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Abstract: Detecting objects in images is crucial for several applications, including surveillance,
autonomous navigation, augmented reality, and so on. Although AI-based approaches such as
Convolutional Neural Networks (CNNs) have proven highly effective in object detection, in scenarios
where the objects being recognized are unknow, it is difficult to generalize an AI model for such tasks.
In another trend, feature-based approaches like SIFT, SURF, and ORB offer the capability to search
any object but have limitations under complex visual variations. In this work, we introduce a novel
edge-based object/scene recognition method. We propose that utilizing feature edges, instead of
feature points, offers high performance under complex visual variations. Our primary contribution is
a directional pixel voting descriptor based on image segments. Experimental results are promising;
compared to previous approaches, ours demonstrates superior performance under complex visual
variations and high processing speed.

Keywords: object recognition; scene recognition; image processing; feature extraction; feature matching

1. Introduction

Detecting objects in images is crucial in multiple applications, including surveillance,
autonomous navigation, augmented reality, and so on [1–4]. While AI-based approaches
such as Convolutional Neural Networks (CNNs) have demonstrated high performance in
object detection [5,6], in scenarios where object/scene being recognized is unknown it is
difficult to achieve accurate recognition. i.e., without prior training data on that specific
object, traditional AI methods reach poor performance.

On the other hand, feature-based approaches like SIFT [7], SURF [8], and ORB [9]
offer capability to search any template but have limitations under complex visual varia-
tions. These methods extract distinctive features from an image and use them to detect
objects [10,11]. By carefully selecting and combining these feature-based techniques, devel-
opers can achieve efficient object detection solutions without compromising performance.

Another approach to object detection involves high-level abstraction descriptors such
as those based on edges and shapes. These methods combine the advantages of both
CNNs and feature-based techniques [1,12]. They aim to be more robust than feature-based
approaches, akin to CNNs, and at the same time they can maintain relatively simple
complexity allowing to search any template, akin to feature-based methods.

In this work, we present an edge-based object/scene recognition method. We propose
that the utilization of shapes obtained from edge points should achieve high performance
given any type of template. Our contribution lies in the introduction of a novel directional
pixel voting descriptor using image segments. The experimental results demonstrated high
performance under complex visual variations. Furthermore, our methodology enables both
recognition of both objects and scenes. This dual capability opens up promising avenues
for future exploration and practical real-world applications.
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1.1. The Object Recognition Problem

The object recognition problem is a key challenge in computer vision, with applications
in several domains, such as robotics, surveillance, and augmented reality. Object recognition
involves identifying and categorizing objects within digital images or video frames. This
task is particularly challenging due to the variability in object appearance, including
differences in viewpoint, scale, lighting conditions, occlusions, and so on.

Addressing the object recognition problem typically involves developing algorithms
and techniques capable of extracting discriminative features from visual data, followed
by classification or matching processes to determine the identity or category of detected
objects. Traditional approaches, such as SIFT, SURF, or ORB, were designed to capture
distinctive characteristics of objects, as shown in Figure 1. However, these methods offer
poor accuracy under complex visual variations and required extensive tuning for optimal
performance across different scenarios [13,14].

Figure 1. The object recognition problem: features (such as blobs and corners) are extracted and
matched from a template to a query. Then, depending on the percentage of “successfully” matched
features, the object can be recognized within the scene. By interpolating the matched features, it is
possible to determine the corresponding bounding box.

1.2. The Scene Recognition Problem

Scene recognition is a key issue in several computer vision applications such as
robotics and autonomous driving. In recent years, deep learning-based approaches have
demonstrated high performance for scene recognition. In particular, convolutional Neural
Networks (CNNs) demonstrated remarkable capabilities in learning representations of
scenes directly from raw pixel data, enabling accurate scene categorization across diverse
datasets and scenarios [15–18].

Unlike object recognition, which focuses on identifying individual objects within
images, scene recognition involves understanding and categorizing entire scenes or envi-
ronments depicted in images or video frames. This task presents its own set of challenges,
primarily regarding the interaction on numerous objects, textures, structures, and spatial
arrangements within a scene, see Figure 2.

Scene recognition algorithms must consider a wide range of factors, including vari-
ations in scene composition, lighting conditions, viewpoints, occlusions, and clutter. In
addition, scenes often exhibit semantic context and spatial relationships between objects,
further complicating the recognition process. Overcoming these challenges involves the
development of complex computational models capable of extracting robust visual features
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from scene representations and effectively capturing the contextual information suitable
for accurate scene categorization.

In the current literature, scene recognition approaches consist of techniques such as
bag-of-visual-words, spatial pyramid matching, and deep learning architectures like Con-
volutional Neural Networks (CNNs). These methods aim to encode both local and global
spatial information, enabling robust recognition across diverse scene categories. However,
achieving reliable scene recognition performance is not possible, with opportunities for
innovation in feature representation, model design, and training strategies [19–22].

(a)

(b)

Figure 2. The scene recognition problem: consist of extracting and matching features from a template
to a query. Then, depending on the percentage of “successfully” matched features, the scene can be
recognized or not. This approach works with relatively high performance under simple scenarios (low
changes in texture, illumination, etc.) (a), but presents poor performance under complex scenarios (b).
In those scenarios, deep learning-based approaches have demonstrated a proper trade-off between
robustness and computational resources usage.

2. Related Works

Several works which addressed both feature-based and CNN-based approaches for ob-
ject and scene recognition have been presented. Researchers have explored several feature
extraction techniques, such as SIFT, SURF, ORB, and their variants, to capture discriminative
information from visual data. Furthermore, multiple works have focused on the utilization
of deep learning architectures, particularly CNNs. These works have contributed to ad-
vancing the state-of-the-art in object and scene recognition, offering insights into effective
feature representation, model architecture design, and optimization strategies.
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2.1. State of the Art for Object Recognition

In current state of the art in object recognition, deep-learning-based approaches,
particularly Convolutional Neural Networks (CNNs), have demonstrated high performance
and flexibility in terms of application domain. Models like ResNet, EfficientNet, and
DenseNet have laid down the boundaries of object recognition accuracy and efficiency.
In [23], the authors combine both object detection and image dehazing methods for real-time
applications such as remote sensing, video surveillance, driverless automatic vehicles, etc.
They presented an effective and efficient image dehazing method using transfer learning,
which helps recognize objects in real time with more clarity and can automatically detect
objects with a high recognition rate and lower probability of error. The trained model AOD-
net + YOLO v3 consistently outperforms non-joint and naive YOLO v3 techniques. Ref. [24]
proposed a recurrent CNN (RCNN) for object recognition by incorporating recurrent
connections into each convolutional layer. Though the input is static, the activities of
RCNN units evolve over time so that the activity of each unit is modulated by the activities
of its neighboring units. This property enhances the model’s ability to integrate context
information, which is important for object recognition. Like other recurrent neural networks,
unfolding the RCNN through time can result in an arbitrarily deep network with a fixed
number of parameters. Although both approaches allow high robustness in terms of
detection, both algorithms were based on machine learning, and the accuracy under
unknown objects, different than those in the training, limits the scope and performance.

Furthermore, transfer learning techniques demonstrated high performance with pre-
trained CNN models on large-scale datasets such as ImageNet for downstream object
recognition tasks with limited labeled data. This approach allows for rapid development
and deployment of object recognition systems in various domains. In [25], the use of transfer
learning, via deep Convolutional Neural Networks (CNN), for the image classification
problem within the context of X-ray baggage security screening was presented. The
proposed algorithm achieved 98.92% detection accuracy, outperforming previous work,
and further extended their evaluation to a multiple object classification task within this
context. Additionally, in [26], multiple CNN architectures were proposed to improve the
system performance. In this context, AlexNet, VGG16, and VGG19 are popular CNNs
which allow transfer learning to fine-tune the pre-trained network parameters (VGG19)
for image classification. Performance analysis demonstrated that the fine-tuned VGG19
architecture outperforms other CNN architectures and hybrid learning approaches for
image classification tasks.

While deep learning models achieved high performance in several domains, feature-
based approaches like SIFT and SURF still find applications in scenarios with limited
computational resources or when there are specific challenges such as small object detection
or texture-rich environments. Feature-based methods such as Scale-Invariant Feature
Transform (SIFT) and Speeded-Up Robust Features (SURF) are still relevant in object
recognition tasks. These feature-based approaches offer distinct advantages, including
robustness to variations in scale, rotation, and illumination. In [27], a new tactile-SIFT
descriptor is proposed to extract features based on gradients in tactile images to represent
objects, allowing the features to be invariant to object translation and rotation. The tactile-
SIFT segments a tactile image into overlapping subpatches, each represented using a dn-
dimensional gradient vector, similar to the classic SIFT descriptor. Tactile-SIFT descriptors
obtained from multiple touches form a dictionary of k words, and the bag-of-words method
is then used to identify objects. The proposed method was validated by classifying 18 real
objects with data from an off-the-shelf tactile sensor, achieving a recognition rate of 91.33%
with a dictionary size of 50 clusters using only 15 touches. Additionally, in [28], the authors
have compared the performance of the Shi-Tomasi corner detector with SIFT and SURF
feature descriptors and evaluated the performance of Shi-Tomasi in combination with SIFT
and SURF feature descriptors. In both cases, relatively high accuracy in terms of detection
was achieved, motivating us to continue this trend with an edge-based approach which
increases the robustness of traditional approaches (SIFT/SURF/ORB).
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Finally, hybrid approaches that combine deep learning with traditional feature-based
methods have gained traction, aiming to maintain the strengths of both paradigms. For
instance, deep learning models can be augmented with features extracted using SIFT or
SURF, providing complementary information and improving overall recognition accuracy.
For example, in [29], a technique was proposed using deep convolutional neural network
(DCNN) and scale invariant features transform (SIFT). First, an improved saliency method
is implemented, and the features points are extracted. Then, DCNN features are extracted
from two deep CNN models like VGG and AlexNet. The proposed method is evaluated
on three public datasets including Caltech101, Barkley 3D, and Pascal 3D and reached
classification accuracy of 93.8%, 99%, and 88.6%—it demonstrated high performance
compared to previous works.

2.2. State of the Art for Scene Recognition

For scene recognition, deep learning-based approaches remain at the forefront of the
current state of the art, offering significant advancements in accuracy and robustness. Con-
volutional Neural Networks (CNNs) have emerged as the backbone of several recognition
systems, capable of automatically learning visual features from images. One notable trend
in scene recognition is the integration of contextual information and spatial relationships
between objects within a scene [30,31].

Finally, the fusion of multi-modal data sources, such as images, textual descriptions,
and semantic annotations, have demonstrated high performance for scene recognition.
Techniques such as multi-modal fusion networks and cross-modal retrieval provide com-
plementary information from different modalities in order to improve the scene under-
standing [32].

3. The Proposed Algorithm

In Figure 3, an overview of our algorithm is shown. Our approach consists of an image
preprocessing step, in which input images are filtered and some primitive information
such as image gradients (gx, gy, d) are extracted. Then, in a second step, relevant patterns
such as edge segments s are extracted and described using our directional pixel voting
descriptor. Finally, the input image is compared with a target (template), which can be an
object or a scene, to determine whether it can be recognized or not.

Figure 3. Block diagram of the proposed algorithm.

3.1. Image Preprocessing

Given a gray scale image I(i, j), a Gaussian filtering is applied on I image on order to
reduce noise and to remove fine-scale structures that affect the performance of the feature
extraction step. The Gaussian filter is defined by Equation (1) as follows:

G(m, n) =
1

2πσ2 e−
m2+n2

2σ2 (1)
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where G(m, n) is the Gaussian function and σ is the standard deviation, which controls the
amount of smoothing applied to the image.

To perform Gaussian filtering on the image I, a convolution operation is applied
between the image I and a Gaussian kernel G. The Gaussian kernel is usually represented
as a odd size 2D matrix or mask. For a generic 5× 5 (N × N) Gaussian mask, it can be
represented as:

1
273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1


The above matrix represents the coefficients of the Gaussian mask, which are computed

based on the Gaussian function with an appropriate standard deviation. This mask is
then applied to the image using convolution, resulting in a smoothed version of the
original image.

Is(i, j) =

N−1
2

∑
m=− N−1

2

N−1
2

∑
n=− N−1

2

I(i + m, j + n) · G(m +
N − 1

2
, n +

N − 1
2

)

Given the smoothed image Is(i, j), the gradients gx and gy are calculated via Prewitt
operator [33] as follows:

gx(i, j) = (−Is(i− 1, j− 1)− Is(i, j− 1)− Is(i + 1, j− 1) + Is(i− 1, j + 1) + Is(i, j + 1) + Is(i + 1, j + 1))

gy(i, j) = (−Is(i− 1, j− 1)− Is(i− 1, j)− Is(i− 1, j + 1) + Is(i + 1, j− 1) + Is(i + 1, j) + Is(i + 1, j + 1))

Finally, the direction d(i, j) is determined as follows:

d(i, j) =


1 if (gx(i, j) > gy(i, j)) & (gx(i, j) + gy(i, j)) ≥ th
2 if (gx(i, j) ≤ gy(i, j)) & (gx(i, j) + gy(i, j)) ≥ th
0 otherwise

(2)

where th is a threshold for a “valid” gradient value. We define the possible values of th
inspired by the image bit-depth standard format, i.e., 8, 16, 32, 64, and so on. We propose
th = 32 as a threshold because, even after the smoothing process using the Gaussian
filter, certain levels of noise and fine details may persist in the image. These artifacts can
negatively affect the performance of subsequent steps, such as feature extraction or object
recognition. By setting a threshold equal to 32, we aim to identify and suppress gradients
that are not significant enough to represent relevant features in the image. Gradient values
below this threshold may be considered as unwanted noise or fine details that we aim to
eliminate. Note that the threshold value th does not explicitly depend on the bit depth of
the image. However, given that the gradients gx and gx are computed from the absolute
values of the image, which inherently depend on its bit depth, it is reasonable to argue that
the sum gxy should be compared to a threshold th that scales with the maximum gray level
of the image. Specifically, a fixed threshold value of 32 might be appropriate for images
with 8-bit depth (gray values ranging from 0 to 255), but could be inadequate for images
with higher bit depths, such as 16-bit images with gray values ranging from 0 to 65,535.

3.2. Feature Extraction and Description

Our main contributions, on the one hand, consist of introducing a novel approach for
feature (segments) extraction and, on the other hand, presenting a robust description criterion.
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3.2.1. Feature Extraction

As mentioned before, our approach is based on edge primitives. Although there are
existing algorithms, such as Sobel and Canny, for that purpose, they are sensitive to noise
or difficult to segment properly. To address those issues, we propose a new extraction
method as follows, where the edge map e(i, j) (see Figure 4) is defined as follows:

e(i, j) =


1 if ((dif1 ≥ th & dif2 ≥ th)) & d(i, j) == 1
1 if ((dif3 ≥ th & dif4 ≥ th)) & d(i, j) == 2
0 otherwise

(3)

where dif1, dif2, dif3, dif4, and gxy(i, j) are defined as follows: gxy(i, j) = gx(i, j) + gy(i, j)

dif1 = gxy(i, j)− gxy(i, j− 1),
dif2 = gxy(i, j)− gxy(i, j + 1),
dif3 = gxy(i, j)− gxy(i− 1, j),
dif4 = gxy(i, j)− gxy(i + 1, j).

Then, the set of anchor points f (k) is computed via Algorithm 1.

(a) (b)

Figure 4. Let (a) be the input image template an edge map is computed via Equation (3) given the
resulting image presented in (b).

Algorithm 1: Constructing anchor points vector f (k)

1. Initialize vector f as empty.
2. Initialize k = 0.
3. For each pair of coordinates (i, j) in the edge image e(i, j):

(a) If e(i, j) == 1:

i. k← k + 1
ii. Add coordinate {i, j} to vector f at position k.

4. Return vector f .
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3.2.2. Segment Generator (Feature Extraction)

To generate “robust” edge segments, we propose an approach inspired on the canon-
ical seed-segmentation method [34,35]. In this method, a seed is selected to initiate the
segmentation process. This seed serves as the starting point for segment expansion. The
segmentation algorithm iteratively grows the segment by incorporating neighboring pixels
that satisfy certain criteria, such as similarity in color, texture, or intensity. This process
continues until the segment reaches a predefined stopping criterion, ensuring that it en-
compasses a coherent region of interest. By leveraging the canonical seed-segmentation
approach, we aim to achieve accurate and reliable edge segments that capture meaningful
structures in the image data. This approach offers robustness against noise, variations in
lighting conditions, and other sources of interference, making it well-suited for a wide
range of image segmentation tasks.

Let gxy(i, j) be the gradient map (gxy(i, j) = gx(i, j) + gy(i, j)), d(i, j) be the direction
map computed via Equation (2), as shown in Figure 5b, and f (k) denote an anchor point
(i, j); these anchor points are grown horizontally or vertically depending on the direction
image at anchor point (i, j), as illustrated in Figure 6, where for each anchor ( f (k)), there
are 5 (n) possible growth directions. Each direction (marked by a red square) is evaluated
using the gradient map (gxy(i, j)) as an edge criterion, where Crl(n) defines the correlation
between the anchor point and the n− th growth direction. In practice, the growth direction
could change from vertical to horizontal in the same segment, but this is supported by the
diagonal element of the grown pattern, {p2, p4}, {p4, p2} Figure 6a. Therefore, when a
change in direction occurs, it is addressed by the current growth pattern, and when the
direction changes (in the directions image), the growth pattern is changed. All possible
directions are ordered clockwise. This facilitates the software implementation by imple-
menting shift vectors. Notice that all evaluated directions are disabled by resetting their
corresponding value to zero. Finally, the segment grows in the direction with the highest
edge correlation compared to the anchor, and only if this correlation is always greater than
a threshold th. The whole process is lay down in Algorithm 2. For practical purposes, we
recommend a threshold value of 32. The whole process is illustrated in Figure 7; when
the current pixel does not allow growth, the algorithm returns to the original anchor and
starts to grow in the opposite direction. Finally, in Figure 8, the extracted features, ‘edge
segments’, are shown.

Algorithm 2: Determining the segment image s(i, j) and segment vectors sk

1. Initialize s(i, j) = 0 for all (i, j).
2. For each pair of coordinates (i, j) in the image:

(a) If s( fk) == 0:

i. Initialize vector sk as empty.
ii. Set s(i, j) = 1, add tuple (i, j) to vector sk.

(b) Else if s(pn) == 0:

i. While segment can grow:

A. If s(pn) == 0 (where n is the grown direction
being evaluated):

B. Find n = arg minnCrl(n).
C. If Crl(n) ≥ th:
D. Set s(i, j) = 1, add grown point (i, j) to vector sk.
E. Else:
F. Break the loop.

3. Return the segment image s(i, j) and the segment vectors sk{i, j}.
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(a) (b)

Figure 5. Image patterns for the feature extraction. On the one hand, a gradient map determines
each potential growth direction based on a threshold th (a). On the other hand, vertical (red) and
horizontal (green) gradient directions are utilized to define the growth direction (b).

(a) (b)

Figure 6. For each anchor fk, there are five possible growth directions p1 . . . p5 and two direction
patterns, i.e., vertical (a) and horizontal (b). Each direction is evaluated disabling all evaluated pixels,
and if the most similar candidate meets a threshold value, it is considered a valid growth direction;
for more details, please see Algorithm 2.
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Figure 7. The feature extraction process let fk be an anchor point. This point grows vertically first
from fk to the top 1, 2, . . . , 12 and then from fk to the bottom 13, 14, . . . , 20.

Figure 8. The extracted segments via the proposed algorithm. Each segment is represented by a
different color.
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3.2.3. The Directional Pixel Voting Descriptor (Feature Description)

Let p(i, j) represent a pixel inside a segment (it could be an anchor fk or any pixel
added after the growing process, see Section 3.2.2). Each added pixel involves a global
image direction, as illustrated in Figure 9a. There are eight possible image directions. Here,
it is not possible to maintain our clockwise order, since at the global level the objective is to
describe the shape of the segment. However, the global directions order can be superposed
on the growth patterns presented in the previous section, as shown in Figure 9b. Let
d1, d2, . . . , d8 represent the global image directions. A segment descriptor k (for the k-
th segment) is defined as follows: Sk{d1, d2, . . . , d8, g1, g2, . . . , g8}, where dn represents
the count of pixels inside the segment grown in the i-th direction and is computed via
Equations (4)–(6) and is initialized to zero, pn is the global grown direction of the i-th pixel
sk{p(i, j)1, p(i, j)2, . . . p(i, j)i} inside the k segment, see Algorithm 2, and N is the size of
the segment vector. Moreover, g1, g2, . . . , g8 represent the normalized mean of the gradient
values at each global grown direction. For this, we define Equations (7)–(9), where gxy is
the gradient value of the i-th pixel p(i, j) inside the segment, gxy(i, j) = gx(i, j) + gy(i, j),
see Section 3.2.1, 1

|Max(gk)|
is the normalization factor, and M is the operator for the mean

value. This process is illustrated in Algorithm 3.

(a) (b)

Figure 9. Global grown direction (a). There are eight possible image directions. Here, it is not possible
to maintain our clockwise order, since at the global level, the objective is to describe the shape of
the segment under different object rotations. However, for the implementation process, the global
directions order can be superposed on the growth patterns presented in the previous section, as
shown in (b).

Sk{d1} =
N

∑
i=1

d1 = d1 + 1 if sk(i) has p1 grown direction (4)

Sk{d2} =
N

∑
i=1

d2 = d2 + 1 if sk(i) has p2 grown direction (5)

...

Sk{d8} =
N

∑
i=1

d8 = d8 + 1 if sk(i) has p3 grown direction

(6)
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Sk{g1} =
1

|Max(g)| ×Mgk>0

(
g(i) =

N

∑
i=1
|gxy(sk(i))| if sk(i) has p1 grown direction 0 otherwise

)
(7)

Sk{g2} =
1

|Max(g)| ×Mgk>0

(
g(i) =

N

∑
i=1
|gxy(sk(i))| if sk(i) has p2 grown direction 0 otherwise

)
(8)

...

Sk{g8} =
1

|Max(g)| ×Mgk>0

(
g(i) =

N

∑
i=1
|gxy(sk(i))| if sk(i) has p8 grown direction 0 otherwise

)
(9)

Algorithm 3: Creation of the directional pixel voting descriptor

1. Initialize g(i) as empty for k = 1 to 8.
2. For each tuple (i, j) in sk:

(a) For n = 1 to 8 (where n are the grown directions, see Figure 9a):

i. If sk(i, j) has pn grown direction:

A. g(i)← g(i) + |gxy(sk(i, j))|.
ii. Else:

A. g(i)← g(i) + 0.

3. For n = 1 to 8 (where n are the grown directions, see Figure 9a):

(a) Compute Sk{gn} = 1
|Max(g)| ×Mean of g(i) where g(i) > 0.

4. Return Sk{gn} for n = 1 to 8 (where n are the grown directions, see Figure 9a).

3.3. Recognition

Let Sk be the descriptors for the template while Sq be the descriptors on the query (the
real-world scene in which the object/place is being looked at). Comparisons between the
Sk segment from template and the Sq segment in query are carried out by the Hamming
distances of the descriptor components as follows:

hammingDistance =
n

∑
i=1
|Sk − Sq| (10)

where n is the number of components in the descriptor.
Of course, an all vs. all approach could be inconvenient in terms of processing speed

and resources usage; to address this problem, we propose a look-up table approach based
on the segment length, where each block represents a range of segment lengths. Thus,
let Sk be the segment being matched and Sk inside the block 2; this segment is compared
with each segment on the query table for the same block size. Of course, smaller length
partitions will allow fast searches, since there will be only a few candidates for each size,
but this could limit proper matching, since lengths between template and query could
be a little different. On the other hand, huge length partitions will allow a proper match
even with strong changes between template and query, but the search process will require
high computational resources since a lot of candidates could be available. In practice, we
recommend a partition as follows : th1 = 8, th2 = 16, th3 = 32, · · · , thn−1 = 128. The whole
process is shown in Algorithm 4.

Crl(i) =
i=n

∑
i=1

hammingDistance(Sk, Si) (11)
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match(i) =
{

1 if argMiniCrl(i) ≤ thmatch
0 if otherwise

(12)

where match(i) represents the match status, being zero if the segment i was not found in the
query or 1 otherwise. thmatch is a similarity threshold which defines if a valid matching was
found. We recommend values between 0.7 and 0.8. Finally, an object or scene is recognized
only if a proper number of the i segments which define the object or scene were found.
A proper number of matches could be greater than 70%. Of course, greater values could
guarantee less recognition accuracy, but detection could not allow important changes (in
terms of illumination, rotation, or scale) between template and query. On the other hand,
lower values will allow easy detection with high changes between template and query but
can generate false positives, i.e., wrong object or scene detections.

Algorithm 4: Object recognition

1. Initialize hammingDistance = 0.
2. Group all segments Sq into blocks based on their length:

(a) For each segment Sq:

i. If Slength(Sq) ≤ th1:

A. Assign Sq to block 1.

ii. Else if Slength(Sq) ≤ th2:

A. Assign Sq to block 2.

iii. Else if · · · :
A. · · ·

iv. Else:

A. Assign Sq to block M.

3. For each segment Sk:

(a) Identify block b to which Sk belongs.
(b) For each segment Sq in block b:

i. hammingDistance← hammingDistance + |Sk − Sq|.
4. Return hammingDistance.

4. Results

In this section, we present experimental results for the proposed algorithm compared
with previous approaches. Since the use of standard datasets has become common in the
computer vision area (for learning-based approaches), we looked for some proper datasets.
However, since there is a lack of standardized datasets for image-based algorithms, previous
works such as [13,14,27] used their own images, and this is the approach that we will follow
here. Following this idea, we compare our algorithms with other canonical algorithms in
the current literature, which have served as the basis for multiple works. These are SIFT [7],
SURF [36], FAST [37], and ORB [9]. Multiple tests for object/scene detection and processing
speed were carried out. For practical purposes, only some examples will be presented in
this manuscript. In all cases, MatLab 2023b and a PC with an Intel(R) Core(TM) i9-9900K
CPU 3.60 GHz, 32 GB RAM DDR3 were used (Intel, Santa Clara, CA, USA).

In Figure 10, results for object detections are shown. In all cases, accuracy is defined as
the percentage of template features successfully detected. Since accuracy is higher than 70%,
the object being recognized is found in all cases. Different rotations and scale variations
between the template and query were tested. In all cases, accurate detection can be reached.
In Figure 10a, two mismatches (outliers) were generated: in one case, the texture on the wall
matched with a small pattern on the bottle. On the other hand, a line in the template was
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matched with a line in the query that is different from the line in the template. There is no
global spatial information, which could be expected, since, following our descriptor, both
lines’ matches present a similar orientation, length, and gradient (as both present similar
contrasts between background and object, of which the feature owns). Furthermore, we can
see that the “U” character was found two times. This is because we have not applied any
non-maximal matched, and therefore, one feature in the template can be matched multiple
times in the query. In this case, each “U” character in the template can be matched with
each “U” character in the query, as expected. In 10b,c, only one outlier was generated each.
Finally, no outliers are presented in 10d. In all cases, the square/mesh pattern on the bottle
generated mismatches, but again, given our algorithm undertakes feature matching based
on shape and color contrast against the features (gradients), it is expected that repetitive
patterns can generate wrong matches. These problems can be addressed by adding global
information so that each feature can be the same in terms of gradient or shape but different,
for example, with respect to the Euclidean distance to the origin. Of course, this is only a
hypothesis and will be explored in future work. In any case, these results demonstrate, at
a high level, relatively accurate detection for object recognition. Regarding performance
under complex visual variations in In Figure 11, results for object detection are shown. In
all cases, accuracy is defined as the percentage of template features that are successfully
detected. Accuracy higher than 70% is reached, and therefore, accurate/robust detection
is reached for objects. In Figure 11a, changes in rotation and objects with similar shapes
were tested. In all cases, accurate detection can be reached. Even with rotations such as
the one presented in the black cylinder and the wood box, our descriptor can properly
match these objects. This demonstrates the rotational invariance of our descriptor. In
Figure 11b, the complex texture scenario was tested, which demonstrated the robustness of
the proposed method; shapes such as circles, cuboids, and so on and complex segments
such as a book cover were correctly detected. Again, rotational invariance is demonstrated
by the algorithm’s ability to properly match segments inside the book cover.

In Figure 12, the performance for other methods in the literature, in particular, the
original SIFT [7] with non-maxima suppression (i.e., one feature on the template (left side),
which can have multiple matches in the query (right side)) and original SURF [36], is shown.
As can be seen, by comparing only feature points or blobs, low performance is achieved.
In both cases, several mismatches or multiple matches for the same feature are generated.
This demonstrates the low performance that point information can generate. On the other
hand, our approach in Figures 10 and 11, which is based on shape and gradient, involves
higher robustness for the matching process. This is shown in Table 1, in which average
accuracy values by considering multiple test for several templates are presented.

Table 1. Mean accuracy for the proposed algorithm compared with previous approaches in the literature.

Method Accuracy

SIFT [7] 43%
SURF [36] 69%
FAST [37] 60%
ORB [9] 67%

This work 81%
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(a) Accuracy = 81% (b) Accuracy = 85%

(c) Accuracy = 85% (d) Accuracy = 91%

Figure 10. Object detection by the proposed method. Different rotations between template and query
(a,b,d) and scale variations (c) were tested. In all cases, accurate detection can be reached. Mismatches
are marked as red circles.

(a) Accuracy = 91%

(b) Accuracy = 71%

Figure 11. Object detection by the proposed method under complex visual variations/rotations (a)
and complex texture objects (b). In both cases, high accuracy is reached. Mismatches are marked as
red circles.
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(a) Accuracy = 37% (b) Accuracy = 71%

Figure 12. Object detection by other algoritmms in the literature. (a) original SIFT [7], (b) original
SURF. [36].

In Figures 13 and 14, results for scene recognition are shown. Again, when compared
to our approach (Figure 13) with the original SIFT (Figure 14), our approach clearly outper-
forms previous work. In our work, most important mismatches are generated for some
cloud patterns in the template which match the tree patterns in the query. Again, this is as
expected, since matched patterns have the same shape and gradient. On the other hand,
SIFT generated several mismatches, and in this case, it could be difficult to determine if the
scene was recognized or not.

(a) Accuracy = 87% (b) Accuracy = 73%

Figure 13. Results for scene recognition: (a) Indoor scenario: only two mismatches are generated. In
both cases, features that were matched present similarities in terms of shape and gradient. (b) Outdoor
scenario: the most important mismatches are generated for some cloud patterns in the template,
which match the tree patterns in the query. Again, this is as expected, since matched patterns have
the same shape and gradient.

Finally, in Tables 2 and 3, processing speed comparisons are presented. Our approach,
which consists of complex features (compared with points which are the features used by
previous approaches), requires more processing time. However, even with this complexity,
our algorithms outperform the original ORB. Considering that algorithms like ORB have
been successfully used in real-time applications such as SLAM [38], robotics [39], and
so on, we consider our approach can be successfully used. Note that our algorithm
was implemented in MATLAB, without hardware acceleration or advanced programming
patterns, while the other algorithms have been highly improved in terms of implementation
in order to reach optimal processing speed. We believe our approach can be improved
in terms of implementation, and this should increase the processing speed. This will be
addressed in future work.
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Figure 14. Original SIFT [7]. Results for scene recognition showed a lot of mismatches were generated,
and in this case, it could be difficult to determine if the scene was recognized or not. Accuracy = 57%.

Table 2. Processing speed for the proposed algorithm compared with previous approaches in the
literature. Input image resolution 2160 × 1080 (Full HD).

Method Processing Time (fps)

SIFT [7] 1.0044
SURF [36] 3.6597
FAST [37] 3.9117
ORB [9] 0.3820

This work 0.5726

Table 3. Processing speed for the proposed algorithm compared with previous approaches in the
literature. Input image resolution 1080 × 540 (HD).

Method Processing Time (fps)

SIFT [7] 3.3245
SURF [36] 11.4322
FAST [37] 11.4230
ORB [9] 1.0328

This work 2.0012

Limitations: Since the direction in the proposed Directional Pixel Voting Descriptor
is defined in the 2D image pixel coordinate, rotations which deforms or occlude primitive
shapes in template are not supported, as shown in Figure 15a. However, even classical
methods such as SIFT or SURF suffer from this in the case of textureless objects Figure 15b.

Asa final discussion, experimental results demonstrate the effectiveness and robust-
ness of our proposed approach for object and scene recognition tasks. We have demon-
strated that our method outperforms previous approaches, particularly in scenarios with
variations in rotation, scale, and texture. Despite the increased computational complexity
of our method compared to traditional point-based approaches, our algorithms achieve
promising performance, laying down the basis for future improvements and applications
in real-world applications. Additionally, while our implementation in MATLAB provides
a solid implementation, future optimizations and hardware accelerations are expected
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to further improve processing speed and efficiency. We believe that our work allows for
improvements such as additional constraints for the descriptor previously laid down, non-
maximal suppression methods (to avoid multiple matches for some features in the template
and query), and so on.

(a) Proposed: Accuracy = 11% (b) SIFT: Accuracy = 21%

Figure 15. Object detection under shape occlusion. (a) Rotations which deform or occlude primitive
shapes in template are not supported. (b) Even classical methods such as SIFT suffer from this
scenario by looking for a textureless object.

5. Conclusions

The importance of object detection under several applications, including surveillance,
autonomous navigation, and augmented reality, cannot be overstated. While AI-based
approaches like Convolutional Neural Networks (CNNs) have demonstrated high per-
formance in object detection, there are limitations for unknown objects being detected.
Feature-based methods such as SIFT, SURF, and ORB support unknown object detection
but have limitations under visual variations. In response, this work presented a novel
edge-based object/scene recognition technique. Our proposed directional pixel voting
descriptor, based on image segments, represents a significant advancement in this domain.
Experimental results demonstrated high performance compared with previous works in
the current literature. In future work, improvements such as additional constraints for
the descriptor previously laid down, non-maximal suppression methods (to avoid multi-
ple matches for some features in the template and query), optimizations, and hardware
accelerations will be implemented in order to improve processing speed and efficiency.
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