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Abstract: The prediction of unloading times is crucial for reducing demurrage costs and ensuring
the smooth scheduling of downstream processes in a steel plant. The duration of unloading a cargo
ship is primarily determined by the unloading schedule established at the raw materials terminal
and the storage operation schedule implemented in the stockyard. This study aims to provide an
accurate forecast of unloading times for incoming ships at the raw materials terminal of a steel plant.
We propose three neural network-based methods: the Backpropagation Neural Network (BP), the
Random Vector Functional Link (RVFL), and the Stochastic Configurations Network (SCN) for this
prediction. This issue has not been previously researched using similar methods, particularly in the
context of large-scale steel plants. The performance of these three methods is evaluated based on
several indices: the Root Mean Square Error (RMSE), the quality of the best solution, convergence,
and stability, which are employed for predicting unloading times. The prediction accuracies achieved
by the BP, RVFL, and SCN were 76%, 85%, and 87%, respectively. These results demonstrate the
effectiveness and potential applications of the proposed methods.

Keywords: prediction; ship-unloading; neural networks; steel plants

1. Introduction

The prediction of unloading times is crucial for reducing delay costs and ensuring the
smooth scheduling of downstream processes in a large steel plant [1,2]. In fact, accurately
predicting unloading times can create favorable conditions for the more efficient allocation
of unloading resources for subsequently arriving ships. Additionally, it can provide a
buffer for subsequent storage operations in the storage yard. In a large-scale iron and
steel enterprise, hundreds or even thousands of ships transport tens of millions of tons
of raw materials to the terminal each year. These ships must be unloaded promptly to
minimize delay costs and meet production demands for raw materials. However, significant
demurrage costs—amounting to hundreds of millions annually—arise when many ships
fail to unload on time due to various factors.

Two key factors influence the unloading time of ships: the ship-unloading schedule
established at the raw materials terminal and the raw materials storage operation schedule
implemented in the stockyard. The ship-unloading system of a steel plant is illustrated
in Figure 1. Typically, this system consists of several berths, a limited number of ship
unloaders, and a conveyor transmission system. The berths are designated for docking raw
material ships, while the ship unloaders are responsible for unloading the raw materials.
These unloaders can move along a fixed track. For smaller vessels, typically those under
50,000 tons, a single ship unloader is enough to meet unloading requirements. However,
for larger vessels, generally exceeding 150,000 tons, it is necessary to allocate two to
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three ship unloaders to facilitate the unloading operations. The conveyor system is installed
throughout the entire port area, the stockyard, and certain production areas to enable the
bidirectional transfer of raw materials and products among these locations. When a ship
arrives at the raw materials terminal, a berth and one or more ship unloaders are assigned
to it for the unloading operation. Simultaneously, storage space must be designated for the
unloaded raw materials in the stockyard. Accurate prediction of ship-unloading times can
create buffer space for subsequent dock-unloading schedules and storage space allocation.
This improvement facilitates the execution of related operations, reduces ship delay costs,
and enhances economic efficiency, making it a critical factor in port operations.
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Figure 1. The ship-unloading system of a steel plant.

The prediction methods have become a prominent area of study in both industrial
applications [3,4] and academic research [5,6]. These methods can be broadly categorized
into three groups: statistical methods [7–9], mechanistic methods [10,11], and data-driven
methods [12,13]. Statistical methods operate under the assumption that the observations of
the predicted object follow specific statistical distributions, utilizing statistical theory to
derive prediction results. In contrast, data-driven methods rely entirely on data, employing
machine learning techniques to generate predictions. Mechanistic methods assume that the
predicted object adheres to certain physical or chemical laws, including thermodynamics,
dynamics, and fluid mechanics, and they derive predictions through the application of
relevant mechanistic equations. However, data-driven methods have gained popularity
due to their user-friendliness and lower implementation costs in industrial settings.

As far as we know, unloading time prediction is rarely studied for bulk carriers.
However, there are several analogous studies in other industries. For instance, Zhang
et al. [14] developed a fuzzy sequence-to-sequence network for forecasting unloading times
in earthmoving projects. Liang and Wang [15] developed a modularized simulation method
(MSM) for forecasting delivery times of priority lots in a 300 mm silicon wafer fabrication
production line. Xu et al. [16] developed a robust berth-scheduling algorithm to address
the uncertainty of vessel arrival delay and handling time. In response to this research
gap, this study proposes a method that employs three neural network-based approaches:
a Backpropagation Neural Network (BP), a Random Vector Functional Link Network
(RVFL), and a Stochastic Configuration Network (SCN) model to predict unloading time at
a steel plant raw materials terminal. There are several compelling reasons for selecting this
prediction method:

Neural networks have been widely applied to prediction and classification and exhib-
ited a great deal of success.
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1. BP as a mature neural network and the ensuing learning method has been widely
applied [17,18].

2. RVFL introduces an efficient way to find out the optimal network parameters and
represents a richer structure variety of neural networks [19].

3. SCN exhibits a concise network structure and demonstrates a better application potential [20].

The primary contributions of this paper are:

1. Three neural network models-Backpropagation (BP), Random Vector Functional Link
(RVFL), and Stochastic Configuration (SCN) have been developed for predictive applications.

2. Three prediction models are comprehensively evaluated based on their predictive
accuracy, convergence, and stability, and are applied to a real-world scenario involving
unloading-time prediction.

The paper is organized as follows. Section 2 covers the relevant studies. Section 3
includes a description of the relevant methods. Section 4 elaborates on the experimental
results produced with the proposed methods. Section 5 includes the conclusions and
identifies some future directions.

2. Literature Review

There are several studies related to predicting unloading time, which can be summa-
rized from three perspectives: ship-unloading scheduling, stockyard storage operations,
and the application of neural networks for prediction.

Ship-unloading scheduling: Dhingra et al. [21] proposed a two-level stochastic model
to estimate a container ship’s handling time. The higher-level model employed a continuous-
time Markov chain to estimate the handling time for loading and unloading, while the
lower-level model utilized a closed queuing network to provide the transition matrix as
input for the higher-level model. Bish [22] addressed a container loading and unloading
scheduling problem involving a set of ships, considering the storage location of each con-
tainer, the assignment of vehicles to containers, and the scheduling of cranes for loading
and unloading operations. The objective was to minimize the maximum time required
to serve the set of ships. A heuristic approach was proposed to solve the problem, and
the effectiveness of this heuristic was subsequently analyzed. Al-Dhaheri et al. [23] in-
troduced a stochastic mixed-integer programming model aimed at minimizing container
ship handling time. A genetic algorithm was developed to construct the crane schedule
while adhering to the operational rules governing crane usage. Sun et al. [24] investigated
a quay crane scheduling problem aimed at minimizing the completion time of loading and
unloading operations for container ships. They formulated a mathematical programming
model and proposed a Benders decomposition method to solve the problem. Sammarra
et al. [25] introduced a tabu search heuristic for quay crane scheduling, focusing on mini-
mizing the completion time of loading and unloading operations for container ships. They
considered specific operational constraints for the quay cranes, decomposing the problem
into a routing problem and a scheduling problem, which were addressed using a tabu
search heuristic and a local search technique, respectively. Tang et al. [26] proposed a joint
scheduling approach for quay cranes and trucks servicing a container ship. They devel-
oped a particle swarm optimization (PSO) method to tackle the scheduling problem. Kao
et al. [27] presented a knowledge-based approach for ship unloading, aimed at minimizing
total demurrage costs. Their knowledge base was designed to manage the sequencing
of waiting ships and the transfer of ships between two docks. Kao et al. [28] proposed
a heuristic approach for scheduling ship discharging. Their method considered the se-
quencing of holds and the assignment of ship unloaders, belt conveyor units, and stackers.
Kao and Lee [29] introduced an integrated system for ship unloading, which coordinates
two operations—dock assignment and ship discharging—to enhance the efficiency of un-
loading operations. Kim and Moon [30] developed a mixed-integer programming (MIP)
model to address a berth-planning problem. In their approach, each ship was expected to
remain for a fixed duration, irrespective of the berthing locations. A simulated annealing
algorithm was devised to solve this problem. Kim et al. [31] investigated a ship-unloading
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issue for a large-scale steel plant, aiming to minimize the total flow time of all ships at the
seaport. They developed a heuristic to address this challenge. Gao et al. [1] examined the
scheduling of ship unloading in a large-scale steel plant. They formulated a mathematical
model and proposed a column-generation algorithm to solve the problem. Additionally,
Gao et al. [2] introduced a differential evolution algorithm for ship-unloading scheduling,
with special attention given to the assignment of belt conveyors.

Stockyard storage operations: Lee et al. [32] proposed a mixed-integer programming
(MIP) model for yard truck scheduling and storage allocation. Their objective was to
minimize the weighted total cost, which included penalties for total delays and the costs
associated with total travel time. A constructive heuristic was developed for the MIP model,
resulting in a solution gap of 10.27% when compared to CPLEX. The solution time for
the heuristic was at the second level, while CPLEX required 30 to 40 h to find a solution.
Tang et al. [33] investigated a stockyard storage space-allocation problem at a large iron ore
terminal. They formulated a mixed-integer linear programming model aimed at minimizing
the total travel distance for all incoming iron ores. The primary constraints included rules
governing space allocation and the operations of stacker-reclaimers. A genetic algorithm-
based heuristic was employed to solve the model. For smaller problems, the heuristic
can achieve optimal solutions in seconds; however, for larger-scale problems, CPLEX is
unable to find an optimal solution within 2 h, while the heuristic can provide near-optimal
solutions in seconds. Li and Tang [34] addressed a storage space-allocation problem in an
iron-steel stockyard by developing a nonlinear programming model. The objective was to
minimize transportation and penalty costs, with constraints related to geometric factors
(length, width, and height) and differences in material types for spatial allocation. This
problem was solved using an improved tabu search algorithm. Kim et al. [35] examined a
raw materials storage-allocation problem for a large-scale steelworks plant. They proposed
a mixed-integer linear programming model, which was solved using CPLEX 9.02. The
model’s constraints included maintaining a safety distance between two stockpiles and
ensuring materials balance. Their method enhanced current production practices.

Neural networks in prediction: Various neural network variants have been employed
for prediction and classification tasks. Zhang and Shin [36] proposed a probabilistic neural
network for monitoring manufacturing processes. This network featured Gaussian-mixture
distributed parameters, which enhanced computational efficiency. Li et al. [37] developed a
long short-term memory (LSTM) neural network for time-series prediction, utilizing partial
least squares (PLS) to simplify the network architecture. The streamlined LSTM model effec-
tively balanced strong generalization capabilities with a compact structure. Xiao et al. [12]
employed a Backpropagation Neural Network (BP) combined with rough set theory for
power load forecasting, using rough sets for dimensionality reduction. This approach
yielded improved prediction results. Adelia and Panakkat [13] introduced a probabilistic
neural network for predicting earthquake magnitudes. Kosanoglu [38] proposed an ensem-
ble model that integrates time-series clustering techniques with deep learning methods
for wind speed forecasting. The model utilized a Dirichlet mixture model and dynamic
time warping to cluster features from the time-series data. The results indicated that this
feature-clustering approach is a promising framework for forecasting. Hussein et al. [39]
developed a machine learning method that combines the random vector functional link
(RVFL) network with a moth search algorithm to predict missing values of total algal
counts during water quality monitoring. The moth search algorithm optimized the input
features for the RVFL network, resulting in predicted algal values that closely matched real
observations. El-Said et al. [40] proposed four machine learning algorithms: RVFL, support
vector machine, social media optimization, and k-nearest neighbors, to assess the impact
of air injection and transverse baffles on the thermohydraulic performance of shell and
tube heat exchangers. The results demonstrated that the RVFL model effectively identified
nonlinear relationships between operating conditions and process responses. Wang and
Wang [41] introduced an SCN model for predicting component concentrations in sodium
aluminate liquor. This mechanistic model was integrated to elucidate the relationships
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among conductivity, temperature, and component concentrations in Bayer alumina produc-
tion, with experimental results indicating high prediction accuracy. Li et al. [42] presented
an improved SCN model for predicting ammonia nitrogen concentrations in water quality
monitoring. They introduced a new inequality during the network construction process and
proposed a node-selection method. The experimental results confirmed the effectiveness of
the enhanced SCN model.

In summary, while there is a substantial amount of research on predicting ship-
unloading times, most studies focus on container ships rather than bulk carriers. Fur-
thermore, existing research on bulk carriers primarily addresses unloading scheduling
rather than unloading-time prediction, which does not adequately reflect the significance
of this issue. The study aims to address this gap.

3. Related Methods
3.1. BP Neural Network

BP is a multilayer neural network whose effectiveness has been demonstrated in
numerous studies [17]. Typically, BP consists of one input layer, one or more hidden layers,
and one output layer, with full connectivity between adjacent layers. The BP learning
algorithm operates iteratively. The network parameters, which include weights and biases,
are propagated forward through the network and adjusted backward to minimize error.

Given a group of samples,
{
(xi, yi), i = 1, . . . , N, xi ∈ Rd, yi ∈ Rl

}
, assuming there

is one hidden layer in the BP (Backpropagation) network. containing J nodes, denoted
as v1, v2, . . . , vJ . The input weights, biases for the hidden nodes, output weights of the
hidden nodes, and thresholds for the output nodes are wij, bj, wjk, θk, i = 1, . . . , d, j = 1, . . . , J,
k = 1, . . . , l, respectively. Then,

1. Hidden layer outputs

vj = f1(
d

∑
i=0

wijxi), j = 0, 1, . . . , J, (1)

f 1 serves as the activation function for hidden node j, x0 = −1, w0j = bj.

2. Output layer results

yk = f2(
J

∑
j=0

wjkvj), k = 0, 1, . . . , l, (2)

f 2 serves as the activation function for output node k, v0 = −1, w0k = θk.

3. Updating of weights

∆wjk = ηgkvj,
j = 0, . . . , J, k = 1, . . . , l,
gk ≜ yk(1 − yk)(yk − yk).

(3)

∆wij = ηejxi,
i = 0, . . . , d, j = 1, . . . , J,

ej ≜ −vj(1 − vj)
l

∑
k=1

wjkgk, gk ≜ yk(1 − yk)(yk − yk).
(4)

However, the Backpropagation (BP) algorithm is inherently gradient based, which
means there is a possibility of converging to local minima. Nevertheless, it remains a
robust method due to various strategies designed to mitigate the risk of local optimality.
These strategies include the momentum method, adaptive learning rates, and the use of
first-order approximations, such as the Newton and quasi-Newton methods, instead of
relying solely on the gradient method. The BP algorithm is detailed in Algorithm 1.
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Algorithm 1: BP algorithm

Input: samples {xi, yi}, xi ∈ Rd, yi ∈ Rl, i = 1, . . ., N; J
Output: wij, wjk, i = 1, . . ., d; j=1, . . ., J; k = 1,. . .,l
Initialization:

For all i, j
wij = generateRandomNumber (−1, 1); //generate random numbers in interval

[−1, 1];
For all j, k

wjk = generateRandomNumber (−1, 1); //generate random numbers in interval
[−1, 1];

η = 0.8; //learning rate
Lmax = 5000; L = 0;
ε = 0.001; //error bound

While L ≤ Lmax and ∥E∥F > ε, do
1. Calculate hidden layer outputs with Formula (1);
2. Calculate prediction values with Formula (2);

3. Calculate error: E = 1
2

l
∑

k=1
(yk − yk)

2;

4. Update weights with Formulas (3) and (4);
5. L++;

End While
Return wij, wjk;

3.2. Random Vector Functional Link Network (RVFL)

RVFL is a single hidden layer feedforward neural network (SLFNN) that features
direct connections between the input layer and the output layer nodes. The input weights
from the input layer to the hidden layer are generated randomly within specified intervals,
while the output weights are computed analytically using either the least-square method
or the pseudo-inverse method.

Formally, the RVFL model with L hidden nodes can be described as:

f (xi) =
d

∑
k=1

βkxik +
k+L

∑
k=d+1

βkg(αT
k X + bk), i = 1, . . . , N. (5)

The optimization problem of the standard RVFL model can be written as:

min
β∈Rd+L

1
2
∥β∥2 +

1
2

λ∥Hβ − Y∥2, (6)

where, H = [H1 H2]N×(d+L),

H1 =

∣∣∣∣∣∣∣
x11 x12 · · · x1d

...
...

. . .
...

xN1 xN2 · · · xNd

∣∣∣∣∣∣∣, (7)

H2 =

∣∣∣∣∣∣∣
θ(α1 · x1 + σ1) θ(α2 · x1 + σ2) · · · θ(αL · x1 + σL)

...
...

. . .
...

θ(α1 · xN + σ1) θ(α2 · xN + σ2) · · · θ(αL · xN + σL)

∣∣∣∣∣∣∣, (8)

β =


β1
β2
...

βd+L


(d+L)×m

, Y =


y1
y2
...

yN


N×m

.

where, βk = [βk1, βk2, . . ., βkm] is the output weight vector connecting the kth input (hidden)
node to the output nodes, 1 ≤ k ≤ d + L, and αj = [αj1, αj2, . . ., αjd] is the weight vector
connecting the jth hidden node to the input nodes, 1 ≤ j ≤ L. Additionally, xi = [xi1, xi2,
. . ., xid] is the ith sample. For the target matrix, yi = [yi1, yi2, . . ., yim], 1 ≤ i ≤ N. Moreover,



Appl. Sci. 2024, 14, 8213 7 of 19

θ (·) and σi are the non-constant activation function and the bias term of ith hidden node,
respectively. λ is a regularization coefficient.

The optimal solution to the problem (6) when δ = 1
λ = 0 reads as follows:

β = H+ Y, (9)

where H+ represents the Moore-Penrose generalized inverse of the matrix H. The regular-
ization term is employed to avoid the over-fitting issue. The RVFL algorithm is described
in Algorithm 2.

Algorithm 2: RVFL algorithm

Inputs: Input X = {x1, . . . , xN}, xi ∈ Rd and output Y = {y1, . . . , yN}, yi ∈ Rm; Bias
b = [β1, . . . , βL]; The number of nodes in hidden layer L; the range of weights σ; regularization
parameter λ.
Outputs: W0.
1: Initialize: randomly selecting the initial weights in range of [−σ, σ]. Winitial ∈ [−σ, σ]L×d;
2: Calculate activation values of the hidden layer: Zpre = fa(Winitial X + b), where fa is an
activation function;
3: Establish enhancement layer to implement direct link: H =

[
Zpre, X

]
;

4: Calculate output weights through regularized least squares method:

W0 = Y × HT × (λI + HHT )
−1;

5: Return W0, there by Ŷ = W0 × H can be calculated.

3.3. Stochastic Configuration Networks

Like RVFL in structure, the SCN is also a single hidden-layer neural network; however,
the number of nodes in its hidden layer is not fixed but is dynamically increased through a
supervisory mechanism [20]. Additionally, the input parameters between the input layer
and the hidden layer are generated randomly within a specified domain, and the output
parameters from the hidden layer are computed using least squares. The key to the SCN
algorithm is the introduction of a supervisory mechanism that facilitates the addition of
hidden nodes, helping to minimize the loss function and ultimately achieve convergence.

Given a set of N samples {(xi, yi), xi ∈ Rd, yi ∈ Rm, i = 1, . . ., N}. An SCN learning
network with L − 1 hidden nodes can be represented as follows:

fL−1(X) =
L−1

∑
j=1

β jgj(wj, bj, X), (10)

and the current residual error is:

eL−1 = f − fL−1 = [eL−1,1, eL−1,2, . . . , eL−1,m]. (11)

where, gj(·) is the activation function of hidden node j, βj is the output weight vector
connecting the jth hidden node and wj and bj are input weights randomly generated in
specified intervals [−λ, +λ]d and [−λ, +λ], λ is a positive scalar.

While a new hidden node is added to the network, the algorithm is considered
convergent if the resulting sequence of residual errors is monotonically decreasing.

fL = fL−1 + βLgL(wL · X + bL), eL = f − fL, eL ≤ eL−1. (12)

A result obtained from reference [20] satisfies the Formula (12), where:

βL =
⟨eL−1, gL⟩
∥gL∥2 . (13)

where,
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⟨eL−1, gL⟩2 ≥ b2
gδL,

0 < ∥gL∥ < bg,
δL = (1 − r − uL)∥eL−1∥2,

r > 0, uL > 0, 1 − r − uL > 0,
lim

L→+∞
uL = 0.

(14)

The learning problem (11) can be converted to the following optimization task:

[β∗
1, β∗

2, · · · , β∗
L] = argmin

β

∥ f −
L

∑
j=1

β jgj∥. (15)

Its equivalent matrix form reads as:

β∗ = argmin
β

∥GLβ − Y∥2 = G+
L Y, (16)

where GL = [g1, g2, . . ., gL], G+
L is the Moore-Penrose generalized inverse of the matrix GL.

The SCN algorithm is detailed in Algorithm 3. For clarity, several formulas are
introduced below.

gL(wL, bL, X) = [gL(wT
L x1 + bL), gL(wT

L x2 + bL), · · · , gL(wT
L xN + bL)]

T
, (17)

βL,q =
eL−1,q(X)T gL(wL, bL, X)

gL(wL, bL, X)T gL(wL, bL, X)
, q = 1, 2, · · · , m, (18)

and let ξL,q = eL−1,q − eL,q

= βL,q − (1 − r − uL)eL−1,q(X)TeL−1,q(X)
. (19)

Algorithm 3: SCN algorithm

Input: X = {x1, x2, . . ., xN }, xi ∈ Rd and outputs Y = {y1, y2, . . ., yN }, yi ∈ Rm; Lmax, ε, Tmax; Λ =
{λmin: ∆λ: λmax};
Output: β∗, w∗, b∗

1. Initialize e0: = [y1, y2, . . ., yN]T, 0 < r < 1, two empty sets Ω and W;
2. While L ≤ Lmax AND ∥e0∥ > ε, Do
Phase 1: Stochastic parameters configuration (steps 3–17):
3. For λ ∈ Λ
4. For k = 1, 2, . . ., Tmax, Do
5. Randomly assign vL and bL from [−λ, λ]d and [−λ, λ], respectively;
6. Calculate gL, ξL,q based on Equations (17) and (19), and µL = (1 − r)/(L + 1);
7. If min {ξL,1, ξL,2, . . ., ξL,m} ≥ 0

8. Save wL and bL in W, ξL =
m
∑

q=1
ξL,q in Ω, respectively;

9. Else go back to step 4;
10. End If
11. End For (corresponds to Step 4)
12. If W is not empty
13. Find wL*, bL* that maximize ξL in Ω, and set GL = [g1*, g2*, . . ., gL*];
14. Break (go to step 18);
15. Else randomly take τ ∈ (0, 1 − r), renew r: = r + τ, return to step 4;
16. End If
17. End For (corresponds to step 3)
Phase 2: Output weights computation:
18. Obtain GL = [g1*, g2*, . . ., gL*];
19. Calculate β* = [β1*, β2*, . . ., βL*]T = GL

+·Y;
20. Calculate eL = eL−1 − βL*gL*;
21. Renew e0: =eL; L: =L + 1;
22. End While
23. Return β1*, β2*, . . ., βL*, w* = [w1*, w2*, . . ., wL*], b = [b1*, b2*, . . ., bL*].
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3.4. Evaluation Metrics

Three metrics RMSE, MAPE, and R2 are used to evaluate the performance of the
proposed models, where RMSE is the root mean square error used to compare the prediction
accuracy of different models, and MAPE is the mean absolute percentage error used to
avoid positive and negative error cancellation on a prediction accuracy measurement. R2 is
the coefficient of determination, the larger the better. All results are computed based on the
average values over 100 independent trials.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (20)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ ŷi − yi
yi

∣∣∣∣∣, (21)

R2 = 1 −

N
∑

i=1
(ŷi − yi)

2

N
∑

i=1
(yi − yi)

2
, (22)

where yi is the actual value of the sample, yi is the predicted value of the sample, ŷi is the
mean of the actual values of samples, and N is the total number of samples.

4. Experimental Results

To evaluate the performance of the proposed models, we tested the influence of
different structures and initial weights on the model performance, stability, convergence,
and prediction accuracy of different models. Four datasets-DB1, DB2, DB3, and DB4 were
selected for benchmarking, where DB1 and DB2 are single-input-single-output datasets,
but DB3 and DB4 have multiple inputs and a single output. All datasets were divided into
70% as training sets and 30% as test sets.

(1) DB1

f (x) = sin(x) · cos(x).

(2) DB2

f (x) = x2 − x + 13 − 5 · sin(2πx2).

(3) DB3 (stock) is a standard dataset for regression prediction from the KEEL website.
The data is the daily stock prices of 10 aerospace companies from January 1988 to
October 1991. The task is to predict the price of the 10th company, given the prices of
the rest of the companies.

(4) DB4 (concrete) is a standard dataset for regression prediction from the KEEL website.
The concrete compressive strength is a nonlinear function of age and ingredients. The
task is to predict the concrete compressive strength.

4.1. Network Structure

Network structure is critical for models based on neural networks. Different network
architectures can significantly impact a model’s performance. However, the network
structure of a Stochastic Configuration Network (SCN) is determined by the algorithm itself
and is not predetermined. Therefore, discussions regarding various network structures
are relevant only to Backpropagation (BP) and Random Vector Functional Link (RVFL)
networks.

For the Backpropagation (BP) model, we have selected a double-hidden-layer archi-
tecture as the foundational structure, with a primary focus on determining the optimal
number of nodes in each layer. The testing process is conducted repeatedly, varying the
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number of nodes in the two hidden layers, ensuring that the maximum number of nodes
per hidden layer does not exceed 50. The results of the tests are assessed using the root
mean square error (RMSE) metric. The findings are presented in Table 1.

Table 1. BP network structure on datasets.

Dataset Number 1 Number 2 Range

DB1 5 30 [0, 50]
DB2 10 40 [0, 50]
DB3 50 10 [0, 50]
DB4 30 5 [0, 50]

Remark: Number 1: the number of nodes in the first hidden layer; Number 2: the number of nodes in the second
hidden layer; Range: the range of the number of nodes.

For the RVFL, the objective of the test is to determine the optimal number of nodes in
the hidden layer and the appropriate range of random weights based on the RMSE measure.
The results are presented in Table 2.

Table 2. RVFL network structure on datasets.

Dataset Number Range-1 Range-2

DB1 80 [−40, 40] [−50, 50]
DB2 100 [−20, 20] [−50, 50]
DB3 100 [−5, 5] [−50, 50]
DB4 100 [−10, 10] [−50, 50]

Remark: Number: the number of nodes in the hidden layer; Range-1: the range of the random weights; Range-2:
the maximum range of the permitted random weights.

4.2. Performance

We evaluated the performance of three models in conjunction with two widely recog-
nized algorithms, Support Vector Regression (SVR) and Random Forest (RF), across four
datasets. A total of 100 independent trials were conducted for each model and dataset.
The evaluation metrics used include Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and R2. The test results are presented in Table 3, while the fitting
curves are illustrated in Figures 2–5. Based on the evaluation results, we found that the
SCN model outperformed all other models across every dataset.

Table 3. Performance comparison among different models on four datasets.

Dataset Model RMSE MAPE
R2

Mean ± (SD) Best Mean ± (SD) Best

DB1

SVR 0.0703 ± 0.0002 0.0700 30.1491 ± 0.9152 28.3137 0.0045
RF 0.0085 ± 0.0007 0.0076 7.7704 ± 2.7491 3.7731 0.9994
BP 0.0122 ± 0.0123 0.0115 37.6948 ± 23.3176 13.7574 0.9976

RVFL 0.0484 ± 0.0006 0.0484 66.1857 ± 14.4562 39.9376 0.9824
SCN 0.0074 ± 0.0024 0.0024 5.6983 ± 2.6124 0.8440 0.9995

DB2

SVR 0.1996 ± 0.0009 0.1982 21.4102 ± 0.1986 21.1481 0.0594
RF 0.0064 ± 0.0005 0.0056 0.4135 ± 0.0150 0.3944 0.9993
BP 0.0761 ± 0.0100 0.0601 6.2884 ± 1.9444 6.4121 0.9063

RVFL 0.1084 ± 0.0005 0.1084 7.3193 ± 0.0225 7.3171 0.8197
SCN 0.0008 ± 0.0039 0.0008 0.0050 ± 0.0008 0.0038 0.9999

DB3

SVR 0.0536 ± 0.0027 0.0492 2.7469 ± 0.1562 2.5131 0.9460
RF 0.03968 ± 0.0036 0.0333 1.9413 ± 0.1555 1.6562 0.9649
BP 0.0602 ± 0.0155 0.0386 10.4826 ± 1.9601 7.5725 0.9454

RVFL 0.0687 ± 0.0001 0.0686 14.2589 ± 0.0001 14.2578 0.9170
SCN 0.0388 ± 0.0012 0.0357 1.8707 ± 0.0483 1.7650 0.9681

DB4

SVR 0.0885 ± 0.0045 0.0823 20.8771 ± 1.0710 19.1571 0.8147
RF 0.0961 ± 0.0080 0.0785 18.3751 ± 1.1851 16.4298 0.7839
BP 0.0911 ± 0.0087 0.0796 19.5973 ± 1.7310 17.1850 0.8029

RVFL 0.1932 ± 0.0001 0.1922 41.6601 ± 2.4803 33.1910 0.4144
SCN 0.0870 ± 0.0060 0.0767 21.8238 ± 1.2261 19.3793 0.8135
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4.3. Convergence

Convergence is a crucial metric for assessing the performance of a model. The
loss curves for the Backpropagation (BP) and the SCN were drawn in Figures 6–9 for
four different data sets. It is important to note that the Random Vector Functional Link
(RVFL) curves are not included, as this model does not involve an iterative process. As
shown in Figures 6–9, the SCN exhibits a steeper decline in loss compared to the BP during
iterations, ultimately resulting in a lower loss for the SCN across all data sets. This indicates
that the SCN outperforms the BP in terms of model efficacy.
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4.4. Stability

Stability is an important measure of an algorithm’s performance. For the same reason,
the RVFL is not inspected; only the BP and the SCN are discussed for model stability. Ibid.,
four data sets are used for testing, and 100 trials are executed. The RMSE is used as the
evaluation measure. The computational results are shown in Figures 10–13. Compared with
the BP, the RMSE curves of the SCN have smaller values and fluctuations, which indicates
that the SCN has better stability and prediction accuracy with the algorithm proceeding.
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4.5. Performance with Various Initial Weights

The range of initial weights greatly influences the learning capability and generaliza-
tion property. We select 11 intervals in the range of [−500,500] to find the best range of
initial weights. The computational results (RMSE) are shown in Tables 4–7 and summarized
in Table 8. The results show that the BP is the most sensitive to the changes in the range of
weights; when and only when the weights are small enough, the BP can maintain stability.
Specially, when the range of weights becomes large, the BP becomes extremely unstable.
The RVFL performs a little better than the BP, but its accuracy is easily influenced by the
range of weights. The SCN gains the best result with the test data, and the change in the
accuracy is quite small compared with the other two algorithms.

Table 4. Performance with various weights on DB1.

Range of Weights
DB1

RVFL BP SCN

[−1, 1] 0.28148 0.14596 0.00586
[−5, 5] 0.13976 0.49169 0.00678

[−10, 10] 0.08151 0.56205 0.00748
[−20, 20] 0.05453 0.59831 0.00877
[−30, 30] 0.04694 0.61142 0.00837
[−40, 40] 0.04878 0.61564 0.00895
[−50, 50] 0.05661 0.56205 0.00897
[−60, 60] 0.16208 0.56205 0.00968
[−80, 80] 0.21759 0.60772 0.00995

[−100, 100] 0.16081 0.61610 0.00954
[−500, 500] 0.25634 0.61374 0.01169
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Table 5. Performance with various weights on DB2.

Range of Weights
DB2

RVFL BP SCN

[−1, 1] 0.18356 0.20413 0.00474
[−5, 5] 0.12167 0.52918 0.00704

[−10, 10] 0.09808 0.54208 0.00817
[−20, 20] 0.09679 0.53724 0.00582
[−30, 30] 0.08942 0.57866 0.00853
[−40, 40] 0.09056 0.60472 0.00962
[−50, 50] 0.10127 0.56014 0.00937
[−60, 60] 0.14049 0.59212 0.00942
[−80, 80] 0.16943 0.56078 0.00966

[−100, 100] 0.16799 0.51073 0.01021
[−500, 500] 0.31912 0.54241 0.01235

Table 6. Performance with various weights on DB3.

Range of Weights
DB3

RVFL BP SCN

[−1, 1] 0.07325 0.04593 0.03709
[−5, 5] 0.04759 0.50602 0.07701

[−10, 10] 0.04287 0.57113 0.07612
[−20, 20] 0.07698 0.04606 0.07848
[−30, 30] 0.09410 0.55866 0.10125
[−40, 40] 0.10406 0.52318 0.09185
[−50, 50] 0.12092 0.53317 0.08473
[−60, 60] 0.12194 0.53291 0.08901
[−80, 80] 0.13108 0.53027 0.08757

[−100, 100] 0.12379 0.54040 0.08571
[−500, 500] 0.13252 0.55592 0.08917

Table 7. Performance with various weights on DB4.

Range of Weights
DB4

RVFL BP SCN

[−1, 1] 0.18387 0.09637 0.10241
[−5, 5] 0.13977 0.40924 0.10093

[−10, 10] 0.14436 0.57055 0.09312
[−20, 20] 0.17075 0.55035 0.10734
[−30, 30] 0.19714 0.56227 0.13241
[−40, 40] 0.20660 0.53162 0.12498
[−50, 50] 0.21126 0.55677 0.10198
[−60, 60] 0.21676 0.55245 0.10081
[−80, 80] 0.22001 0.56567 0.10748

[−100, 100] 0.23056 0.55152 0.09669
[−500, 500] 0.24482 0.50343 0.10091

Table 8. Algorithm stability with various initial weights.

Algorithm
DB1 DB2 DB3 DB4

Mean Std Mean Std Mean Std Mean Std

RVFL 0.13695 0.08663 0.14349 0.06779 0.09719 0.03276 0.19690 0.03396
BP 0.54425 0.13744 0.52384 0.10962 0.44942 0.20026 0.49548 0.14010

SCN 0.00873 0.00160 0.00863 0.00213 0.08164 0.01646 0.10628 0.01192
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4.6. Case Study

A real-world application of the unloading-time prediction will be addressed using the
three models in this section. The data originates from the raw materials terminal of the
studied steel plant, covering the years 2018 to 2020. Each ship-unloading record includes
the following fields: BN (Berth Number), SN (Ship Name), RMN (cargo loaded), QRM
(Quantity of Raw Materials), UD (Unloading Duration), ST (Starting Time of unloading), ET
(End Time of unloading), SL1 (Ship Length), and SL2 (Storage Location in the stockyard).
Additionally, there are other relevant fields not listed, such as berthing time, empty berthing
time, and delay time, which can be appropriately incorporated into the calculations. Some
unloading records are presented in Table 9.

Table 9. Ship-unloading records.

BN SN RMN QRM UD ST ET SL1 SL2

7 FS8 Ore fines 1 23,585 37 5 November 2018 15:00 7 November 2018 4:00 173 OB24

1 MT OYD-S/ONM-
N 51,500 23 5 November 2018 9:00 6 November 2018 8:00 292 OA16

1 BY OHY-S 90,000 34 7 November 2018 10:00 8 November 2018 20:00 320 OA18
2 ZC258 Ore fines 4 33,000 35 5 November 2018 9:00 6 November 2018 20:00 189 OB32
4 BXH6 dolomite 1100 3 5 November 2018 13:00 5 November 2018 16:00 50 OC23
5 JN9 Limestone 5005 18 6 November 2018 2:00 6 November 2018 20:00 110 OC11
2 ZC258 Ore fines 4 12,000 13 6 November 2018 9: 00 6 November 2018 22:00 189 OB16
2 BY OHY-S 90,000 34 7 November 2018 3:30 8 November 2018 20:00 320 OA36
4 JN9 Limestone 5005 17 6 November 2018 9:00 7 November 2018 2:00 110 OC26

A total of 70% of the collected data was utilized as the training set, while the remaining
30% served as the test set. The computational results are presented in Figure 14, which
displays the prediction outcomes for 30, 50, and 100 ships. The experimental findings indicate
that the SCN model achieves an average prediction accuracy of 87%, the RVFL model 85%,
and the BP model 76%. Additionally, the running times for all three models are in seconds.
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5. Conclusions

The prediction of ship-unloading time is important for improving the efficiency of
ship-unloading operations and reducing the delay cost for a steel plant. In this paper,
three neural network-based methods-BP, RVFL, and SCN are proposed for the prediction
purpose. The performance of these models is evaluated and tested using the benchmark
data sets, which are from open databases and published literature. Finally, the three models
are used for the prediction of ship unloading time. The experiment results indicate that the
three models are very effective. The prediction accuracies of the SCN, RVFL, and BP are
87%, 85%, and 76%, respectively. That shows that our methods are effective and exhibit
application potential.

In this study, we developed neural networks to predict the unloading time at the raw
materials terminal of a steel plant. This method holds significant practical implications,
not only for the operation of the steel plant’s raw materials terminal but also for similar
industries and industrial processes that are heavily reliant on upstream operation times. We
must acknowledge the limitations of our method. While the results presented in this paper
are satisfactory, every method has its constraints. As discussed in the algorithm testing
section, each algorithm requires meticulous design and debugging to fulfill its intended
purpose. Furthermore, varying data sets can also influence the outcomes. Future research
will concentrate on integrating data processing technologies with forecasting methods to
address practical industrial challenges.
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