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Abstract: Karst areas exhibit intricate geological attributes, and the geological and environmental
issues caused by urban development cannot be ignored, especially the issue of karst surface collapses.
In this study, we developed two analytical methods and analyzed the stability of the overburden
stratum of 3D spherical karst caves with surface load, vacuum absorption erosion force, and ground-
water table considerations. The first analytical method is based on the improved Terzaghi theory,
while the second analytical method is based on the upper limit analysis. A case study was conducted
in Wuhan, China. The results from both analytical methods indicated a potential susceptibility to
collapse, suggesting the excellent accuracy of these two methods. The results were also compared
with the numerical solutions from previous studies. Notably, the accuracy of the upper limit analysis
was inversely proportional to the depth ratio, while the results obtained through the improved Terza-
ghi theory were consistent with those of the numerical solutions, particularly under conditions of
relatively high depth ratios. This study examined various facets, including the development of karst
caves, soil shear strength, groundwater table fluctuations, and boundary failure angles. Furthermore,
we explored the effects of geometric and geotechnical parameters on the stability of karst caves.

Keywords: improved Terzaghi theory; upper limit analysis; residual collapse resistance; critical
surface load; karst surface collapse

1. Introduction

In over 140 countries, the area of various soluble rock formations is approximately
19.3 × 106 km2. The Classical Karst Region (Kras–Carso) extends across the border between
SW Slovenia and NE Italy and has a special place among karst regions in the world.
Geological investigations of the region date back to the seventeenth century and continued
during the eighteenth and the beginning of the nineteenth centuries, when studies were
focused on karst phenomena [1]. Notably, countries with soluble rock areas of more than
1 × 106 km2 include Russia, the United States, China, and Canada [2]. Karst surface
collapse, recognized as a prevalent geohazard, poses formidable challenges in prevention
owing to its inherent concealment and sudden occurrence [3]. Karst collapse evolution
is influenced by human engineering activities, natural environmental changes, and karst
effects. In recent years, consistent urbanization, extensive underground space development,
groundwater extraction activity, and large-scale engineering construction have inevitably
increased susceptibility to karst collapse [4]. This poses significant threats to human lives
and property in addition to the overall security of the nation. Therefore, it is imperative to
conduct comprehensive research on the karst surface collapses.

Underground cavities, including karst caves, are one of the fundamental prerequisites
for surface collapses. Karst surface collapse results from the combined action of both the
overburden and the underlying karst caves, and it is profoundly influenced by the stratum
lithology and geological formation structure. Currently, research on karst surface collapse
predominantly employs methods such as engineering geological discrimination, physical
model testing, numerical simulation, and mechanical analysis.
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In the study of engineering geological discrimination, Heidari and Khanlari [5] exam-
ined karst surface collapses in the central plain of the Hamedan region of western Iran and
they discovered that these collapses predominantly developed in groundwater discharge
areas near the base of karstic limestone. Pando et al. [6] analyzed the genetic mechanisms of
a karst collapse and the settlement of surrounding buildings in Spain. Their investigation
suggested that the extraction and drainage of karst groundwater during the construction
of adjacent subterranean parking lots induced the loss of the upper sand layers. In sum-
mary, engineering geological discrimination facilitates the elucidation of the mechanisms
behind geological hazard processes and qualitative conclusions [7]. The mechanism of
karst ground collapse is analyzed from the aspects of topography, formation structure, and
hydrogeological conditions, and the overburden is taken as an important analysis object.
However, such a kind of method inherently lacks the capacity for quantitative assessments.

Due to the concealment of the disaster-causing process of karst surface collapse, it
is difficult to directly study the collapse mechanism of actual cases. Therefore, indoor
physical model tests are commonly used research methods. Jiang et al. [8] examined
soil permeability resistance through physical model tests and revealed hydrodynamic
conditions for the migration of soil particles. Jeong et al. [9] simulated the formation
of collapses in sand-rich strata using tank model experiments. They analyzed various
factors influencing cavity formation, expansion, and upward migration in response to
different cavity water levels. These tests have intuitively restored the process of collapse
and obtained the law of collapse and suggestions for prevention and treatment. Similar to
engineering geological discrimination, physical model tests offer valuable insights into the
verification of the mechanisms and prevention of collapse [10,11]. However, it is important
to note that these tests are resource-intensive and time-consuming. In terms of numerical
simulation of karst ground collapse, the main methods used include finite element method
(FEM), finite difference method (FDM), and discrete element method (DEM) [12–15]. The
emergence and development of numerical simulations have profoundly advanced the
study of karst surface collapses. Through the simulation of karst surface collapse processes
under varying conditions [16,17], the collapsing mechanisms can be revealed from the
perspective of the geotechnical mechanical characteristics. They facilitate the analysis
of factors influencing the stability of karst caves. However, as reported by Hartmann
et al. [18], the existing karst cave models face challenges in terms of data availability and
the informational content of existing data, rendering the attainment of accurate conclusions
a challenging endeavor because of the inability to closely reflect reality.

Mechanical analysis methods for assessing the stability of karst caves predominantly
rely on conventional engineering theories or empirical formulas. Currently, common
traditional calculation techniques include Protodyakonov’s pressure arch theory, Terzaghi
theory, empirical formula methods, and roof collapse sealing methods [19]. Nevertheless,
there is the issue of oversimplification and empiricism in the calculation of karst cave
stability using traditional theoretical methods, which only consider the gravity, cohesion,
and friction of soil, ignoring or simplifying the influence of groundwater and vacuum
absorption erosion force. It is difficult to accurately summarize the law of karst cave
stability. For instance, in Protodyakonov’s pressure arch theory, calculation results rely
on the empirical coefficient of Protodyakonov. Jia et al. [20] employed Terzaghi theory
and considered excessive pore water pressure to analyze the karst surface collapses; the
results of this study are satisfactory. However, referring to the strata above karst caves as a
uniform medium, this study ignored the groundwater table factor, potentially leading to
inaccuracies in the calculations. Therefore, these oversimplified methods can only reflect
the intricate relationships between karst cave stability and partial factors.

To overcome the shortcomings of oversimplification and empiricism of traditional
stability analysis methods, the limit analysis method with higher accuracy and precision has
become a widely used tool in geotechnical engineering. As early as 2003, Augarde et al. [21]
introduced the limit analysis method to assess the stability of karst cave overburden.
In recent years, the limit analysis method has been increasingly applied to evaluate the
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stability of karst caves and tunnels. Keawsawasvong et al. [22] conducted a parameter
study on the undrained stability of spherical cavities in clay by employing a finite element
limit analysis method under axisymmetric conditions. Their study explored the influence
of cavity coverage depth ratios and other dimensionless factors on the ultimate surface
load. Through a combination of the lower bound theorem of the limit analysis method
and the finite discretization method, Liu et al. [23] proposed a 3D collapse mechanism
capable of considering the simultaneous collapse of tunnel roofs and sidewalls. The limit
analysis method was employed to calculate the upper limit of the 3D support pressure,
and the results aligned favorably with numerical findings from prior studies. While the
implementation of the limit analysis method in existing research has yielded valuable
insights into the potential failure modes of karst collapses, the impact of groundwater on
the collapse of karst cave overburdens is frequently ignored. Mechanical analysis needs
to combine more factors to ensure the reliability of the calculated results and adopt more
reasonable failure models to make them fit reality.

In this study, we employed an improved Terzaghi theory and limit analysis method
to conduct a mechanical analysis of the 3D stability of a karst cave overburden. New
types of collapse failure models and the interplay between groundwater and karst caves
were considered. Furthermore, we performed this analysis using numerical simulations
to validate the actual collapse cases. Additionally, we explored the effects of karst cave
development, soil shear strength, groundwater table, and boundary failure angles on the
occurrence of karst collapse.

2. Basic Theories

It should be stated that the main purpose of this paper is to develop a new theoretical
formula for the analysis of cave stability under the influence of various factors, such as
the influence of groundwater level fluctuation on the stability of overburden, and derive a
three-dimensional form that is more in line with the actual application requirements. This is
a study worthy of study. However, on this basis, considering the physical parameters of the
model such as the geometric shape of the cave, the theoretical formula will become very
complex and lose the application value of the formula. For these reasons, the mechanical
and stability analyses of karst caves in this study are based on the following assumptions:
(1) materials were considered to be homogeneous, isotropic, and elastoplastic, constituting a
continuous medium; (2) materials satisfied the hypothesis of small deformation; (3) materials
satisfied the associated flow law [24]; and (4) the sliding block produced by failure was
regarded as a rigid body, with the deformation of the sliding block disregarded; and (5) the
geometric shape of the karst cave is assumed to be spherical.

2.1. Protodyakonov’s Pressure Arch Theory

In the conventional Protodyakonov’s pressure arch theory, the height of the pressure
arch was denoted as hmax. A pressure arch was generated only when the overburden
thickness exceeds the critical height Hmin, which can be determined through the following
calculation [25]:

Hmin = 2hmax =
αd

[
1 + tan

(
45◦ − φ

2
)]

fk
(1)

where α represents the empirical coefficient of Protodyakonov’s pressure arch theory,
d represents the width of the pressure arch, φ represents the internal friction angle of the
soil, and fk represents Protodyakonov’s coefficient of the soil.

Apparently, Protodyakonov’s pressure arch theory consists of few variables and is too
empirical. In practice, these variables are insufficient to represent the stability of karst caves.

2.2. Improved Terzaghi Theory

The failure model in the improved Terzaghi theory is plotted in Figure 1, where the
diameter of the karst cave is d, the overburden thickness is h, the soil unit weight above and
below groundwater table are γ and γ′, the cohesions are c and c′, and the internal friction
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angles are φ and φ′. A uniform surface load, F1, is imposed on the top of the soil column.
When the groundwater table is below the karst cave, the vacuum absorption erosion force
is one of the reasons for the failure of the karst cave [26]; thus, it is simplified as F2. F1 and
F2 can be obtained by {

F1 = πd2

4 σ1

F2 = πd2

4 σp
(2)

where σ1 represents the average surface pressure and σp represents the average vacuum
absorption erosion pressure.
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According to the Terzaghi theory by Kezdi [27], the improvement in this study includes
two key aspects.

1. In practice, diverse relative positional arrangements exist between the groundwater
table and karst cave, leading to two distinct scenarios, where the groundwater table can be
situated either above or below the karst cave.

2. Equation (3) represents the Coulomb shear strength formula. To facilitate its
application within the failure model, the shear strength is defined by Equation (4).

τf = c + σ tan φ (3)

τf = c + K0γz tan φ (4)

where K0 denotes the static earth pressure coefficient.

(1) The groundwater table lies beneath the karst cave

For the 3D soil column above the karst cave, at a depth of z, a circular thin-layer
element with a thickness of dz was selected as the analysis object. If the self-weight of the
circular thin-layer element is dG, the pressure of overlying soil body is P, the supporting
force of the underlying soil body is T, and the lateral shear strength is dF, then

dG = πd2γ
4 dz

P = πd2

4 σz

T = πd2

4 (σz + dσz)
dF = πd(K0γz tan φ + c)dz

(5)
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where σz represents the vertical stress of the soil at the depth of z, with the downward
direction being positive.

Figure 1 demonstrates the directional relationship among the forces. Combined with
Equation (5), according to the vertical equilibrium condition, the following can be obtained:

P + dG − T − dF = 0 (6)

dσz

dz
+

4K0 tan φ γz
d

+
4c
d

− γ = 0 (7)

σz = −2K0γ tan φ

d
z2 +

dγ − 4c
d

z + C (8)

Due to the existence of σ1 and σp, C = σ1 + σp, which is substituted into Equation (8)
as follows:

σz = −2K0γ tan φ

d
z2 +

dγ − 4c
d

z + σ1 + σp (9)

In the lowest boundary of overburden, the top of karst cave, R represents the residual
collapse resistance upward at the top of the karst cave. At this time, z = h, which is
substituted into Equation (9), as follows:

R = −σz =
2K0γ tan φ

d
h2 − dγ − 4c

d
h − σ1 − σp (10)

This force can ensure the soil stability. When R = 0, karst cave is in limit equilibrium;
when R > 0, karst cave is stable; and when R < 0, failure of the karst cave can occur.

(2) The groundwater table is above the karst cave.

The height of the water table from the ground is z1. If z ≤ z1, then

σz = −2K0γ tan φ

d
z1

2 +
dγ − 4c

d
z1 + σ1 (11)

If z > z1, then

P + dG − T − dF = 0

dG = πd2γ′

4 dz
P = πd2

4 σz

T = πd2

4 (σz + dσz)
dF = πd[K0γ′(z − z1) tan φ′ + K0γz1 tan φ′ + c′]d(z − z1)

(12)

σz = −2K0γ′ tan φ′

d
z2 +

dγ′ − 4c′ + 4K0 tan φ′z1(γ
′ − γ)

d
z + C (13)

The vertical stresses above and below the groundwater surface σz are the same. When
z = z1, combine Equations (11) and (13), then

σz = −2K0γ′ tan φ′

d
z2 +

dγ′ − 4c′ + 4K0 tan φ′z1(γ
′ − γ)

d
z + M + σ1 (14)

where M = − 2K0z1
2

d (γ′ tan φ′ + γ tan φ − 2γ tan φ′) + z1(γ − γ′) + 4z1
d (c′ − c).

The residual collapse resistance (R) can be calculated as

R = −σz =
2K0γ′ tan φ′

d
z2 − dγ′ − 4c′ + 4K0 tan φ′z1(γ

′ − γ)

d
z − M − σ1 (15)

2.3. Limit Analysis Method

The limit analysis method includes upper and lower limit analyses. The lower limit
analysis determines the maximum load that remains static through the construction of
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a static field, whereas the upper limit analysis identifies the minimum load that induces
motion by establishing a velocity field [28]. Compared with the lower limit analysis,
the upper limit analysis yields load values that approximate the actual situation more
closely [29]. Jafari and Fahimifar [29] used the upper limit analysis method to carry out the
stability analysis of two-dimensional tunnels. In this study, we employed a similar theory
to assess the stability of three-dimensional karst caves.

Assuming that the properties of the failure zone satisfy the fundamental assumptions,
we can establish the failure models illustrated in Figures 2 and 3 according to the upper
limit theorem of the limit analysis method. These models consider spherical karst caves
with a diameter denoted as d and the distance between the surface and center of the karst
caves represented as h.
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Figure 2. Failure model and compatible velocity field when the groundwater table is below the karst
cave. (a) Three-dimensional failure model; (b) failure model profile; (c) compatible velocity field.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18 
 

Figure 2. Failure model and compatible velocity field when the groundwater table is below the 

karst cave. (a) Three-dimensional failure model; (b) failure model profile; (c) compatible velocity 

field. 

 

(a) (b) (c) 

Figure 3. Failure model and compatible velocity field when groundwater table is above karst cave. 

(a) Three-dimensional failure model; (b) failure model profile; (c) compatible velocity field. 

As shown in Figure 2b, the groundwater table is below the karst cave and G and H 

are the midpoints of CD and AB, respectively. The soil unit weight of the failure zone 

ABFGE is γ, cohesion is c, the internal friction angle is φ, and the angle between the per-

pendicular lines of the surface and the boundary is α. The surface load above the karst 

caves is F1, and the upper vacuum absorption erosion force of the karst cave is F2. 

As shown in Figure 3b, when the groundwater table is above the karst cave, I, J, and 

K are the midpoints of EF, CD, and AB. CD is the groundwater table, at a distance from 

the ground of z1. The soil unit weight of failure zone ABDC above groundwater is γ, co-

hesion is c, internal friction angle is φ, and the angle between perpendicular lines of the 

surface and the boundary is α. The soil unit weight of failure zone CDHIG below ground-

water is γ’, cohesion is c´, internal friction angle is φ´, and the angle between perpendicu-

lar lines of the surface and the boundary is β. F1 and F2 have expressions detailed in Equa-

tion (16). 

2

1 1 1

2

2 1 p

F r

F r

 

 

 =


=

 (16) 

To ensure the uniqueness of the limit analysis method calculations, according to the 

associated flow rule, a dilation angle exists between the velocity discontinuity line and the 

velocity direction. When the failure law of soil adopts the Mohr–Coulomb yield criterion, 

the dilation angle is equal to the internal friction angle. However, the actual dilation angle 

of the soil is very small and its influence on the calculation result is negligible. The com-

patible velocity field corresponds to the failure model (Figures 2c and 3c). The angle is α 

when the groundwater table is below the karst cave, while it is β when the groundwater 

table is above the karst cave. According to the motion permission conditions applicable to 

a rigid body and taking the groundwater table above the karst cave as an example, the 

relationship between v0, v1, v2, v01, and v12 can be obtained as follows: 

( )

0
1

0
2

01 0

12 0

cos

cos

tan

tan tan

v
v

v
v

v v

v v







 











=

=

=

= −

 (17) 

(1) Groundwater table below karst cave 

Figure 3. Failure model and compatible velocity field when groundwater table is above karst cave.
(a) Three-dimensional failure model; (b) failure model profile; (c) compatible velocity field.

As shown in Figure 2b, the groundwater table is below the karst cave and G and H are
the midpoints of CD and AB, respectively. The soil unit weight of the failure zone ABFGE
is γ, cohesion is c, the internal friction angle is φ, and the angle between the perpendicular
lines of the surface and the boundary is α. The surface load above the karst caves is F1, and
the upper vacuum absorption erosion force of the karst cave is F2.

As shown in Figure 3b, when the groundwater table is above the karst cave, I, J, and K
are the midpoints of EF, CD, and AB. CD is the groundwater table, at a distance from the
ground of z1. The soil unit weight of failure zone ABDC above groundwater is γ, cohesion
is c, internal friction angle is φ, and the angle between perpendicular lines of the surface
and the boundary is α. The soil unit weight of failure zone CDHIG below groundwater is
γ’, cohesion is c´, internal friction angle is φ´, and the angle between perpendicular lines
of the surface and the boundary is β. F1 and F2 have expressions detailed in Equation (16).{

F1 = πr1
2σ1

F2 = πr1
2σp

(16)
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To ensure the uniqueness of the limit analysis method calculations, according to the
associated flow rule, a dilation angle exists between the velocity discontinuity line and the
velocity direction. When the failure law of soil adopts the Mohr–Coulomb yield criterion,
the dilation angle is equal to the internal friction angle. However, the actual dilation
angle of the soil is very small and its influence on the calculation result is negligible. The
compatible velocity field corresponds to the failure model (Figures 2c and 3c). The angle is
α when the groundwater table is below the karst cave, while it is β when the groundwater
table is above the karst cave. According to the motion permission conditions applicable
to a rigid body and taking the groundwater table above the karst cave as an example, the
relationship between v0, v1, v2, v01, and v12 can be obtained as follows:

v1 = v0
cos α

v2 = v0
cos β

v01 = v0 tan β
v12 = v0(tan β − tan α)

(17)

(1) Groundwater table below karst cave

Evidently, the failure zone and half of the karst cave simultaneously constitute two
frustum of cones. The radii of the bottom and top surfaces of the circular frustum of cones
are expressed as follows: 

r1 = d
2

r2 = d
2 (1 + tan α)

r3 = d
2 + h tan α

(18)

The total gravitational power Pg is the sum of gravitational power acting on the
circular frustum of cone ABDC and the irregular region CDFGE:

Pg =
γv0π

3 tan α

[
r3

3 − r1
3(1 + 2 tan α)

]
(19)

Similar to the force method in Terzaghi theory, the power Pl generated by the surface load (F1)
and the vacuum absorption erosion force (F2) is as follows:

Pl =
(
σ1 + σp

)
πr1

2v0 (20)

For the entire failure zone, the velocity discontinuity surface is the side of the circular frustum
of cone ABFE. The internal dissipation power, Pi, is the sum of the energy dissipation power on the
velocity discontinuity surface.

Pi =
1

3 cos α
πK0γh2v0 tan φ(2r1 + r3) +

cπhv0

cos2 α
(r1 + r3) (21)

(2) Groundwater table above karst cave

As previously noted, the failure zone and half of the karst cave form three frustum of cones.
The radii of these frustum cones can be described as

r1 = d
2

r4 = d
2 (1 + tan β)

r5 = (h − z1) tan β + d
2

r6 = (h − z1) tan β + z1 tan α + d
2

(22)

If the gravitational power of ABDC is PABDC, the gravitational power of CDFE is PCDFE, the
gravitational power of irregular region EFHIG is PEFHIG, and the total gravitational power is Pg, the
following formulas are obtained:

Pg = PABDC + PCDFE + PEFHIG
PABDC = γv0π

3 tan α

(
r6

3 − r5
3)

PCDFE = γ′v0π
3 tan β

(
r5

3 − r4
3)

PEFHIG = γ′v0π
3 tan β

[
r4

3 − r1
3(1 + 2 tan β)

] (23)
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The power Pl conducted by surface load F1 is

Pl = σ1πr1
2v0 (24)

The velocity discontinuity surfaces are defined by the circular frustum of cones ABDC, CDFE,
and EFHG, as well as the circle centered at J with a given radius r5. The internal dissipation power Pi
is the sum of the energy dissipation on the velocity discontinuity surfaces. Let the energy dissipation
powers of these four areas be P1, P2, P3, and P4.

Pi = P1 + P2 + P3 + P4
P1 = 1

3 cos α πK0γz1
2v0 tan φ(2r5 + r6) +

cπz1v0
cos2 α

(r5 + r6)

P2 = 1
3 cos β πK0z2v0 tan φ′[3γz1(r4 + r5) + γ′z2(2r4 + r5)] +

c′πz2v0
cos2 β

(r4 + r5)

P3 = 1
3 cos β πK0r1v0 tan φ′[3(γz1 + γ′z2)(r1 + r4) + γ′r1(2r1 + r4)] +

c′πr1v0
cos2 β

(r1 + r4)

P4 = πr5
2v0(tan β − tan α)(γz1 tan φ′ + c′)

(25)

According to virtual power theory, at the point of limit equilibrium in the failure zone, the
power of the external forces equals the sum of the internal dissipation power. The stability coefficients
can be defined to evaluate the failure zone as follows:

K =
Pi

Pg + Pl
(26)

When K = 1, the karst cave is in a state of limit equilibrium. When K > 1, the karst cave is stable.
When K < 1, the karst cave fails.

3. Case Study
3.1. Case Description

A collapse transpired on Parrot Avenue in Hanyang, Wuhan, on 10 August 2015, as depicted
in Figures 4 and 5c. This collapse created a circular plane with an approximate diameter of 7 m
on the surface. This incident resulted in two individuals missing, and a two-story movable house
was damaged.

The main research content of this paper is the stability analysis of the caves, and the caves
referred to in the subject are not karst caves located in the soluble bedrock (as shown in the red font
in Figure 5a). It refers to the soil cave in the overburdened strata above the bedrock (as shown in the
red font in Figure 5b), which is caused by the karst cave in the bedrock. In summary, the research
object of the stability analysis in this paper is the overburdened soil in the stage 2 model. Considering
that the lower part is formed by sand leakage and the upper part is due to the equilibrium arch effect
in clay, the shape is simplified to be spherical in this paper.
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The regional geomorphic unit of the site belongs to the first-class terrace of the Yangtze River,
and the site elevation is 20–22 m. The groundwater in the area is mainly composed of upper stagnant
water, confined water in strata, and karst fissure water, which is closely related to the Yangtze River.
The upper stagnant water is recharged by atmospheric precipitation and artificial drainage. The
water level changes with the season, and there is no fixed water level. The confined water of the soil
layer has a close hydraulic connection with the Yangtze River, its water level is affected by the change
in the water level of the Yangtze River, and the water is abundant. The simple pumping test results in
January 2015 show that the confined water level is 7.5 m below the ground, which is equivalent to the
absolute elevation of 13.5 m. According to the experience of the Wuhan area, the monthly variation
range of confined water is 3.0–5.0 m.

The collapse was primarily due to erosion, seepage, and liquefaction caused by the subway
construction and the karst cave was beneath the groundwater table. This incident represented a type
of man-made collapse, with induced factors including external load and recurrent vibrations from
the construction.

Geological survey data are presented in Table 1. For ease of viewing, Table 1 only shows the
critical parameters for numerical simulation and stability analysis below. At a surface load of 60 kPa,
the groundwater decreased to 7.5 m (z1 = 7.5 m) from the surface. The static earth pressure coefficient
of the soil (K0) was 0.58 and the Protodyakonov’s coefficient was 0.8.

Table 1. Karst cave and mechanical parameters.

Diameter of karst cave d/m 7
Overburden height h/m 11

Cohesion of natural soil c/kPa 24
Internal friction angle of natural soil φ/◦ 14
Unit weight of natural soil γ/(kN/m3) 18.5

Cohesion of saturated soil c′/kPa 19.2
Internal friction angle of saturated soil φ′/◦ 11.2
Unit weight of saturated soil γ′/(kN/m3) 9.5

According to the limitations of the stability analysis theory described in the second chapter,
the model of the case study in this chapter is simplified accordingly. (1) In addition to the clay layer
in the overburdened soil in Figure 5, there is also a certain thickness of the sand layer. However,
because the sand has no cohesion, it does not have stability under natural conditions. It is assumed
that once the karst channel appears at the bottom, it will collapse naturally. Therefore, the stratum
model is simplified into a homogeneous clay layer, and the stability analysis is carried out for the
clay. (2) Obviously, the shape of the cave, in this case, is not round because the geometric shape of
the karst cave is not the focus of this study, so in order to derive the three-dimensional form of the
stability analysis formula and consider the influence of other factors such as groundwater level, this
paper makes the necessary simplification of the geometric shape of the cave, which is regarded as a
spherical cave.
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3.2. Numerical Simulation
The finite difference method (FDM) is an approximate method for solving partial differential

equations [30]. The main principle is the direct difference approximation of the differential term
in the differential equation such that the differential equation can be transformed into algebraic
equations. Based on the parameters from the case, we established a numerical model based on
the finite difference method to analyze the karst caves. During the analysis, the Mohr–Coulomb
constitutive model was adopted. Dimensions of the numerical model are set as follows: the length,
width, and height are 80 m, 40 m, and 50 m, respectively. The bottom and top of the model are
fixed and free separately, while the remaining external boundaries are subject to normal constraints.
Similarly, the groundwater table is 7.5 m away from the surface and the mechanical parameters in the
numerical model can be obtained from Table 1. The vacuum absorption erosion force is applied to
the upper surface of the cavity according to Equation (2). The distributions of the plastic zone, stress,
and displacement are shown in Figures 6–8.
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Figure 6 illustrates the plastic zone traversing the surface, where the karst cave is in an unstable
state. Figure 7 shows the stress concentration at the karst cave boundaries, indicating potential failures.
In Figure 8, both the upper and lower portions of the karst cave exhibited deformation downward and
upward, respectively, with the upper cave showing a maximum deformation of 5 mm. The impact of
groundwater on the failure zone boundary is minimal and thus, α = β can be considered in the limit
analysis method. The most critical area is concentrated in the upper part of the karst cave, aligning
closely with the damage model of the improved Terzaghi theory. If considering the failure area to
expand in the shape of a circular frustum of a cone, then limit analysis provides a more suitable failure
model. Therefore, both failure models are reasonable but applicable to different situations.

3.3. Stability Analysis of the Karst Cave
(1) Protodyakonov’s pressure arch theory

Substituting Equation (1) results in

Hmin =
0.828d

[
1 + tan

(
45◦ − φ′

2

)]
fk

= 13.2m (27)

In practice, the overburden clay thickness at the karst cave was 11 m, which was less than
the critical overburden height. This indicates that the karst cave was potentially unstable with the
possibility of collapse.

(2) Improved Terzaghi theory

Equation (15) is employed to calculate residual collapse resistance, as follows:

R =
2K0γ′ tan φ′

d z2 − dγ′−4c′+4K0 tan φ′z1(γ′−γ)
d z − M

= −48kPa
(28)

The calculation demonstrated that T < 0, which indicates that the karst cave was in an unstable
state. According to Figure 7, the vertical stress of the karst cave boundary is approximately −50 kPa,
demonstrating the accuracy of the improved Terzaghi theory.

(3) Limit analysis method

According to the collapse profile (Figure 5), the angle between perpendicular lines of the surface
and failure boundary is minor (5◦, namely α = β = 5◦), thus substituting Equation (26) to obtain

K =
Pi

Pg + Pl
= 0.96 (29)

The calculation demonstrated that K < 1, which suggested that the karst cave was in an unstable
state, as in the case of the improved Terzaghi theory.

To sum up, the three analytical methods have the same conclusion and are consistent with reality,
which proves the accuracy of the two new methods. Compared with Protodyakonov’s pressure arch
theory, the improved Terzaghi theory and limit analysis take into account more factors and can be
closer to the actual situation.

4. Discussion
4.1. Comparison with the Numerical Solution

If the karst cave is located above the groundwater table and under the condition of limit
equilibrium, Equations (10) and (26) can be converted to a relationship between dimensionless
numbers. In order to compare with the work of Keawsawasvong [31], the relevant parameters need to
be configured, i.e., static earth pressure coefficient K0 = 0.58, α = 0◦, γd/c = 1, φ = 10◦, and the variable
is h/d, indicating the depth ratio of karst cave. The dependent variable is σ1/c, indicating the load
factor of the karst cave. The results of the improved Terzaghi theory and limit analysis method in this
study were compared with Keawsawasvong’s numerical solutions, which are presented in Figure 9.
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As shown in Figure 9, σ1/c was positively related to h/d in all three cases, demonstrating the
accuracy of improved Terzaghi theory and limit analysis method. When h/d was relatively small,
as indicated by the blue area in Figure 9, signifying the development of the karst cave closer to
the surface, the load factors σ1/c in three cases became similar; however, the limit analysis method
yielded a higher accuracy. When h/d was relatively large, as indicated by the yellow area in Figure 9,
the load factor in the improved Terzaghi theory was significantly closer to that in the numerical
solutions than in the limit analysis method. For cases with a lower depth ratio, the limit analysis
method was adopted, whereas, for those with a higher depth ratio, the improved Terzaghi theory
should be utilized.

4.2. Parameter Analysis
Different from Keawsawasvong’s study [31], this study employed the critical surface load (σ1) at

the point of limit equilibrium as an indicator of karst cave stability and a higher σ1 suggests enhanced
stability. Subsequent sections can address the effects of karst cave development, soil shear strength,
groundwater table, and boundary failure angle on the stability of karst cave.

4.2.1. Effect of Karst Cave Development
The diameter of the karst cave (d) and the overburden thickness (h) were adopted to represent

the development of the karst cave. If the groundwater table is positioned below the karst cave, soil
unit weight γ = 18.5 kN/m3, c = 24 kPa, φ = 14◦, static earth pressure coefficient K0 = 0.58, the angle
between perpendicular lines of the failure profile and surface α = 0◦, and vacuum absorption erosion
pressure is set as σp = 50 kPa [32]. The relationship between the critical surface load σ1 and the
development of karst cave (d, h) is given in Figure 10.
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In Figure 10, the dashed line “Limit Equilibrium” denotes the critical surface load σ1 = 0 kPa.
This implies that, without a surface load, karst cave is stable. The upper part of the dashed line
indicates the stable state of the karst cave. The lower part of the dashed line represents the failure
of the karst cave. Moreover, the critical surface load σ1 is positively correlated with overburden
thickness h and negatively correlated with d. This suggests that the larger h, the smaller d, and the
more stable the karst cave. This result aligns with the relevant research [33,34] and the actual situation.

4.2.2. Effect of Shear Strength of the Soil
The shear strength of the soil is directly related to its cohesion (c) and internal friction angle (φ).

When the groundwater table is located below the karst cave, the soil unit weight γ = 18.5 kN/m3,
d = 6 m, h = 10 m, static earth pressure coefficient K0 = 0.58, the angle between perpendicular lines
of the surface and failure profile α = 0◦, and vacuum absorption erosion pressure σp = 50 kPa. The
relationship between the critical surface load σ1 and the shear strength of soil c, φ is illustrated
in Figure 11.
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Figure 11 illustrates that the improved Terzaghi theory and limit analysis method yielded results
with a constant difference when d = 6 m was fixed. Concurrently, the critical surface load σ1 increased
with increases in c and φ, which was consistent with the shear strength of the soil and conclusions of
previous studies [35,36].

4.2.3. Effect of Groundwater Table and Boundary Failure Angle
If the groundwater table is located above the karst cave, α = β = 0◦ and other conditions are

the same as those in Sections 4.2.1 and 4.2.2, the relationship of the critical surface load σ1 and
groundwater table z1 is shown in Figure 12.
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Similarly, the difference between the results from the improved Terzaghi theory and the limit
analysis method remained consistent. Notably, the groundwater table had a minimal impact on
the critical surface load, implying that varying water levels within identical formations had little
influence on karst cave stability. The primary effect of the groundwater table on karst caves was
reflected in the dynamic changes in the groundwater table and the penetrating channel of pore and
karst water [12].

It is assumed that α = β. If the groundwater table is located above the karst cave and 5 m
away from the surface with other conditions consistent with those in Sections 4.2.1 and 4.2.2, the
relationship of the critical surface load σ1 and the boundary failure angle (α) is shown in Figure 13.
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As shown in Figure 13, due to vacuum absorption erosion pressure σp, the underground water
table below the karst cave is more unfavorable to the stability of the karst cave. When σp is 50 kPa,
the gap between them is shown in Figure 13. As the boundary failure angle α increases, the critical
surface load σ1 gradually decreases. When the karst cave expands, the larger the disturbance within
the failure zone, the worse the stability of the karst cave becomes.

5. Conclusions
Considering the influence of groundwater, this study explored the 3D stability of karst caves

based on an actual karst surface collapse case. We introduced the improved Terzaghi theory and
upper bound method for the limit analysis method of a rigid body, offering effective formulas for
calculating the stability coefficient and critical surface load to analyze the underground karst cave
stability. Numerical simulations were performed to validate the analytical model using actual collapse
cases. This study also investigated the effects of four kinds of parameters on karst cave stability,
leading to the following conclusions.

(1) The improved Terzaghi theory focuses on karst caves and their overburden, whereas the limit
analysis method focuses only on the overburden. Consequently, the results of the improved
Terzaghi theory are lower than those of the limit analysis method. Moreover, the difference
between them increases with an increase in the diameter of karst cave d;

(2) For karst caves, the overburden thickness h is proportional to their stability, while the diameter
of the karst cave d is inversely proportional to their stability. Additionally, the shear strength of
soil (c and φ) is proportional to their stability. When the groundwater table is regarded as stable,
the effect of groundwater level z1 on the stability of karst caves is limited and the stability of
karst caves decreases as boundary failure angle α or β increases.

This paper forms a complete set of the scientific research process of ‘formula derivation-case
study-comparative analysis’. The results are consistent with the existing geotechnical engineering
knowledge, which verifies the accuracy of the stability analysis formula.
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