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Abstract: A comprehensive framework for the layout optimisation of rigid-jointed frame structures is
proposed, addressing multiple mechanical constraints while effectively managing geometric com-
plexity. The constraints considered include displacement, stress, and both local and global stability.
Geometric complexity is controlled by minimising low-stiffness elements and reducing the number of
elements in the resulting layouts. Numerical examples demonstrate the effectiveness of the proposed
method, showcasing its ability to generate optimal structural layouts with desirable mechanical
performance and varying levels of geometric complexity in member connectivity. This innovative op-
timisation framework offers significant advantages over conventional layout optimisation approaches
by ensuring both the optimality and manufacturability of frame structures, thereby facilitating their
practical application.

Keywords: frame structures; geometric complexity; global stability; layout optimisation; local
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1. Introduction

The layout optimisation of discrete structures can be traced back to the foundational
design theorem proposed by Michell [1], wherein an analytical method for deriving optimal
truss layouts was presented. Later, Dorn et al. [2] proposed the ground structure method
(GSM) as a numerical approach for determining the optimal layout of discrete structures.
The ground structure consists of candidate elements formed by connecting nodes within a
specified design domain. Throughout the optimisation process, the cross-sectional areas of
these candidate elements can be taken as design variables. An element is eliminated from
the ground structure if its cross-sectional area falls below a predefined cut-off threshold,
enabling the concurrent optimisation of both size and topology. The resulting optimal
layouts have practical applications in guiding the design of diverse engineering structures
such as high-rise buildings [3], large-scale roofs [4], long-span bridges [5], etc.

As an alternative, topology optimisation has been applied to continuum structures
to achieve optimal material distribution. Unlike discrete-structure layout optimisation,
working within a continuum domain broadens the design space, allowing for greater
flexibility in shaping the structural components. However, the resulting designs often
exhibit varying cross-sections, posing challenges for manufacturing using conventional
methods. To mitigate this issue, various strategies have been developed to control design
features, such as enforcing the minimum, maximum, and uniform sizes of structural
members as demonstrated in the studies of Fernández et al. [6], Liu et al. [7], and Zhang
et al. [8]. Furthermore, optimised continuum designs can be converted into discrete
structures using topology-preserving skeleton extraction techniques [9,10]. When combined
with subsequent shape and sizing optimisation, these methods can significantly enhance
constructibility without excessively compromising structural optimality [11]. However,
optimising long-span and large-scale structures can be computationally prohibitive due
to the fine discretisation required to generate detailed structural elements [12]. Given the

Appl. Sci. 2024, 14, 8157. https://doi.org/10.3390/app14188157 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14188157
https://doi.org/10.3390/app14188157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4887-3751
https://doi.org/10.3390/app14188157
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14188157?type=check_update&version=2


Appl. Sci. 2024, 14, 8157 2 of 25

distinct advantages of discrete structures, such as their explicit predefined members in
the ground structure and easily controllable cross-sections, this work focuses on layout
optimisation of discrete structures, addressing both the manufacturing challenges and the
barriers to large-scale applications.

To meet the practical functional requirements, structures must demonstrate satisfactory
mechanical performance, particularly in terms of displacement, stress, and stability, while
ensuring constructibility by avoiding overly complex designs [13]. This work presents a
comprehensive framework for optimising the layout of large-scale frame structures, which
offer greater flexibility in forming load paths due to their rotational rigidity compared to
trusses [14,15]. The approach integrates multiple mechanical constraints and strategies
for controlling geometric complexity. Constraints are applied to displacement, stress, and
both local and global stability, while geometric complexity is managed by minimising
low-stiffness elements and reducing the number of elements in the resulting layouts.
Given that stress and stability (both local and global) involve complex mathematical
modelling and exhibit highly non-linear relationships with material configurations, this
section reviews current studies on these challenges. Additionally, it provides an overview
of the existing methods for controlling geometric complexity in the layout optimisation of
discrete structures.

1.1. Precedent Work
1.1.1. Stress

Two main challenges exist for the stress-constrained layout optimisation of discrete
structures, namely, stress singularities and the large number of elemental stress constraints.
Stress singularity refers to the phenomenon that as the cross-sectional area of an element
approaches zero, the corresponding stress constraint should vanish, while the assigned
stress limit in the mathematical formulation remains finite. This phenomenon prevents the
total removal of elements and hinders the search for true optima [16–18]. To address this
issue, the stress constraints for elements with small cross-sectional areas should be relaxed.
Several strategies have been proposed for their smooth approximation and relaxation, such
as the ϵ-relaxation method [19,20], and smooth envelope functions [18,21]. The second
numerical difficulty is associated with the large number of element-wise stress constraints,
which requires highly computational-demanding sensitivity analysis, and brings significant
challenges to their simultaneous treatment in optimisers. In order to resolve this difficulty,
elemental stress constraints can be aggregated into a global measure. Such optimisers
then only need to deal with this global measure, as does the sensitivity analysis. Com-
monly used aggregation functions in stress-constrained optimisation problems include
the K-S function [22–25], p-norm/mean functions [15,26,27], etc. Readers are referred to
the aforementioned literature for a detailed introduction and implementation of these
aggregation functions.

1.1.2. Local and Global Buckling

Local buckling can be addressed in a manner similar to stress constraints, by limiting
element stress below a threshold based on the Euler Buckling criterion [20,28–30], or by
adhering to design standards as demonstrated in the works of Mela [31], Cai et al. [32],
and He et al. [33]. Consequently, local buckling constraints encounter the same challenges
as stress constraints, and can be mitigated through similar approaches. Alternatively,
lateral deformation local to elements can be captured using linear buckling analysis by
subdividing elements, which allows for the simultaneous treatment of local and global
stability [34].

The global stability of structures can be evaluated by linear buckling analysis, which
involves solving a generalised eigenvalue problem, formulated with an elastic stiffness
matrix and a geometric (stress) stiffness matrix [35]. The fundamental (lowest) eigen-
value obtained is taken as an indicator of global stability. The main challenges associated
with global stability-based problems are pseudo (artificial/spurious) buckling modes and
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possible clustering and switching between the first several orders of buckling. Pseudo
buckling modes mainly derive from the low-stiffness regions, where the geometric stiff-
ness is higher than the elastic stiffness. In order to eliminate pseudo buckling modes,
Neves et al. [36] proposed to ignore the geometric stiffness of the low-stiffness material;
Bendsøe and Sigmund [37] suggested different interpolation schemes to calculate the ma-
terial elastic moduli used in the elastic and geometric stiffness matrix. Gao and Ma [38]
developed a method based on the modal energy ratio, to identify the pseudo buckling
modes in the context of continuum-structure topology optimisation. The same strategy was
extended to the stability design of truss and frame structures by Li and Khandelwal [39]
and Changizi and Jalalpour [40], respectively. Recently, Zhang et al. [41] proposed a
method to mitigate spurious buckling modes by integrating a pseudo mass matrix into
the eigenvalue problem. This matrix is constructed based on the status of nodes, charac-
terised by their “nodal density”, which is determined as the maximum density among
neighbouring elements.

Aside from pseudo buckling modes, the emergence of repeated or closely spaced
eigenvalues, and the possible switching between them, also pose great challenges for
sensitivity analysis and optimisation. In the case of multiple eigenvalues, when more than
one eigenvector is associated with an eigenvalue, these multiple eigenvalues usually do
not possess direct differentiable properties, and their sensitivity analysis requires special
care [42–44]. Moreover, the switching between the first few eigenvalues, and therefore
eigenmodes, which may occur along with material re-distribution, can cause oscillations,
and even divergence, to the optimisation problems [37]. For the purpose of ensuring the
consistency of the order of eigenvalues (eigenmodes) and, therefore, avoiding multiplicity
and rendering them differentiable, Bendsøe and Sigmund [37] recommended imposing
consecutive bounding constraints to eigenvalues. As an alternative, the eigenvalues of
interest can be transferred into a global measure using aggregation functions [34,45,46],
which simultaneously enables differentiability and resolves the dilemma of mode switching.
Subsequently, the global measure of eigenvalues, being an approximation to the critical
eigenvalue, can be used to guide the stability design of structures [15,34,40,47].

1.1.3. Geometric Complexity Control

The direct results of the layout optimisation of discrete structures may consist of
many hair-like features (elements with tiny cross-sectional areas) and present intricate
material connectivity, especially when dense ground structures are used. The hair-like
features and complicated material connectivity introduce significant challenges to the
practical manufacturing of such structures. Typically, the tiny features have negligible
mechanical contributions and can be removed if their cross-sectional areas fall below a
threshold value. Instead of assigning a static value to the threshold used, Sanders et al. [48]
employed adaptive thresholds to simultaneously preserve the optimality of solutions
and increase the diversity of structural designs. As an alternative, Parkes [49] suggested
a joint cost function and added it to the material cost when measuring the economy
of structural designs. The constant joint cost penalises short members [49,50], making
them less competitive compared to long members; therefore, during the optimisation
process, the optimisers favour the removal of short members. Similar to the joint cost,
elemental and nodal fabrication costs have been proposed when assessing the economy
or performance of structural designs [51,52]. These cost functions penalise elements with
low cross-sectional areas more than those with large cross-sectional areas. As a result, the
smaller elements are more prone to removal [51,52]. Additionally, the control of geometric
complexity, particularly in terms of simplifying member connectivity in structural layouts,
can be enhanced through various methods. For example, intersecting members can be
eliminated [53], the number of nodes can be limited [54], and the angles between elements
can be restricted [55]. Furthermore, the significant simplification of structural layouts can
be achieved by adjusting nodal position and allowing the coalescence of both members
and nodes, typically through geometry optimisation methods [50].
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1.2. Design Challenges

Despite a substantial body of research dedicated to the layout optimisation of discrete
structures, most existing works predominantly address only one or two types of mechanical
constraints, and are confined to a limited set of structural elements. For example, Li and
Khandelwal [39] focused solely on global stability; Changizi and Jalalpour [40], Mitjana
et al. [14], Weldeyesus et al. [56], and Zhao et al. [15] addressed stress and global stability
constraints; meanwhile Mela [31] considered stress, and both local and global stability.
Additionally, Pedersen and Nielsen [57] investigated optimisation with constraints on dis-
placement, stress, local stability, and eigenfrequency. However, few studies have attempted
to simultaneously integrate constraints on displacement, stress, and both local and global
stability. An exception is the work by Torii et al. [34], which demonstrated this approach
for truss structures with a modest number of elements, leaving its application to large-scale
structures unexplored. Large-scale structures, typically optimised using ground structures
with refined grid divisions and dense member connectivity, present additional challenges
in problem formulation, optimisation convergence, and computational efficiency compared
to low-resolution structures.

Furthermore, prevailing approaches for controlling geometric complexity are typ-
ically introduced alongside optimisation problems focused on displacement or struc-
tural compliance [51,52,54,58]. This raises concerns about their effectiveness in han-
dling multi-constrained problems, particularly when stress and local and global stabil-
ity constraints are involved. These design-dependent constraints are highly sensitive to
changes in design variables and present significant challenges in numerical modelling
and convergence [18,21,37,59], such as stress singularities and pseudo buckling modes,
especially when the simplification of geometric complexity is coupled with a reduction in
element stiffness.

1.3. Contribution of This Work

To address the aforementioned design challenges, this study develops a comprehensive
framework for the layout optimisation of frame structures. By simultaneously considering
multiple mechanical constraints and controlling geometric complexity, this framework
enhances both the design and manufacturability of frame structures. The constraints
addressed include displacement, stress, and both local and global stability. Geometric
complexity is managed by minimising low-stiffness elements and reducing the number of
elements in the resulting layouts. The primary innovation of this study lies in the concurrent
handling of multiple mechanical constraints and geometric complexity. Moreover, the
proposed method is developed within a gradient-based framework specially tailored for
large-scale structures, which involve a large number of degrees of freedom and candidate
elements. This approach is particularly advantageous, as such problems are typically
challenging to solve using non-gradient based methods like meta-heuristic algorithms.

Regarding the mechanical constraints, displacement and stress are evaluated through
linear static analysis, and local and global stability are assessed using linear buckling
analysis and element subdivisions. While non-linear structural analysis can provide a more
accurate estimation of a structure’s load-carrying behaviour, it often requires complex itera-
tive calculations to determine the equilibrium state [60,61]. The sensitivity of mechanical
performance metrics, such as the stress, strain, displacement, and buckling load factor, is
typically path dependent, necessitating the calculation and storage of structural tangential
stiffness and mechanical responses at each load increment [39,62–64]. Additionally, when
considering nodal displacement and element stress constraints, the number of constraints
usually matches the number of nodes and elements in the structure, leading to a signif-
icant computational burden. The high cost of non-linear structural analysis, combined
with significant non-linearities in constraints and the complex sensitivity analysis, poses
substantial challenges for problem formulation and achieving convergence, especially in
large-scale structures with fine grid divisions. Consequently, this study employs linear
static and buckling analyses as the primary methods for evaluating structural performance.
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These linear analyses are expected to provide valuable insights for optimising material
distribution, making them particularly suitable for the conceptual design of frame struc-
tures. However, relying on linear analyses may compromise the accuracy and reliability
of the optimisation results, especially in scenarios where non-linear effects are significant.
To mitigate these risks, a post-optimisation non-linear analysis is recommended to verify
structural performance and ensure the safety and robustness of the final designs.

To circumvent the computational demands of analysing numerous node-wise and
element-wise constraints, an aggregation technique is employed for each constraint type.
This not only streamlines sensitivity analysis but also addresses numerical challenges
arising from the non-differentiability of multiple eigenvalues and potential mode switching
that can occur in linear buckling analysis. Low-stiffness elements are penalised using the
SIMP-based approach [65], therefore driving their removal. To mitigate stress singularities,
a pq relaxation scheme [26,66] is implemented when formulating stress constraints. Ad-
ditionally, pseudo buckling modes are eliminated by imposing more severe penalisation
to the geometric stiffness matrix compared to the elastic stiffness matrix for low-stiffness
elements [47]. Furthermore, an auxiliary component reflecting structural fabrication cost is
heuristically combined with material volume to form the objective function. This approach
is strategically designed to impose additional penalties on elements, thereby favouring
their removal. Consequently, this process significantly influences the overall number of
elements and governs the geometric complexity of the resulting structural layouts.

2. Design Variables

This paper focuses on the optimisation of planar frame structures, using 2D beam
elements with hollow circular cross-sections for structural simulations. However, the pro-
posed method can be easily extended to 3D, applied to trusses, and adapted to encompass
different types of cross-sectional profiles. The hollow circular cross-section is defined by
two parameters, the outer diameter d and wall thickness t, with an assumed relationship of
t = d/20. During the optimisation process, the outer diameters of elements are taken as de-
sign variables and are allowed to vary within the range of [0, dmax], where dmax represents
the predefined maximum diameter of cross-section.

A threshold parameter dth, typically much smaller than dmax, is introduced to differen-
tiate the contribution of elements. Elements with de < dth are termed low-stiffness elements.
Moreover, analogous to the density-based topology optimisation of continuum structures,
an auxiliary topology variable is defined to indicate the status of elements, which can be
expressed as

ρe =

{
1, if de ≥ dth.
de/dth, otherwise.

(1)

where elements with de ≥ dth are assigned ρe = 1, classified as solid elements, and are
retained in the layout. Conversely, elements with de = 0 are assigned ρe = 0, deemed void,
and removed. For elements with 0 < de < dth, 0 < ρe < 1 is assigned, classifying them as
grey elements.

The grey elements should be optimised towards solid or void to minimise their
presence. This is achieved using the SIMP-based approach [65], with the penalisation
imposed on the elements’ cross-sectional diameters rather than the material elasticity
modulus as in the original method. The penalised element diameter can be expressed as

d̃e =

{
de, if de ≥ dth.
ρe

ωdth, otherwise.
(2)

where ω is the penalisation factor, usually greater than 1. A larger ω results in more severe
penalisation, leading to a drastic decrease in element diameters and effectively driving the
removal of grey elements.
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The sensitivity of d̃e with respect to the design variable is

∂d̃e

∂de
=

{
1, if de ≥ dth.
ωρe

ω−1, otherwise.
(3)

Unless otherwise specified, dmax = 0.5 m and dth = dmax/10 = 0.05 m are used as
the default values. Given that the wall thickness of the hollow circular cross-section is set
to t = d/20, the cross-sectional areas and moments of inertia scale with the square and
fourth powers of the diameter, respectively. Consequently, the stiffness of elements with
d = dth is approximately 1/10,000 to 1/100 of the stiffness of elements with d = dmax.
Therefore, elements with de < 0.05 m, which offer very low stiffness but compromise
manufacturability, should be removed during optimisation. Other values for dth, such as
dmax/5 and dmax/20, may be selected depending on stock availability and manufacturing
considerations. However, a larger dth might result in an increased number of grey elements
(0 < de < dth). To prevent abrupt changes in element diameters and sudden removal, and
to stabilise the optimisation process, a gradual increase in the penalisation factor ω and a
small step size for updating design variables should be employed.

For de ∈ [0, dmax], the values of ρe, d̃e, and ∂d̃e/∂de are depicted in Figure 1. As
shown in Figure 1a, an increase in ω results in heightened penalisation of de, thereby
accelerating the removal of low-stiffness elements. Additionally, as illustrated in Figure 1c,
discontinuities occur in ∂d̃e/∂de when de = dth. Integrating smooth Heaviside functions, as
demonstrated by Jiang et al. [67], could potentially mitigate this discontinuity; however,
it is generally overlooked in this study due to the infrequent occurrence of de = dth.
Moreover, the optimisation process encounters no noticeable oscillations or difficulties
when de transitions around dth, suggesting that the discontinuity in ∂d̃e/∂de may have
minimal impact on the optimisation outcomes.

(a) ρe (b) d̃e

Figure 1. Cont.
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(c) ∂d̃e/∂de

Figure 1. Schematic plots of ρe, d̃e, and ∂d̃e/∂de.

3. Mechanical Constraints

To guarantee the satisfactory mechanical performance of structures, the optimisation
problem within this study incorporates constraints related to displacement, stress, and
local and global stability. Additional types of constraints such as dynamic frequency,
can be seamlessly integrated, as the calculation and formulation of a structure’s natural
frequency are similar to those of structural stability. Displacement and stress information
can be readily obtained from finite element analysis, while the assessment of both local
and global stability necessitates solving an eigenvalue problem formulated with both
elastic and geometric stiffness matrices. This section provides formulations for these
constraint functions, along with a comprehensive overview of their implementation and
sensitivity analysis.

3.1. Displacement

The equilibrium equation for the structure under the external load is

KU = F (4)

where F is the global force vector, K is the global stiffness matrix, and U is the global
displacement vector.

The expression for the differential of the global displacement vector can be derived by
differentiating Equation (4) with respect to the design variable de, assuming that the global
force vector is design independent. This expression can be written as

∂U
∂de

= −K−1 ∂K
∂de

U (5)

The displacement constraints ensure that the nodal displacement of the structure
under external load remains within specified limits. These constraints can be imposed on
displacement in the x and y axes in a 2D context. An example constraint for x-displacement
can be expressed as

GUx

i =
|Ux

i |
Ux ≤ 1, i ∈ [1, n] (6)
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where | · | represents the absolute value symbol, Ux
i denotes the x displacement of node i,

and Ux is an upper bound for the x displacement. n is the number of nodes in the structure.
Ux

i can be extracted from the global displacement vector:

Ux
i = IUx

i
U (7)

where IUx
i

is a zero vector with an exceptional entry of 1 at the index corresponding to the
x displacement of node i.

The number of x-displacement constraints presented in Equation (6) equals the num-
ber of nodes in the structure. To resolve the numerical difficulties caused by the large
number of displacement constraints and the associated sensitivity analysis, the node-wise
displacement constraints are aggregated into a global measure. Following the idea of Yang
and Chen [23] and Le et al. [26], where element-wise stress constraints are aggregated using
the p-norm function, the global measure of x-displacement constraints can be expressed as

PUx =

[
n

∑
i=1

(
GUx

i

)p
]1/p

≤ 1 (8)

where p is the aggregation factor controlling the accuracy of the approximation compared
to the actual maximum of GUx

i , and p is usually chosen larger than 1. A large value of p
can improve the accuracy of the approximation but also increases non-linearity and may
cause numerical instability. Therefore, p = 4 is adopted in this work. To allow a more
accurate constraint value to be included in optimisation problems, the global measure of
x-displacement constraints can be adjusted by making use of the information from the
previous optimisation iteration [26]. The normalised global measure of x-displacement
constraints can be expressed as

ˆPUx = c PUx ≤ 1 (9)

where c is a normalisation factor calculated at optimisation iteration number I as

cI = γ
max{|Ux|}

PUx
+ (1 − γ) cI−1 (10)

where cI and cI−1 are the normalisation factors at the current and previous iterations,
respectively. The parameter γ modulates the variations between cI and cI−1, and this work
adopts the same value of γ = 0.5 as used by Le et al. [26].

Based on Equations (5)–(8), the sensitivity of the global displacement constraint with
respect to the design variable can be derived as

∂PUx

∂de
= −

[
n

∑
i=1

(
GUx

i

)p
](1/p)−1

1

Ux

n

∑
i=1

sign(Ux
i )
(

GUx

i

)p−1
IUx

i
K−1 ∂K

∂de
U (11)

where sign(·) extracts the sign of a value, assigning +1 for a positive input and −1 for a
negative input.

By using the adjoint method, Equation (11) can be simplified as

∂PUx

∂de
= −VUx

∂K
∂de

U (12)

where VUx is a virtual displacement vector obtained by solving the system under the virtual
load FUx :

KVUx =

FUx︷ ︸︸ ︷[
n

∑
i=1

(
GUx

i

)p
](1/p)−1

1

Ux

n

∑
i=1

sign(Ux
i )
(

GUx

i

)p−1
IUx

i
K−1 ∂K

∂de
U

(13)
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The y-displacement constraints can be calculated and formulated in the same manner as
the x-displacement constraints; however, for the sake of brevity, they are not presented here.

3.2. Stress

The stresses of the 2D beam element are sampled at two end nodes (n1, n2). Taking a
hollow circular cross-section as an example, the sampling points for stress are shown as red
dots in Figure 2.

n1 n2
①

③

② ④

⑤

⑦

⑥ ⑧

V1

N1

M1

V2

N2

M2

Figure 2. Stress sampling points for a 2D beam element.

The 2D stress component for element-e at the sampling point-j is

σe,j = [σxx
e,j τ

xy
e,j ]

T = Be,jkeTeDeU (14)

where Be,j is a matrix used to calculate stress from the force vector and is constructed based
on cross-sectional properties (area, moment of inertial, etc.), ke represents the element
stiffness matrix in the local coordinate system, Te is the transformation matrix used to
transform the element displacement vector from the global coordinate system to local.
De is a matrix used to extract the element displacement from the global displacement vector.
j is the index of the stress sampling point.

Based on Equations (5)–(14), the sensitivity of the stress component with respect to the
design variable is

∂σe,j

∂de
=

∂Be,j

∂de
keTeDeU + Be,j

∂ke

∂de
TeDeU − Be,jkeTeDeK−1 ∂K

∂de
U (15)

The von Mises stress at the sampling point can be calculated from the stress component:

σvm
e,j =

√[
σe,j

]T[ 1 0
0 3

][
σe,j

]
(16)

The stress constraints formulated based on von Mises stress can be expressed as

Gσvm

e,j =
σvm

e,j

σyield ≤ 1, e ∈ [1, N], j ∈ [1, 8] (17)

where σyield is the predefined yield stress of the material. N is the number of elements
in the structure. j ∈ [1, 8] indicates that there are eight stress sampling points for these
elements, four at each end, as shown in Figure 2.

Similar to the node-wise displacement constraints, the element-wise stress constraints
are aggregated into a global measure to improve the computational efficiency of the sensi-
tivity analysis. By using the same p-norm function and the same value of p = 4, the global
measure of stress constraints can therefore be expressed as

Pσvm =

[
N

∑
i=1

8

∑
j=1

(
σvm

i,j

)p
]1/p

≤ 1 (18)
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The global measure of stress constraints is normalised in the same way as displacement
(Equation (9)) but is omitted here for brevity. Based on Equations (5) and (14)–(18), the
sensitivity of the global stress constraint with respect to the design variable can be derived as

∂Pσvm

∂de
=

1st term︷ ︸︸ ︷
Γ

8

∑
j=1

(
σvm

e,j

)p−1 1
σyield σvm

e,j

[
σe,j

]T[ 1 0
0 3

](∂Be,j

∂de
keTeDeU + Be,j

∂ke

∂de
TeDeU

)

−

2nd term︷ ︸︸ ︷
Γ

N

∑
i=1

8

∑
j=1

(
σvm

i,j

)p−1 1
σyield σvm

i,j

[
σi,j

]T[ 1 0
0 3

]
Bi,jkiT iDiK−1 ∂K

∂de
U

(19)

where Γ represents

Γ =

[
N

∑
i=1

8

∑
j=1

(
σvm

i,j

)p
](1/p)−1

(20)

By using the adjoint method, the 2nd term in Equation (19) can be simplified as

2nd term = Vσvm
∂K
∂de

U (21)

where Vσvm is a virtual displacement vector obtained by solving the system under the
virtual load Fσvm :

KVσvm =

Fσvm︷ ︸︸ ︷
Γ

N

∑
i=1

8

∑
j=1

(
σvm

i,j

)p−1 1
σyield σvm

i,j

[
σi,j

]T[ 1 0
0 3

]
Bi,jkiT iDi

(22)

To address the stress singularity associated with low-stiffness elements, a pq relaxation
scheme is employed [26,66]. This scheme modifies the stress constraints (Equation (17))
based on the auxiliary topology variables of elements:

Gσvm

e,j =
ρe

η σvm
e,j

ρeν σyield = ρe
(η−ν)

σvm
e,j

σyield ≤ 1, e ∈ [1, N], j ∈ [1, 8] (23)

where ρe is given in Equation (1), and η and ν are the penalisation factors for the von Mises
stress and the stress limits, respectively. In this work, η is set to the penalisation factor
used in Equation (2), and ν is modified accordingly, to maintain a constant relationship
of η − ν = 4. Following the implementation of stress relaxation, the sensitivity analysis
described in Equation (19) can be updated accordingly.

3.3. Stability

Building upon the approach established by Torii et al. [34], the evaluation of both
the local and global stability of structures is conducted simultaneously through a linear
buckling analysis, where each member is subdivided into several elements to capture the
lateral deformation. The formulation of the generalised eigenvalue problem for this linear
buckling analysis is

[KE + λjKG]φj = 0 (24)

where KE is the elastic stiffness matrix, KG is the geometric stiffness matrix, λj is the j-th
order of the eigenvalue, and φj is the corresponding eigenvector. φj is normalised against
KE by following φj

TKEφk = δjk, and δjk is Kronecker’s delta.
To mitigate pseudo buckling modes caused by low-stiffness elements, the element

diameters required for computing the elastic and geometric stiffness matrices are interpo-
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lated using different penalisation factors in Equation (2) [47]. Specifically, ωE is applied to
the elastic stiffness matrix, while ωG = ωE + 4 is used for the geometric stiffness matrix.

By introducing an auxiliary variable, κj = −1/λj, Equation (24) can be rewritten as

[KG − κjKE]φj = 0 (25)

Assuming that the eigenvalue is unimodal, the sensitivity of the auxiliary variable can
be expressed as [43]

∂κj

∂de
= −κj[φ

T
j

∂KE

∂de
φj] + [φT

j
∂KG

∂de
φj]− [vT

j
∂KE

∂de
φj] (26)

where vj is the virtual displacement vector associated with the virtual load vector FEig
j . vj

can be obtained by solving the adjoint system:

KEvj = φT
j

∂KG

∂U
φj =

FEig
j︷ ︸︸ ︷[

φT
j

∂KG

∂U1
φj,φT

j
∂KG

∂U2
φj, ...,φT

j
∂KG

∂Um
φj

]
(27)

where m is the total number of degrees of freedom of the structure.
To ensure structural stability, the eigenvalues λj obtained by solving Equation (24)

should be greater than a predefined lower bound λ. Alternatively, by making use of the
auxiliary variable κj, the stability constraints can be expressed as

GEig
j =

κj

κ
≤ 1, j ∈ [1, J] (28)

where κ is defined as −1/λ. J is the highest rank of the under-constrained eigenvalues and
is set to 50 in this work.

Similar to the displacement and stress constraints, the stability constraints in Equation (28)
are condensed into a global measure using the same aggregation factor of p = 4, which can be
expressed as

PEig =

[
J

∑
j=1

(
GEig

j

)p
]1/p

≤ 1 (29)

The global measure of stability constraints is normalised to enhance its approximation
of the true maximum value, employing a similar approach as applied to the displacement
and stress constraints. However, for the sake of simplicity, the expression of this normal-
isation is not provided here. Based on Equations (25)–(29), the sensitivity of the global
measure of the stability constraints with respect to the design variable can therefore be
derived as

∂PEig

∂de
=

[
J

∑
j=1

(
GEig

j

)p
](1/p)−1

1
κ

J

∑
j=1

(
GEig

j

)p−1 ∂κj

∂de
(30)

4. Problem Formulation

Conventionally, material volume serves as a metric reflecting the economy of a struc-
ture. To facilitate control over geometric complexity in structural layouts during the
optimisation process, an additional component representing the fabrication cost of the
structure is heuristically integrated with material volume to form the objective function.
This modified objective function can be expressed as

E(d) =
V(d)

V0
+ α

C(d)
C0

(31)
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where V(d) is the material volume and V0 is its initial value calculated at the first iteration.
C(d) represents the fabrication cost and C0 is its initial value. α ≥ 0 is a weighting factor.

The structural fabrication cost is obtained by summing up the elemental fabrication cost:

C(d) =
N

∑
e=1

ζ(de) (32)

where ζ(de) represents the elemental fabrication cost and is approximated by a smooth
Heaviside function:

ζ(de) = 1 − e−β de/dmax +
de

dmax
e−β (33)

where β is a parameter controlling the sharpness of the Heaviside projection. The larger
the β, the more aggressive the projection. For de ∈ [0, dmax], ζ(de) adopts the value of [0, 1],
with 0 indicating the removal and 1, the presence of elements.

The differential of ζ(de) with respect to the design variable is

∂ζ(de)

∂de
=

β

dmax
e−β de/dmax +

1
dmax

e−β (34)

The plots of ζ(de) and its differential ∂ζ(de)/∂de, corresponding to de ∈ [0, 0.5] and
different values of β as depicted in Figure 3, reveal that with an increase in β, ζ(de) con-
verges more rapidly towards 1. Moreover, ∂ζ(de)/∂de exhibits higher values for smaller de,
indicating a more pronounced penalisation of elements with smaller diameters, thereby ren-
dering them more susceptible to removal. In this study, a moderate value of the sharpness
parameter is used (β = 8), in conjunction with different values of the weighting factor α.
Through the modulation of α in Equation (31), varying degrees of penalisation, as imposed
by the fabrication cost, can be achieved. This adjustment consequently influences the rate
at which the values of design variables decrease, implicitly governing the elimination of
elements and exerting control over the overall number of elements, i.e., the geometric
complexity present in the structural layout.

(a) ζ(de) (b) ∂ζ(de)/∂de

Figure 3. Element fabrication cost and its sensitivity.

Building upon the previously introduced objective and constraint functions, the op-
timisation problem for the layout of frame structures, incorporating constraints related to
displacement, stress, and local and global stability, alongside the modified objective function
comprising material volume and fabrication cost of structures, can thus be formulated as
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Find : d = [d1, . . . , de, . . . , dN ]
T, de ∈ [0, dmax] (35a)

min : E(d) =
V(d)

V0
+ α

C(d)
C0

(35b)

subject to : KU = F (35c)
ˆPUx ≤ 1, ˆPUy ≤ 1 (35d)
ˆPσvm ≤ 1 (35e)
ˆPEig ≤ 1 (35f)

Given the large number of constraints and their highly non-linear relationship with de-
sign variables, gradient-based optimisers are employed to solved the problem. Specifically,
the Method of Moving Asymptotes (MMA), proposed by Svanberg [68], is adopted. This
well-established method has been widely applied in structural optimisation, demonstrating
efficient, reliable, and robust performance comparable to other optimisers such as the
Interior Point Method and the Sequential Quadratic Programming Method [69,70]. MMA
is particularly chosen in this study for its effectiveness in handling multiple constrains and
addressing highly non-convex problems.

The sensitivity information of the displacement, stress, and local and global stability
constraints as presented in Equations (11), (19) and (30) is validated using the Finite
Difference Method (FDM). In each iteration, the values and sensitivity information of the
objective and constraint functions are calculated and used by MMA to determine the update
directions for the design variables. The step size, governing the maximum allowable change
in the design variables per iteration, is restricted to ς = 0.002. The optimisation process
terminates under two conditions: either the consecutive change in the design variables
falls below 1 × 10−5, or the maximum number of iterations is reached (maxIter = 500). For
the interpolation of element diameters to compute the elastic stiffness matrix, the initial
penalisation factor ωE starts at 1.5 and increases by 0.5 every 50 iterations after the 150th
iteration, up to a maximum value of 4. Additionally, the penalisation factor ωG for the
geometric stiffness matrix is updated as ωG = ωE + 4. The small step size (ς), the gradual
increase in penalisation factors (ωE and ωG), and the large number of maximum allowable
iterations (maxIter) are deliberately chosen to smooth the update of design variables and
prevent abrupt change of structural topology. These measures are crucial for handling the
inherent non-linearities of the optimisation problem, the high dimensionality of design
variables, and the non-convex nature of the design space.

5. Numerical Examples

In this section, three examples are presented to demonstrate the feasibility and effec-
tiveness of the proposed optimisation framework. The first example examines a column
subject to a concentrated compressive force on its top edge. The second example explores a
short cantilever, while the third focuses on the design of a centrally loaded beam. The first
two examples are used as benchmarks to showcase how the framework addresses multiple
mechanical constraints and manages the removal of low-stiffness elements. Meanwhile,
the third example investigates the impact of member-wise penalisation, influenced by
fabrication costs, on minimising the number of elements in the resulting layouts within the
context of multi-constrained problems.

Unless otherwise stated, the examples presented adopt identical design parameters.
Elements are assigned hollow circular cross-sections, characterised by outer diameters d
and wall thickness t, with an assumed relationship of t = d/20. An initial cross-section
with an outer diameter of dIni = 0.2 m is adopted. The elasticity modulus of the material is
E = 2× 105 MPa, and Poisson’s Ratio is µ = 0.3. The displacement constraint is imposed on
the vertical displacement, with an upper limit set at 1/400 of the structural span or height,
i.e., Uy

= L/400 or H/400. The maximum allowable stress is σyield = 300 MPa. When the
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local and global stability constraints are included, the minimum allowable buckling load
factor is λ = 5.

5.1. Compression Column

The design information of the compression column is illustrated in Figure 4. The
design domain measures L × H = 8 m × 16 m, fixed at the bottom and with a concentrated
force acting at the mid-point of the upper surface. The domain is discretised into a grid
of 4 × 8 two-meter wide square cells. Candidate members are formed by interconnecting
the internal nodes to their neighbour nodes, and the neighbours of their neighbours,
generating a ground structure with two-level connectivity. Additionally, members are
split at their intersections as depicted in the amplified view in the middle of Figure 4.
This ground structure consists of, in total, 501 nodes and 1292 candidate members. To
capture the lateral deformation of members during local buckling in the linear buckling
analysis, each member is further subdivided into four elements as shown in the right-end
amplified view in Figure 4. This results into a total of 4377 nodes and 5168 elements in the
structural analysis.

Figure 4. Design information of the compression column.

Four optimisation problems are addressed for the compression column. The first
problem considers only displacement and stress constraints, while the remaining three
problems incorporate additional global and local stability constraints. These latter problems
are differentiated by their methods of treating low-stiffness elements. The second problem
employs the SIMP-based scheme with the ωE initially set to 1.5 and gradually increased
up to 4 as described in Section 4. The third problem uses a “hard-kill” scheme, directly
removing low-stiffness elements (d̃e < dth) during the optimisation. The fourth case
disregards the SIMP-based scheme by adopting ωE = 1 consistently throughout the entire
optimisation process. The optimisation results for these four problems are denoted as
Layout-I through Layout-IV, respectively. The optimal structures and the corresponding
first three buckling modes are depicted in Figure 5, where red lines signify compression
elements, blue lines represent tension elements, and black lines denote grey elements with
diameters (d̃e) falling into the range of (0, dth).

As shown in Figure 5a, Layout-I presents a simple vertical bar. In this layout, stress
constraints dominate over displacement constraints, resulting in a uniform cross-section
with a diameter of d̃ = 0.334 m. The corresponding cross-sectional area and moment of
inertia are A = 0.0167 m2 and I = 2.106 × 10−4 m4, respectively. The buckling load factors
and modes align with the results of the theoretical Euler buckling analysis for a column
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with fixed-free ends. The critical load is given by Pcr =
κ2π2EI

4H2 , where κ = 1, 3, 5 for the
first, second, and third buckling modes, respectively.

As depicted in Figure 5b–d, incorporating global and local stability constraints leads
to Layout-II, -III, and -IV, which feature additional elements providing lateral support. The
buckling modes exhibit concurrent nodal movement and in-member lateral displacement,
demonstrating the feasibility of using linear buckling analysis with element refinement
to capture both local and global buckling. Moreover, these modes mostly correspond to
solid elements (d̃e ≥ dth), highlighting the effectiveness of imposing distinct penalisation to
the elastic and geometric stiffness in suppressing pseudo buckling modes. Furthermore,
Layout-II, -III, and -IV share similarities with the designs presented in the works of Li
and Khandelwal [39], Changizi and Jalalpour [40], and Poulsen et al. [71], where the
stability properties were also considered. However, quantitative comparisons are not
feasible due to differences in the optimisation problems, as this study integrates multiple
mechanical constraints that are not addressed in the aforementioned works. Notably, the
optimal layouts generated using discrete structures are generally different from those using
continuum structures. The latter usually manifest as two primary inclined components
augmented with secondary lateral bracing as presented in the works of Gao and Ma [38],
Ferrari et al. [47], and Dahlberg et al. [72]. Investigating the reasons behind these differences
and conducting a quantitative comparison of these layouts is of interest but is left for
future study.

The material volume (V), number of elements (n), maximum y displacement (Uy
max),

maximum von Mises stress σvm
max, and fundamental buckling load factor (λ1) for the four

structural layouts are summarised in Table 1. All layouts exhibit satisfactory mechanical
performance when the relevant constraints are included in the optimisation problems. To
further illustrate the superior stability of Layout-II, -III, and -IV over Layout-I, a separate
sizing optimisation is conducted on Layout-I while incorporating both the global and
local stability constraints. In this context, the upper bound limit on element diameters
is relaxed to allow for increases as necessary to satisfy the stability constraints. This
optimisation results in a structure that retains the same layout but features a cone-shaped
cross-section, with element diameters tapering from 1.01 m at the bottom to 0.433 m at the
top. Consequently, the material volume of the resulting structure is 1.820 m3, which is
more than 4.2, 3.6, and 4.4 times that of Layout-II, -III, and -IV, respectively.

Among the designs with stability constraints, Layout-IV, which was developed without
penalising low-stiffness elements, exhibits a considerable number of grey elements, thereby
substantially impairing its manufacturability. This observation aligns with findings from
prior research on discrete-structure layout optimisation, which have separately explored
various constraints such as stress [1,49,50,73], displacement [51], compliance [52], and
stability [39,40,71]. The presence of a significant number of elements, including those of low
stiffness, in the resultant layouts can be attributed to the inherent tendency of the ground
structure method to produce non-unique maximum stiffness designs [74]. Nevertheless,
upon visually examining Layout-II and -IV and comparing their material usage, it becomes
evident that implementing the SIMP-based scheme effectively reduces the occurrence of
grey elements without excessively compromising economic feasibility, although some
residual grey elements may persist. Notably, addressing these residual elements could
potentially benefit from the density projection scheme developed in continuum-structure
topology optimisation [75].

Furthermore, the discrepancy in material volume between Layout-II and -III highlights
that employing the SIMP-based scheme to handle low-stiffness elements leads to a more
efficient layout with decreased material consumption compared to the “hard-kill” approach.
Therefore, it can be concluded that the SIMP-based scheme is appropriate for minimis-
ing low-stiffness elements, thereby improving manufacturability while maintaining the
optimality of the resulting layouts.
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Optimal layout Buckling modes

(a) Layout-I, considers only displacement and stress constraints

(b) Layout-II, considers all constraints and adopts ωE = 1.5 ∼ 4

(c) Layout-III, considers all constraints and directly remove low-stiffness elements

(d) Layout-IV, considers all constraints and adopts ωE = 1 consistently

Figure 5. Optimal layouts and buckling modes of the compression column. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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Table 1. Geometric and mechanical properties of the optimal layouts of the compression column.

Layout V/m3 Uy
max/m σvm

max/MPa λ 1 n

I 0.267 0.024 300 0.08 64
II 0.431 0.017 300 4.94 1000
III 0.496 0.018 300 4.96 1032
IV 0.407 0.021 300 4.99 1368

5.2. Short Cantilever

The short cantilever example has dimensions of L × H = 12 m × 24 m as shown
in Figure 6. It is fixed at the top and bottom left nodes and subject to a concentrated
vertical force applied at the right middle. The domain is discretised into 4 × 8 three-meter-
wide square cells. Similar to the compression column, a ground structure with two-level
connectivity is employed, where members are split at their intersections, and each is
subdivided into four elements for structural analysis. This ground structure comprises the
same number of nodes and members as the compression column.

Figure 6. Design information of the short cantilever.

Similarly, three optimisation problems are tackled: the first focuses solely on dis-
placement and stress constraints, and the second incorporates additional global and local
stability constraints, while the third considers all constraints and employs the hard-kill
scheme to remove low-stiffness elements during the optimisation process. The resulting
optimal structures are denoted as Layout-I, -II, and -III, respectively, and are depicted in
Figure 7, along with their buckling modes. Layout-I presents a simple two-bar structure,
with one compression and one tension bar, Layout-II and -III include additional elements
concentrated at the lower part of the structure to reinforce the compression zone. Both
Layout-II and -III exhibit similarities to the results presented in previous works such as
Ferrari and Sigmund [76] and Weldeyesus et al. [77].

The material volume, mechanical performance metrics, and number of elements for
Layout-I, -II, and -III are summarised in Table 2. All layouts demonstrate satisfactory
mechanical performance when relevant constraints are incorporated in the optimisation
problem. A separate sizing optimisation is performed on Layout-I with the inclusion of
additional global and local stability constraints. The resulting layout consumes a mate-
rial volume of 0.758 m3, which is more than 1.2 and 1.1 times that of Layout-II and -III,
respectively. This indicates that the member configurations in Layout-II and -III are more
optimal than that in Layout-I by considering the stability properties during the optimisa-
tion. Furthermore, the material volume of Layout-II is less than that of Layout-III, despite
the former presenting more elements. This demonstrates the effectiveness of the SIMP-
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based scheme over the “hard-kill” scheme when treating low-stiffness elements in the
optimisation process.

Optimal layout Buckling modes

(a) Layout-I, considers only displacement and stress constraints

(b) Layout-II, considers all constraints and adopts ωE = 1.5 ∼ 4

(c) Layout-III, considers all constraints and directly remove low-stiffness elements

Figure 7. Optimal layouts and buckling modes of the short cantilever. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).

Table 2. Geometric and mechanical information on the optimal layouts of the short cantilever.

Layout V/m3 Uy
max/m σvm

max/MPa λ1 n

I 0.483 0.03 300 0.93 120
II 0.611 0.027 300 4.98 652
III 0.685 0.026 300 5 468

5.3. Centrally Loaded Beam

The design of the centrally loaded beam is depicted in Figure 8. This structure is
fixed at the left and right bottom nodes, with a concentrated vertical force acting at the
middle bottom. The design domain measures L × H = 48 m × 16 m and is discretised
into 12 × 4 four-meter-wide square cells. A ground structure with two-level connectivity is
employed, where members are split at their intersections. The ground structure comprises
a total of 773 nodes and 1996 candidate members. In order to capture member instability
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using linear buckling analysis, each member is further divided into four elements, resulting
in a structural model with 6761 nodes and 7984 elements.

Figure 8. Design information of the centrally loaded beam.

Six optimisation problems are conducted for the centrally loaded beam. The first
problem considers only displacement and stress constraints, while the remaining five
integrate additional global and local stability constraints. The second problem employs
the SIMP-based scheme to drive the removal of low-stiffness elements, whereas the third
problem directly removes them using a “hard-kill” scheme. The fourth, fifth, and sixth
problems also employ the SIMP-based scheme but incorporate the structural fabrication
cost as described in Equation (31), using weighting factor α = 1, 2, and 5, respectively. To
ensure that the artificial member-wise penalisation caused by structural fabrication cost
does not influence the early stages of the optimisation process, the SIMP-based scheme is
activated starting from the 150th iteration. The resulting layouts of these six problems are
termed Layout-I through VI, and are depicted in Figure 9, alongside their fundamental
buckling modes. Additionally, their geometric properties and mechanical performance
metrics are summarised in Table 3.

Table 3. Geometric and mechanical properties of the optimal layouts of the centrally loaded beam.

Layout V/m3 Uy
max/m σvm

max/MPa λ 1 n α

I 2.300 0.089 300 0.74 280 0
II 3.559 0.064 300 4.91 2728 0
III 3.739 0.062 300 4.96 2480 0
IV 3.677 0.062 300 4.93 1944 1
V 4.018 0.056 300 4.99 1544 2
VI 4.568 0.050 300 4.98 1248 5

As illustrated in Figure 9a, Layout-I presents as a simple structure comprising a primary
arch system and two hanging bars connecting the load point to the arch. This design closely
resembles the results of truss layout optimisation, which could be readily reproduced using
the code provided by Zegard and Paulino [78]. Furthermore, with the incorporation of both
global and local stability constraints, Layout-II–VI share common features such as radially
arranged tension elements from the load point and a primary arch system braced by short
members. Quantitatively comparing the existing optimisation results from the literature
remains challenging due to the scarcity of research on multi-constrained layout optimisation
for frame structures, particularly in scenarios involving numerous candidate elements. To
evaluate the optimality of the obtained structural layouts, a stability-constrained topology
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optimisation problem is addressed in the context of continuum structures using the code
provided by Ferrari et al. [47]. The result, depicted in Figure 10, exhibits qualitative similarities
to Layout-II–VI, thereby suggesting the optimality of these solutions.

Optimal layout Fundamental buckling mode

(a) Layout-I, considers only displacement and stress constraints

(b) Layout-II, considers all constraints and adopts ωE = 1.5 ∼ 4

(c) Layout-III, considers all constraints and directly remove low-stiffness elements

(d) Layout-IV, considers all constraints, adopts ωE = 1.5 ∼ 4, and incorporates structural fabrication
cost (α = 1)

(e) Layout-V, considers all constraints, adopts ωE = 1.5 ∼ 4, and incorporates structural fabrication
cost (α = 2)

(f) Layout-VI, considers all constraints, adopts ωE = 1.5 ∼ 4, and incorporates structural fabrication
cost (α = 5).

Figure 9. Optimal layouts and buckling modes of the centrally loaded beam. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article).

Additionally, a comparison between Layout-II and -III reveals that the SIMP-based
scheme produces a lighter-weight structure compared to the “hard-kill” scheme. This advan-
tage stems from the SIMP-based scheme’s ability to gradually remove low-stiffness elements
while allowing for their reintroduction as necessary during the optimisation process.

Moreover, there is a noticeable decreasing trend in the number of elements among
Layout-II, -IV, -V, and -VI, highlighting the effectiveness of integrating the structural
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fabrication cost into the objective function to promote element removal and simplify
geometric complexity. However, there is also an evident increase in material consumption
across these layouts, indicating that the inclusion of fabrication cost could potentially
compromise design optimality. This is due to the heightened sensitivity of the objective
function caused by member-wise penalisation from fabrication costs, which may diminish
the influence of constraint function sensitivities and thereby adversely affect the direction
of design variable updates during optimisation.

Figure 10. An optimal centrally loaded beam obtained by running the code provided by Ferrari et al. [47].

6. Discussion

This section evaluates the computational efficiency of the proposed optimisation
framework and discusses the optimality of the resulting layouts.

6.1. Computational Efficiency

The proposed optimisation framework was developed using MATLAB. All optimisa-
tion problems were executed on a laptop PC equipped with an Intel i7-8750H CPU, utilising
parallel processing across four cores. The number of elements in these examples ranged
from 5000 to 8000. On average, each optimisation iteration required approximately 10 s of
CPU time, allowing the problems to be solved within one or two hours. However, as the
number of nodes and elements increases, the computational demand grows exponentially.
For instance, numerical experiments show that in optimising a compression column with
three-level connectivity, the number of nodes and elements rises to 24,673 and 29,024,
respectively, resulting in an average CPU time per iteration exceeding 5 min. While both
linear static analysis and eigenvalue buckling analysis are completed within seconds, sensi-
tivity analysis is the most time-consuming step, followed by the updates of design variables.
This is due to the need to loop over all constrained nodes for displacement constraints, all
elements for stress constraints, and all buckling modes for stability constraints as described
by Equations (11), (19) and (30). This presents significant challenges for complex, large-
scale structures, such as spatial frames, where the number of candidate elements increases
dramatically with finer domain discretisations and higher levels of member connectivity.

6.2. Optimality of the Resulting Layouts

The layouts for the three structures optimised using the proposed framework exhibit
satisfactory mechanical performance and notable improvements in manufacturability. How-
ever, these designs may only represent the local optima due to the high non-linearity of the
constraints, which are sensitive to material distributions and may conflict with one another,
increasing the risk of converging to suboptimal solutions. While finer grid discretisations
and higher member connectivity could potentially improve design optimality, they also
lead to increased computational costs and more complex final layouts. To balance optimal-
ity, manufacturability, and efficiency, further investigation is needed. This could involve
starting with simpler, suboptimal structures that meet basic mechanical constraints such
as displacement and stress, and then progressively incorporating stability considerations
while strategically refining grid discretisation and adjusting member connectivity.

7. Conclusions

This study presents a comprehensive framework for optimising the layout of frame
structures, addressing various practical mechanical constraints while effectively managing
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geometric complexity. Constraints related to displacement, stress, and both local and
global stability are consolidated into aggregation expressions, enhancing computational
and optimisation efficiency for large-scale applications. To manage geometric complexity,
the framework employs a SIMP-based approach to minimise the presence of low-stiffness
elements. Additionally, fabrication cost-based penalisation is incorporated to reduce the
total number of elements, which simplifies member connectivity and enhances the inter-
pretability and manufacturability of the final layouts. The effectiveness of this framework
is demonstrated through its application to large-scale 2D frame structures containing thou-
sands of candidate elements. The design solutions demonstrate satisfactory mechanical
performance and practical constructibility characterised by minimal low-stiffness elements
and enhanced geometric simplification. However, further work is needed to improve the
computational efficiency and design optimality. Future studies could explore progres-
sive and local domain discretisation techniques and member addition strategies, within a
multi-constrained framework.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, Y.H.; validation, Y.H.;
formal analysis, Y.H.; investigation, Y.H.; resources, Y.H.; data curation, Y.H.; writing—original draft
preparation, Y.H.; writing—review and editing, P.S. and J.W.; visualization, Y.H.; supervision, P.S.
and J.W.; funding acquisition, Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: The first author receives support from Chinese Scholarship Council (CSC) through the
CSC-University of Bath Joint Scholarship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The sharing of the MMA code from Krister Svanberg is gratefully acknowledged.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Michell, A. LVIII. The limits of economy of material in frame-structures. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1904, 8, 589–597.

[CrossRef]
2. Dorn, W.S.; Gomory, R.E.; Greenberg, H.J. Automatic design of optimal structures. J. Mec. 1964, 3, 25–52.
3. Zegard, T.; Paulino, G.H. GRAND3—Ground structure based topology optimization for arbitrary 3D domains using MATLAB.

Struct. Multidiscip. Optim. 2015, 52, 1161–1184. [CrossRef]
4. Tugilimana, A.; Filomeno Coelho, R.; Thrall, A.P. Including global stability in truss layout optimization for the conceptual design

of large-scale applications. Struct. Multidiscip. Optim. 2018, 57, 1213–1232. [CrossRef]
5. Fairclough, E.H.; Gilbert, M. Layout optimization of long-span structures subject to self-weight and multiple load-cases. Struct.

Multidiscip. Optim. 2022, 65, 197. [CrossRef]
6. Fernández, E.; Yang, K.k.; Koppen, S.; Alarcón, P.; Bauduin, S.; Duysinx, P. Imposing minimum and maximum member size,

minimum cavity size, and minimum separation distance between solid members in topology optimization. Comput. Methods
Appl. Mech. Eng. 2020, 368, 113157. [CrossRef]

7. Liu, J.; Li, L.; Ma, Y. Uniform thickness control without pre-specifying the length scale target under the level set topology
optimization framework. Adv. Eng. Softw. 2018, 115, 204–216. [CrossRef]

8. Zhang, W.; Li, D.; Zhang, J.; Guo, X. Minimum length scale control in structural topology optimization based on the Moving
Morphable Components (MMC) approach. Comput. Methods Appl. Mech. Eng. 2016, 311, 327–355. [CrossRef]

9. Nana, A.; Cuillière, J.C.; Francois, V. Automatic reconstruction of beam structures from 3D topology optimization results. Comput.
Struct. 2017, 189, 62–82. [CrossRef]

10. Gamache, J.F.; Vadean, A.; Noirot-Nérin, É.; Beaini, D.; Achiche, S. Image-based truss recognition for density-based topology
optimization approach. Struct. Multidiscip. Optim. 2018, 58, 2697–2709. [CrossRef]

11. Yin, G.; Xiao, X.; Cirak, F. Topologically robust CAD model generation for structural optimisation. Comput. Methods Appl. Mech.
Eng. 2020, 369, 113102. [CrossRef]

12. Aage, N.; Andreassen, E.; Lazarov, B.S. Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology
optimization framework. Struct. Multidiscip. Optim. 2015, 51, 565–572. [CrossRef]

http://doi.org/10.1080/14786440409463229
http://dx.doi.org/10.1007/s00158-015-1284-2
http://dx.doi.org/10.1007/s00158-017-1805-2
http://dx.doi.org/10.1007/s00158-022-03242-9
http://dx.doi.org/10.1016/j.cma.2020.113157
http://dx.doi.org/10.1016/j.advengsoft.2017.09.013
http://dx.doi.org/10.1016/j.cma.2016.08.022
http://dx.doi.org/10.1016/j.compstruc.2017.04.018
http://dx.doi.org/10.1007/s00158-018-2028-x
http://dx.doi.org/10.1016/j.cma.2020.113102
http://dx.doi.org/10.1007/s00158-014-1157-0


Appl. Sci. 2024, 14, 8157 23 of 25

13. Cucuzza, R.; Aloisio, A.; Rad, M.M.; Domaneschi, M. Constructability-based design approach for steel structures: From truss
beams to real-world inspired industrial buildings. Autom. Constr. 2024, 166, 105630. [CrossRef]

14. Mitjana, F.; Cafieri, S.; Bugarin, F.; Gogu, C.; Castanie, F. Optimization of structures under buckling constraints using frame
elements. Eng. Optim. 2019, 51, 140–159. [CrossRef]

15. Zhao, L.; Yi, J.; Zhao, Z.; Zhang, Z.; Han, Y.; Rong, J. Topology optimization of frame structures with stress and stability
constraints. Struct. Multidiscip. Optim. 2022, 65, 268. [CrossRef]

16. Kirsch, U. On singular topologies in optimum structural design. Struct. Optim. 1990, 2, 133–142. [CrossRef]
17. Cheng, G.; Jiang, Z. Study on topoogy optimization with stress constraints. Eng. Optim. 1992, 20, 129–148. [CrossRef]
18. Rozvany, G.I. On design-dependent constraints and singular topologies. Struct. Multidiscip. Optim. 2001, 21, 164–172. [CrossRef]
19. Cheng, G.D.; Guo, X. ϵ-relaxed approach in structural topology optimization. Struct. Optim. 1997, 13, 258–266. [CrossRef]
20. Guo, X.; Cheng, G.; Yamazaki, K. A new approach for the solution of singular optima in truss topology optimization with stress

and local buckling constraints. Struct. Multidiscip. Optim. 2001, 22, 364–373. [CrossRef]
21. Rozvany, G.I.N. Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct.

Optim. 1996, 11, 213–217. [CrossRef]
22. Kreisselmeier, G.; Steinhauser, R. Systematic Control Design by Optimizing a Vector Performance Index. Ifac Proc. Vol. 1979, 12,

113–117. [CrossRef]
23. Yang, R.J.; Chen, C.J. Stress-based topology optimization. Struct. Optim. 1996, 12, 98–105. [CrossRef]
24. París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M. Topology optimization of continuum structures with local and global stress

constraints. Struct. Multidiscip. Optim. 2009, 39, 419–437. [CrossRef]
25. Luo, Y.; Wang, M.Y.; Kang, Z. An enhanced aggregation method for topology optimization with local stress constraints. Comput.

Methods Appl. Mech. Eng. 2013,254, 31–41. [CrossRef]
26. Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D. Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 2010,

41, 605–620. [CrossRef]
27. Verbart, A.; Langelaar, M.; van Keulen, F. A unified aggregation and relaxation approach for stress-constrained topology

optimization. Struct. Multidiscip. Optim. 2017, 55, 663–679. [CrossRef]
28. Achtziger, W. Local stability of trusses in the context of topology optimization Part I: Exact modelling. Struct. Optim. 1999, 17,

235–246.
29. Achtziger, W. Local stability of trusses in the context of topology optimazation. Part II: A numerical approach. Struct. Optim.

1999, 17, 247–258.
30. Guo, X.; Cheng, G.D.; Olhoff, N. Optimum design of truss topology under buckling constraints. Struct. Multidiscip. Optim. 2005,

30, 169–180. [CrossRef]
31. Mela, K. Resolving issues with member buckling in truss topology optimization using a mixed variable approach. Struct.

Multidiscip. Optim. 2014, 50, 1037–1049. [CrossRef]
32. Cai, Q.; Feng, R.; Zhang, Z. Topology optimization of trusses incorporating practical local buckling stability considerations.

Structures 2022, 41, 1710–1718. [CrossRef]
33. He, F.; Feng, R.; Cai, Q. Topology optimization of truss structures considering local buckling stability. Comput. Struct. 2024, 294,

64–73. [CrossRef]
34. Torii, A.; Lopez, J.R.H.; Miguel, L.F. Modeling of global and local stability in optimization of truss-like structures using frame

elements. Struct. Multidiscip. Optim. 2015, 51, 1187–1198. [CrossRef]
35. Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: Hoboken,

NJ, USA, 2007.
36. Neves, M.; Rodrigues, M.H.; Guedes, J.M. Generalized topology design of structures with a buckling load criterion. Struct.

Optim. 1995, 10, 71–78. [CrossRef]
37. Bendsøe, M.P.; Sigmund, O. Topology Optimization, Theory, Method and Applications; Springer: Berlin/Heidelberg, Germany, 2004.
38. Gao, X.; Ma, H. Topology optimization of continuum structures under buckling constraints. Comput. Struct. 2015, 157, 142–152.

[CrossRef]
39. Li, L.; Khandelwal, K. Topology optimization of geometrically nonlinear trusses with spurious eigenmodes control. Eng. Struct.

2017, 131, 324–344. [CrossRef]
40. Changizi, N.; Jalalpour, M. Topology optimization of steel frame structures with constraints on overall and individual member

instabilities. Finite Elem. Anal. Des. 2018, 141, 119–134. [CrossRef]
41. Zhang, G.; Khandelwal, K.; Guo, T. Finite strain topology optimization with nonlinear stability constraints. Comput. Methods

Appl. Mech. Eng. 2023, 413, 116119. [CrossRef]
42. Du, J.; Olhoff, N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple

eigenfrequencies and frequency gaps. Struct. Multidiscip. Optim. 2007, 34, 91–110. [CrossRef]
43. Rodrigues, H.; Guedes, C.J.M.; Bendsøe, M.P. Necessary conditions for optimal design of structures with a nonsmooth eigenvalue

based criterion. Struct. Optim. 1995, 9, 52–56. [CrossRef]
44. Seyranian, A.; Lund, P.E.; Olhoff, N. Multiple eigenvalues in structural optimization problems. Struct. Optim. 1994, 8, 207–227.

[CrossRef]

http://dx.doi.org/10.1016/j.autcon.2024.105630
http://dx.doi.org/10.1080/0305215X.2018.1444162
http://dx.doi.org/10.1007/s00158-022-03361-3
http://dx.doi.org/10.1007/BF01836562
http://dx.doi.org/10.1080/03052159208941276
http://dx.doi.org/10.1007/s001580050181
http://dx.doi.org/10.1007/BF01197454
http://dx.doi.org/10.1007/s00158-001-0156-0
http://dx.doi.org/10.1007/BF01197036
http://dx.doi.org/10.1016/S1474-6670(17)65584-8
http://dx.doi.org/10.1007/BF01196941
http://dx.doi.org/10.1007/s00158-008-0336-2
http://dx.doi.org/10.1016/j.cma.2012.10.019
http://dx.doi.org/10.1007/s00158-009-0440-y
http://dx.doi.org/10.1007/s00158-016-1524-0
http://dx.doi.org/10.1007/s00158-004-0511-z
http://dx.doi.org/10.1007/s00158-014-1095-x
http://dx.doi.org/10.1016/j.istruc.2022.05.109
http://dx.doi.org/10.1016/j.compstruc.2024.107273
http://dx.doi.org/10.1007/s00158-014-1203-y
http://dx.doi.org/10.1007/BF01743533
http://dx.doi.org/10.1016/j.compstruc.2015.05.020
http://dx.doi.org/10.1016/j.engstruct.2016.11.001
http://dx.doi.org/10.1016/j.finel.2017.11.003
http://dx.doi.org/10.1016/j.cma.2023.116119
http://dx.doi.org/10.1007/s00158-007-0101-y
http://dx.doi.org/10.1007/BF01742645
http://dx.doi.org/10.1007/BF01742705


Appl. Sci. 2024, 14, 8157 24 of 25

45. Chen, X.; Qi, H.; Qi, L.; Teo, K.L. Smooth convex approximation to the maximum eigenvalue function. J. Glob. Optim. 2004, 30,
253–270. [CrossRef]

46. Torii, A.J.; Faria, J.R. Structural optimization considering smallest magnitude eigenvalues: A smooth approximation. J. Braz. Soc.
Mech. Sci. Eng. 2017, 39, 1745–1754. [CrossRef]

47. Ferrari, F.; Sigmund, O.; Guest, J.K. Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct.
Multidiscip. Optim. 2021, 63, 3045–3066. [CrossRef]

48. Sanders, E.D.; Ramos, A.S.; Paulino, G.H. A maximum filter for the ground structure method: An optimization tool to harness
multiple structural designs. Eng. Struct. 2017, 151, 235–252. [CrossRef]

49. Parkes, E.W. Joints in optimum frameworks. Int. J. Solids Struct. 1975, 11, 1017–1022. [CrossRef]
50. He, L.; Gilbert, M. Rationalization of trusses generated via layout optimization. Struct. Multidiscip. Optim. 2015, 52, 677–694.

[CrossRef]
51. Asadpoure, A.; Guest, J.K.; Valdevit, L. Incorporating fabrication cost into topology optimization of discrete structures and

lattices. Struct. Multidiscip. Optim. 2015, 51, 385–396. [CrossRef]
52. Torii, A.J.; Lopez, R.H.; Leandro, L.F. Design complexity control in truss optimization. Struct. Multidiscip. Optim. 2016, 54,

289–299. [CrossRef]
53. Ohsaki, M.; Katoh, N. Topology optimization of trusses with stress and local constraints on nodal stability and member

intersection. Struct. Multidiscip. Optim. 2005, 29, 190–197. [CrossRef]
54. Kanno, Y.; Fujita, S. Alternating direction method of multipliers for truss topology optimization with limited number of nodes: A

cardinality-constrained second-order cone programming approach. Optim. Eng. 2017, 19, 327–358. [CrossRef]
55. Fairclough, H.; Gilbert, M. Layout optimization of simplified trusses using mixed integer linear programming with runtime

generation of constraints. Struct. Multidiscip. Optim. 2020, 61, 1977–1999. [CrossRef]
56. Weldeyesus, A.G.; Gondzio, J.; He, L.; Gilbert, M.; Shepherd, P.; Tyas, A. Adaptive solution of truss layout optimization problems

with global stability constraints. Struct. Multidiscip. Optim. 2019, 60, 2093–2111. [CrossRef]
57. Pedersen, N.; Nielsen, A. Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and

buckling. Struct. Multidiscip. Optim. 2003, 25, 436–445. [CrossRef]
58. Asadpoure, A.; Harati, M.; Tootkaboni, M. Discrete topology optimization in augmented space: Integrated element removal for

minimum size and mesh sensitivity control. Struct. Multidiscip. Optim. 2020, 62, 2615–2627. [CrossRef]
59. Zhou, M. Difficulties in truss topology optimization with stress and local buckling constraints. Struct. Optim. 1996, 11, 134–136.

[CrossRef]
60. Movahedi Rad, M.; Habashneh, M.; Lógó, J. Reliability based bi-directional evolutionary topology optimization of geometric and

material nonlinear analysis with imperfections. Comput. Struct. 2023, 287, 107120. [CrossRef]
61. Habashneh, M.; Cucuzza, R.; Domaneschi, M.; Movahedi Rad, M. Advanced elasto-plastic topology optimization of steel beams

under elevated temperatures. Adv. Eng. Softw. 2024, 190, 103596. [CrossRef]
62. Wu, C.C.; Arora, J.S. Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure.

AIAA J. 1987, 25, 1118–1125. [CrossRef]
63. Wu, C.C.; Arora, J.S. Simultaneous analysis and design optimization of nonlinear response. Eng. Comput. 1987, 2, 53–63.

[CrossRef]
64. Alberdi, R.; Zhang, G.; Li, L.; Khandelwal, K. A unified framework for nonlinear path-dependent sensitivity analysis in topology

optimization. Int. J. Numer. Methods Eng. 2018, 115, 1–56. [CrossRef]
65. Sigmund, O. A 99 line topology optimization code written in matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [CrossRef]
66. Bruggi, M. On an alternative approach to stress constraints relaxation in topology optimization. Struct. Multidiscip. Optim. 2008,

36, 125–141. [CrossRef]
67. Jiang, X.; Liu, C.; Du, Z.; Huo, W.; Zhang, X.; Liu, F.; Guo, X. A unified framework for explicit layout/topology optimization

of thin-walled structures based on Moving Morphable Components (MMC) method and adaptive ground structure approach.
Comput. Methods Appl. Mech. Eng. 2022, 396, 115047. [CrossRef]

68. Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987,
24, 359–373. [CrossRef]

69. Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [CrossRef]
70. Rojas-Labanda, S.; Stolpe, M. Benchmarking optimization solvers for structural topology optimization. Struct. Multidiscip. Optim.

2015, 52, 527–547. [CrossRef]
71. Poulsen, P.N.; Olesen, J.F.; Baandrup, M. Truss optimization applying finite element limit analysis including global and local

stability. Struct. Multidiscip. Optim. 2020, 62, 41–54. [CrossRef]
72. Dahlberg, V.; Dalklint, A.; Spicer, M.; Amir, O.; Wallin, M. Efficient buckling constrained topology optimization using reduced

order modeling. Struct. Multidiscip. Optim. 2023, 66, 161. [CrossRef]
73. Gilbert, M.; Tyas, A. Layout optimization of large-scale pin-jointed frames. Eng. Comput. 2003, 20, 1044–1064. [CrossRef]
74. Rozvany, G.I. On symmetry and non-uniqueness in exact topology optimization. Struct. Multidiscip. Optim. 2011, 43, 297–317.

[CrossRef]
75. Wang, F.; Lazarov, B.S.; Sigmund, O. On projection methods, convergence and robust formulations in topology optimization.

Struct. Multidiscip. Optim. 2011, 43, 767–784. [CrossRef]

http://dx.doi.org/10.1007/s10898-004-8271-2
http://dx.doi.org/10.1007/s40430-016-0583-x
http://dx.doi.org/10.1007/s00158-021-02854-x
http://dx.doi.org/10.1016/j.engstruct.2017.07.064
http://dx.doi.org/10.1016/0020-7683(75)90044-X
http://dx.doi.org/10.1007/s00158-015-1260-x
http://dx.doi.org/10.1007/s00158-014-1133-8
http://dx.doi.org/10.1007/s00158-016-1403-8
http://dx.doi.org/10.1007/s00158-004-0480-2
http://dx.doi.org/10.1007/s11081-017-9372-3
http://dx.doi.org/10.1007/s00158-019-02449-7
http://dx.doi.org/10.1007/s00158-019-02312-9
http://dx.doi.org/10.1007/s00158-003-0294-7
http://dx.doi.org/10.1007/s00158-020-02630-3
http://dx.doi.org/10.1007/BF01376857
http://dx.doi.org/10.1016/j.compstruc.2023.107120
http://dx.doi.org/10.1016/j.advengsoft.2024.103596
http://dx.doi.org/10.2514/3.9752
http://dx.doi.org/10.1007/BF01200177
http://dx.doi.org/10.1002/nme.5794
http://dx.doi.org/10.1007/s001580050176
http://dx.doi.org/10.1007/s00158-007-0203-6
http://dx.doi.org/10.1016/j.cma.2022.115047
http://dx.doi.org/10.1002/nme.1620240207
http://dx.doi.org/10.1007/s00158-013-0978-6
http://dx.doi.org/10.1007/s00158-015-1250-z
http://dx.doi.org/10.1007/s00158-019-02468-4
http://dx.doi.org/10.1007/s00158-023-03616-7
http://dx.doi.org/10.1108/02644400310503017
http://dx.doi.org/10.1007/s00158-010-0564-0
http://dx.doi.org/10.1007/s00158-010-0602-y


Appl. Sci. 2024, 14, 8157 25 of 25

76. Ferrari, F.; Sigmund, O. Revisiting topology optimization with buckling constraints. Struct. Multidiscip. Optim. 2019, 59,
1401–1415. [CrossRef]

77. Weldeyesus, A.G.; Gondzio, J.; He, L.; Gilbert, M.; Shepherd, P.; Tyas, A. Truss geometry and topology optimization with global
stability constraints. Struct. Multidiscip. Optim. 2020, 62, 1721–1737. [CrossRef]

78. Zegard, T.; Paulino, G.H. GRAND —Ground structure based topology optimization for arbitrary 2D domains using MATLAB.
Struct. Multidiscip. Optim. 2014, 50, 861–882. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00158-019-02253-3
http://dx.doi.org/10.1007/s00158-020-02634-z
http://dx.doi.org/10.1007/s00158-014-1085-z

	Introduction
	Precedent Work
	Stress
	Local and Global Buckling
	Geometric Complexity Control

	Design Challenges
	Contribution of This Work

	Design Variables
	Mechanical Constraints
	Displacement
	Stress
	Stability

	Problem Formulation
	Numerical Examples
	Compression Column
	Short Cantilever
	Centrally Loaded Beam

	Discussion
	Computational Efficiency
	Optimality of the Resulting Layouts

	Conclusions
	References

