was able to better fit nonlinear time-series data, such as the fault rate
data of platform screen doors. Compared with the GRU model, the model performed
better in prediction performance.

(2) The TimeGAN algorithm was used for data enhancement, the spatial and temporal
distribution patterns of the data were effectively retained, and the data capacity was
increased. TimeGAN learned the temporal characteristics of the fault rate data of plat-
form screen door systems through the joint training of an automatic coding network
and adversarial network, and it effectively solved the problem of data sparseness.

(3) Compared with the PSO-optimized CNN-LSTM model, when the SSA-optimized
CNN-LSTM model was used to predict the PSD fault rate of all lines after enhance-
ment, the RMSE was reduced by 0.001191 (improved by 45.2%), the MAE was reduced
by 0.0007 (improved by 47.3%), and the R2 index was increased by 0.170016 (improved
by 22.5%). When predicting the PSD fault rate of each line after enhancement, the
performance of the CNN-LSTM model optimized with the SSA algorithm was better
than that of the CNN-LSTM model optimized with the PSO algorithm. For example,
in the fault rate prediction for Line 1, the RMSE was reduced by 0.00071 (improved by
22.2%), the MAE was reduced by 0.00072 (improved by 28.9%), and in the fault rate
prediction for Line 10, R2 was increased by 0.0613 (improved by 7.6%).
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In the future, further optimization of the SSA will be considered so that the results
of multiple intelligent optimization parameters are close to the same. In addition, mainte-
nance decisions for platform screen door systems based on fault rate prediction data will
be considered.
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