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Abstract: This study explores the prediction and mitigation of pallet collapse during transportation
within the glass packaging industry, employing a machine learning approach to reduce cargo loss and
enhance logistics efficiency. Using the CRoss-Industry Standard Process for Data Mining (CRISP-DM)
framework, data were systematically collected from a leading glass manufacturer and analysed. A
comparative analysis between the Decision Tree and Random Forest machine learning algorithms,
evaluated using performance metrics such as F1-score, revealed that the latter is more effective at
predicting pallet collapse. This study is pioneering in identifying new critical predictive variables,
particularly geometry-related and temperature-related features, which significantly influence the
stability of pallets. Based on these findings, several strategies to prevent pallet collapse are proposed,
including optimizing pallet stacking patterns, enhancing packaging materials, implementing temper-
ature control measures, and developing more robust handling protocols. These insights demonstrate
the utility of machine learning in generating actionable recommendations to optimize supply chain
operations and offer a foundation for further academic and practical advancements in cargo handling
within the glass industry.
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1. Introduction

Cargo loss within logistics systems poses significant financial challenges for businesses,
incurring not only the costs associated with replacing damaged or lost goods but also
additional expenses such as incident management, increased insurance premiums, missed
business opportunities, and potential reputation damage [1]. The urgency of addressing
these losses is stressed by their widespread impact across various sectors, particularly
in industries where goods are susceptible to damage during transport, such as in the
ceramic [2] and the glass industries [3].

However, previous research on logistics has been predominantly focused on broad
solutions, such as route optimization and general cargo securing techniques, without
sufficiently addressing the specific issue of pallet stability during transportation. This is a
critical gap, as the collapse of pallets can lead to significant product loss and safety hazards,
especially in industries with fragile goods like the glass industry. For instance, the work
presented in Huixia Cui [4] is focused on optimizing transportation routes, while the work
Aleksander Nieoczym [5] is about general cargo securing methods. These works, although
valuable, fail to account for the particular risks associated with unstable pallets, particularly
in the glass industry where product fragility and unique packaging requirements are
major factors.

Appl. Sci. 2024, 14, 8256. https://doi.org/10.3390/app14188256 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14188256
https://doi.org/10.3390/app14188256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14188256
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14188256?type=check_update&version=1


Appl. Sci. 2024, 14, 8256 2 of 23

Moreover, many previous studies lack the granularity required to effectively predict
and prevent the collapse of pallets because of insufficient data or overly generalized
approaches. For example, the studies presented in Turbaningsih [6] and Praveen Nath S [7]
explore ways to improve cargo handling but do not dive deep into the specific variables
that lead to pallet instability in glass product transport. Thus, the complexity of the problem
is often underestimated and, as a result, previous solutions fall short when it comes to
mitigating pallet collapse incidents.

The instability and collapse of pallets during transport can lead to significant product
damage and loss, triggering the cascading financial effects previously mentioned, which
may be difficult to estimate due to the lack of data or access to them [1]. However, these
losses extend beyond property damage and can result in severe human consequences.
Inadequate cargo securing for road transport has led to significant fatalities and injuries.
For example, in 2014, approximately 1200 individuals in Europe lost their lives in accidents
directly linked to improperly secured cargo [8]. These examples highlight the severe
consequences of pallet instability and collapse, and stress the necessity for more research
focused on overcoming this problem.

In response to the current literature gaps, this study aimed to specifically address the
problem of pallet collapse, mainly in the glass industry due to its particular vulnerability to
such a problem. Thus, this study fills the research gap by leveraging data analytics and
machine learning techniques to predict pallet collapse, thereby offering a more tailored
solution to this overlooked problem in the logistics of fragile goods.

Data analytics and machine learning, whose studied techniques are detailed in the
following section, have been widely used to solve various problems, such as detecting
and classifying vehicle-deck collisions on railway bridges [9], optimizing gate assignments
in airports [10], identifying vehicles to reduce traffic infractions [11], and predicting ice
resistance to ensure safe ship navigation in icy regions [12]. Here, it is used to predict pallet
stability during transportation in the glass industry, and to identify and mitigate factors
contributing to pallet collapse.

Therefore, the main objective of this research is twofold: first, to proactively predict
potential pallet collapse incidents by analysing data from past incidents and the logistics
chain; and, second, to provide practical recommendations that can prevent such collapses,
thereby minimizing financial and human risks. The glass industry was chosen as the
application case because of its fragile products, but the findings apply to other industries
that face similar risks. Thus, this study differentiates itself by addressing the specific
contributing factors to pallet instability, which previous research has neglected.

To ensure a rigorous and systematic approach, this research employed the CRoss-
Industry Standard Process for Data Mining (CRISP-DM) framework to structure the inves-
tigation and analysis. The use of this framework aided in ensuring that the study is both
comprehensive and methodologically sound.

In summary, this study makes significant contributions to the literature by focusing
on the often-neglected issue of pallet stability, particularly within the glass industry. It
provides data-driven predictions and strategies specifically aimed at mitigating the risks
of pallet collapse, thereby addressing gaps left by previous generalized approaches in the
field. Additionally, the study offers a methodological framework that is not limited to the
glass industry but can be applied to other sectors facing similar challenges, broadening the
overall impact of the research.

The remainder of the article is organized as follows: Section 2 presents a comprehen-
sive literature review to situate this study within the existing body of knowledge. Section 3
outlines the developed methodology, detailing the data collection process, the used analysis
techniques, and the employed machine learning models. Section 4 discusses the findings
and interprets their implications for both theory and practice. Finally, Section 5 concludes
the article, summarizing the key outcomes and suggesting avenues for future research.
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2. State of the Art

This section presents an overview of the current state of the art concerning the predic-
tion of problems with the cargo during transport, namely problems related to the collapse
of pallets. To tackle this goal, a Systematic Literature Review (SLR) approach was followed,
with the procedure and key findings being described in the following.

2.1. Systematic Literature Review

The collection of articles relevant to this study was systematically conducted follow-
ing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [13], which are a set of evidence-based recommendations aimed at improving
the transparency and reproducibility of systematic reviews. The PRISMA framework is
widely adopted across various disciplines to ensure that literature reviews are conducted
rigorously and comprehensively. A detailed step-by-step procedure was followed, which is
visually represented by the flowchart in Figure 1. This process is further detailed in the
subsequent sections. The literature search was carried out using the Scopus and Web of
Science databases, ensuring a comprehensive review of pertinent studies.

Figure 1. PRISMA diagram of the selection process of the articles reviewed in the current study.

Regarding the articles gathering, the following terms were searched: “damag* good*”,
“damag* in transit”, “freight transport* damag*”, “damag* freight”, “transit damag*”,
“freight disrupt*”, “deliver* disrupt*”, “cargo damag*”, “cargo loss”, “packag* damag*”,
“glass damag*”, “bottle damag*”, “truck transport* damag*”, “pallet damag*”, “predict*
model”, “prevent*”, “forecast*”, “anticipat*”, and “damag* claim predict*”.

Firstly, a search on both databases was performed combining the previous terms into
the following query: (“damag* good*” or “damag* in transit” or “freight transport* damag*”
or “damag* freight” or “transit damag*” or “freight disrupt*” or “deliver* disrupt*” or
“cargo damag*” or “cargo loss” or “packag* damag*” or “glass damag*” or “bottle damag*”
or “truck transport* damag*” or “pallet damag*”) AND (“predict* model“ or “prevent*“ or
“forecast*“ or “anticipat*“); OR “damag* in transit”; OR “packag* damag*”; OR “transport*
damag*”; OR “damag* claim predict*”. This query was formulated following a series
of preliminary experiments that tested various combinations of topic-related terms and
Boolean operators, tailored to meet the objectives of this review.

The query yielded a total of 411 results. Figure 1 illustrates the distribution of the
results across the two databases and details the process used to determine the final selection
of articles for the literature review. Initially, duplicate entries were removed. Subsequently,
the titles and abstracts of the remaining articles were examined for relevance, and those
deemed irrelevant were excluded. Articles that were inaccessible in full-text form were
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then eliminated. Finally, after a thorough review, the articles deemed unsuitable for the
study were also excluded, resulting in a total of 14 articles to be reviewed.

The selected articles were systematically categorized into two distinct groups to
facilitate a detailed analysis of the various methodologies employed. The first category,
Cargo Damage Classification Techniques, encompasses studies that focus on the methods
and technologies used to classify cargo damage. This grouping allows for a concentrated
examination of the techniques and tools applied in understanding and categorizing types of
cargo damage. The second category, Prediction of Product Behaviour During Transport and
Handling, includes research that investigates predictive models and assessment methods
for monitoring product behaviour throughout the transportation and handling stages. This
classification highlights studies aimed at forecasting potential issues and enhancing the
resilience of products during transit, and are presented next.

2.2. Cargo Damage Classification Techniques

Few studies have been published in the literature that specifically address the pre-
diction and further avoidance of the collapse of pallets during transportation; however,
many do focus on the classification of cargo damage. There exist different approaches to
tackling this topic, with some of them based on questionnaires, while others endorse a data
science-based methodology.

In [14], the author proposes a classification of damage to palletized loads based on
his experience in the field, which was further verified and validated through an analysis
of questionnaire results sent to five selected groups potentially affected by load damage.
The author concluded that damage to loads can be categorized into two distinct groups,
based on whether the damage reduces the value of the transported products. The study
in Tkaczyk [14] also emphasizes the importance of anticipating damage that diminishes
cargo value due to the resultant externalities, such as the increased production of goods
and packaging, and heightened transportation demands, which contribute to greater
environmental pollution.

In the study described in Wu et al. [15], a machine learning methodology was em-
ployed to predict the severity of cargo loss during transport. To achieve this, interpretable
models such as Decision Tree and Logistic Regression models were used. The analysis
identified key factors influencing cargo loss, including transit types, product categories,
and shipping destinations. Similar machine learning methods were employed in the study
presented in Hashemi et al. [16], albeit with a different objective. The research was focused
on predicting and categorizing various types of accidents likely to occur on vessels in the
Mississippi River. The study found that the constructed Neural Networks model yielded
the most satisfactory results, outperforming those obtained from Multiple Discriminant
Analysis- and Logistic Regression-based approaches.

The significance of predicting insurance claims within maritime port operations is
highlighted in Panchapakesan et al. [17]. This study was pioneering in its application
of machine learning techniques to assess the impact of various attributes on shipping
container damage. Among several algorithms evaluated, including Neural Network and
Decision Tree algorithms, the Random Forest algorithm demonstrated the most satisfactory
performance. Notably, the duration a container spends in the storage yard emerged as the
most predictive feature for assessing the likelihood of container damage claims.

The study described in Panchapakesan et al. [18] investigated the use of machine
learning techniques, such as Random Forest, in conjunction with traditional methods like
Decision Tree, to mitigate the operational challenges of processing insurance claims for
customers with damaged shipping containers at a maritime port in Canada. The research
findings revealed that the Random Forest algorithm yielded the most favourable results in
assessing the severity of damage to shipping containers.
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2.3. Prediction of Product Behaviour during Transport and Handling

Numerous studies have explored the challenges of freight damage during transit,
focusing on how external factors during transportation and product handling could affect
the integrity of goods.

In Jarimopas et al. [19], the authors measured the vibration levels experienced by
commercial truck shipments in Thailand and assessed their impact on tightly packed
tangerines. The experiment evaluated how the combination of different sets of vehicles,
vehicle speeds, and road types influenced the vibrations in the vehicles. The results
indicated that higher truck speeds led to more significant damage to the transported fruit.
Moreover, it was discovered that tangerines transported on laterite roads suffered the most
damage and that fruit transported in 2 ton trucks incurred less damage compared to those
in 6 ton trucks. An experiment with a similar goal, examining the impact of transport
vibrations on apple bruising and evaluating the effectiveness of different packaging options
for protecting the fruit, was presented in Fadiji et al. [20]. Unlike the method used in
Jarimopas et al. [19], this study employed an electro-dynamic shaker to simulate the
vibrations. The research demonstrated that both the design of the packaging and the levels
of vibration to which the vehicles were exposed had a significant influence on the extent of
bruise damage suffered by the apples.

Additionally, in Schlimme et al. [21], the potential damage to frozen French-fried
potatoes during transport and handling was investigated, examining shipments at both
conventional and cryogenic temperatures. The study simulated in-transit vibrations and
the effects of dropping or mishandling the product. The findings revealed that dropping
the transported product was the primary cause of breakage.

Studies exploring the interaction between road profiles, vehicle size, speed, suspension
characteristics, and the dynamic behaviour of the load were presented in Schoorl and Holt [22]
and Schoorl and Holt [23], where similar methodologies were employed. These studies
found that, for loads of fruits and vegetables, there is a significant interaction between the
energy absorbed by the cargo and the movement of the vehicle body.

A few studies have adopted methodologies that integrate deep learning models to
classify damage levels inflicted on products. The study in Ding et al. [24] investigated the
effects of rough handling activities, such as dropping, kicking, and throwing, on the internal
acceleration of cargo. Based on the collected acceleration data, the authors developed a
Convolutional Neural Network (CNN) to characterize the damage imposed on products. A
similar methodology was proposed in Todisco and Mao [25] focused on classifying damage
levels in electronic assemblies subjected to high-acceleration mechanical shocks. The test
product underwent six impacts using a drop tower; then, a Convolutional Variational
Auto-Encoder (CVAE) model was developed, which enabled the detection of three distinct
damage levels on the test product.

The studies presented in Emenike et al. [26] and Yu et al. [27] followed a unique
approach by utilizing real-time sensor measurements to gather critical data on the condition
of freight throughout its transportation journey.

The study proposed in Emenike et al. [26] explored the use of temperature sensors
in the transportation of perishable goods by developing Neural Network models. These
models were designed to predict in-container temperatures based on measurements taken
at the periphery of the containers, thereby providing a potential variable of interest in
addressing cargo loss issues. While the work in Yu et al. [27] also utilized real-time sensors,
the suggested implementation pursued a different objective from that of the work in
Emenike et al. [26]. In this study, acceleration sensors were embedded within the freight to
facilitate data collection. These data were then transmitted to an external device where they
were analysed using a pre-developed C4.5 Decision Tree model combined with a clustering
model to classify the status of the freight.

This systematic review highlights a significant research gap: the lack of specific studies
focusing on preventing pallet collapse in the glass industry during transportation. There-
fore, the current study aimed to address this gap by applying machine learning techniques
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to predict and mitigate such incidents, thereby enhancing the safety and efficiency of glass
product transportation.

3. Methodology

As one can conclude from the previous section, the literature reveals several gaps in
addressing specific challenges related to pallet stability in logistics, particularly in the glass
industry. While general research has been focused on broad aspects of cargo handling,
such as route optimization and securing techniques, detailed studies on pallet stability
remain sparse. Existing works often lack granularity in predicting pallet collapse and fail to
account for the unique challenges posed by fragile goods. Additionally, previous research
has not sufficiently integrated data-driven approaches or machine learning techniques to
address these specific issues effectively. Therefore, this study aims to fill these gaps by
providing targeted predictions and strategies to mitigate pallet instability mainly focused
on the glass industry.

The primary objective of this research was twofold: firstly, to develop and apply a
predictive model capable of identifying potential incidents of pallet collapse using advanced
data analytics and machine learning techniques; secondly, to devise and recommend
targeted preventative strategies based on the insights derived from these predictive models
to mitigate the risk of cargo loss. This approach involved analysing a range of variables to
identify the key factors that significantly contribute to pallet collapse. By pinpointing these
critical variables, the study aimed to enable proactive measures and preventive actions
that effectively reduce the likelihood of such incidents. To achieve these objectives, this
study employed a systematic approach guided by the CRISP-DM methodology, as outlined
by Wirth and Hipp [28], which facilitated a structured and rigorous execution of the data
mining process through its six phases, each crucial to the development and implementation
of the predictive models and strategies:

• Business Understanding: The study began by clearly defining the specific problem of
pallet collapse within the glass packaging industry, understanding its implications for
logistics and business operations. The key business goals were established, focusing on
reducing cargo loss and improving supply chain efficiency through predictive analytics.

• Data Understanding: Relevant data from a leading glass manufacturer were collected,
including variables related to pallet geometry, environmental conditions, and trans-
portation details. The data were thoroughly explored to identify patterns and assess
their quality, ensuring that the collected dataset was suitable for the modelling phase.

• Data Preparation: This phase involved cleaning and preprocessing the data to ad-
dress any inconsistencies or missing values. Features relevant to predicting pallet
collapse were carefully selected and engineered to enhance the models’ predictive
capabilities. The data were also split into training and testing sets to facilitate unbiased
model evaluation.

• Modelling: In this phase, machine learning algorithms, specifically Decision Tree
and Random Forest models, were applied to the enhanced data. The models were
trained to predict the likelihood of pallet collapse based on the selected features.
Hyperparameter tuning was conducted to optimize the performance of these models,
focusing on metrics such as Precision, Recall, and F1-score.

• Evaluation: The models’ performance was rigorously evaluated against the test data
to ensure their effectiveness in predicting pallet collapse. The evaluation criteria were
aligned with the study’s objectives, emphasizing the models’ ability to generalize and
accurately predict unseen cases.

• Deployment: Finally, the insights gained from the predictive models were translated
into actionable recommendations. These preventative strategies were designed to
address the key risk factors identified in the analysis, such as optimizing pallet stacking
patterns and enhancing packaging materials.

Subsequently, the following sections provide a detailed and comprehensive description
of the work completed across the various sequential stages of the CRISP-DM methodology.
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3.1. Business Understanding

In the Business Understanding stage, the focus was on gaining a deep understanding of
the study’s scope, objectives, and constraints within the business context. Targeted research
and meetings with relevant stakeholders in the field were conducted to gather valuable
insights and establish clear lines of communication. Through these interactions, factors
that could potentially contribute to pallet collapse during transportation were precisely
identified. These factors were then selected as key variables for further investigation in
subsequent stages of the project. The insights obtained from these discussions provided
clear direction for the collection of necessary data and informed the understanding of the
variables critical to addressing the identified problem effectively.

3.2. Data Understanding

Given that the problem at hand entailed a binary classification task, distinguishing
between instances with a high probability of experiencing issues related to collapsed
pallets and those without, it was imperative to gather transportation information about
both scenarios. This involved collecting data on situations that resulted in pallet collapse
incidents as well as instances where no problems occurred during transportation.

To ensure comprehensive data coverage, information on transport, logistics, and
product characteristics was gathered from a multinational company specializing in the
production and distribution of glass containers for the food and beverage industries, Table 1.
Additionally, the values corresponding to the average daily temperature at the delivery
point were obtained from Meteostat (see https://meteostat.net/pt/, accessed on 21 March
2024), a reputable meteorological data provider.

Table 1. Collected variables and respective descriptions.

Variable Description

Material_Ref Code of the shipped material

Destination_Country Transport destination country

Distance Distance between the origin and destination points, in kilometres

Temperature_Delivery_Date Average daily temperature at the delivery point, in Celsius degrees

Delivery Date - Picking Date Duration, in days, that the material remains inside the vehicle before the commencement of transport

Warehousing_Time Number of days of the material inside the warehouse

External_Warehouse(Y/N) Binary variable taking value 1 (one) if the material was shipped from an external warehouse, and
0 (zero) otherwise

Carrier_ID Internal code assigned to the carrier responsible for the transport

SAP_Customer_number Internal code designated for the customer which is to be filled out by the transport

WOOD_PALLET Specific type of wood pallet being used

LAYER_SEPARATOR Specific type of layer separator being used in the pallet

Foil_thickness Thickness, in millimetres, of the foil wrapping the pallets

Larger_Side Measurement, in millimetres, from the leftmost container to the rightmost container along the largest side of
the pallet

Smaller_side Measurement, in millimetres, from the leftmost container to the rightmost container along the smallest side of
the pallet

Container_Diameter Maximum diameter, in millimetres, of the material

Container_Bearing_Diameter Diameter, in millimetres, of the bottom surface of the material

Container_Weight Weight, in grams, of the material

Container_Height Height, in millimetres, of the material

Pallet_Height Height, in millimetres, of the pallet

Truck_Weight Weight, in kilograms, of the vehicle

Complaint (Y/N) Target binary variable, taking a value of 1 (one) if the transportation resulted in a problem related to collapsed
pallets, and a value of 0 (zero) if no such problem occurred

https://meteostat.net/pt/
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The data collection process spanned from 2017 to 2023 and led to a highly imbalanced
dataset. Specifically, the dataset included over 1 (one) million instances from the major-
ity class, representing situations where no problems were encountered. In contrast, the
minority class, which denoted instances of collapsed pallets, comprised only 526 examples.

In the context of this specific problem, the imbalance observed in the dataset is inherent
to the nature of the problem itself, rather than being a result of any shortcomings in the
data collection process. Specifically, the frequency of transportation instances without any
collapsed pallets far exceeds those where such incidents were observed.

3.3. Data Preparation

The third step of the CRISP-DM methodology, data preparation, is crucial in data
mining studies. This phase involves a series of techniques to transform raw data into a
format that is consistent, well organized, and suitable for analysis and modelling.

Raw data frequently contains various issues, such as inconsistencies, errors, miss-
ing values, and outliers, which can negatively impact the reliability of machine learning
models’ outputs. Therefore, undertaking data preparation tasks is essential to remove
inconsistencies and enhance the accuracy and reliability of the models. This process not
only ensures the quality of the data but also enables a more accurate understanding of the
original problem being addressed.

3.3.1. Handling Missing Values

Missing values, defined by the absence or unavailability of data for certain variables
or observations within a dataset, can arise from a variety of factors such as errors during
data collection or data that are inherently unobtainable. The presence of missing values
significantly impacts the trustworthiness and accuracy of data analysis and modelling.
Therefore, effectively addressing missing values is of paramount importance in the field of
data mining.

According to [29], the occurrence of missing values can be classified into three dis-
tinct types:

• Missing Completely at Random (MCAR) refers to situations where the occurrence
of missing values for a particular attribute is completely unrelated to any other data,
whether observed or missing. In other words, the probability of an instance having a
missing value is independent of the values of any variables, whether they are recorded
or missing.

• Missing at Random (MAR) indicates that the occurrence of missing values is related
to the observed data but not to the values that are missing. The probability of a value
being missing is dependent on the values of other variables within the dataset. MAR
suggests that the missingness can be systematically estimated or predicted based on
the available information from other observed variables, thus allowing for a structured
approach to handle these missing values in analyses.

• Not Missing at Random (MAR) indicates a scenario where the likelihood of an instance
having a missing value for a particular attribute is influenced by the value of that
attribute itself. In other words, the occurrence of missing values is dependent on the
specific values that are missing. This dependency suggests that the missing data are
related to inherent qualities of the data, making the handling of these missing values
particularly challenging, as the reasons behind the missingness need to be explicitly
modelled or accounted for in the analysis.

The investigation conducted to identify missing values in the collected dataset re-
vealed that these were predominantly due to gaps in the company’s records. Notably,
missing values were consistently linked to specific materials, with the same “Material_Ref”
showing identical missing attributes across all related entries. This pattern strongly sug-
gests that the missing values are directly related to the inherent characteristics of the
materials, stemming from an absence of essential information in the company’s records.
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This consistent occurrence underscores the need to address these gaps to improve data
completeness and reliability.

In the scenario where missing values are found exclusively in the “Foil_thickness”
column for certain materials, it becomes apparent that the occurrence of missing values is
dependent on the characteristics of the material attribute itself. This observation indicates
that the missing data in the dataset are not randomly distributed but are instead directly
related to the attributes of the materials. Consequently, this pattern of missingness is
formally classified as NMAR, where the probability of missing data is influenced by the
values that are missing. This classification is crucial for informing the appropriate strategies
for handling missing data in the analysis.

The only column in the dataset that exhibited missing values was the “Foil_thickness”
column, which stores the micron measurement of the foil wrapping for each pallet. As
shown in Table 2, the proportion of missing values within the “Foil_thickness” column,
compared to the total number of observations in the dataset, was found to be low. This
indicates that, while missing data are present, they affect only a small fraction of the
overall dataset.

Table 2. Missing value incidence in “Foil_thickness” attribute.

Number of Missing Values Number of Observations Incidence

45 6081 0.74%

Based on the findings in Strike et al. [30] and Ren et al. [31], it can be assumed that,
in datasets with a minimal occurrence of missing data, typically, when the missing rate
is below 10% or 15%, excluding missing data does not significantly impact the outcomes
of data mining or analysis. In this specific case, where the proportion of missing values
was only 0.74%, the decision was made to eliminate observations with missing values from
the dataset. As a result, the total number of observations decreased from 6081 to 6036.
This approach ensured the integrity of the analysis while maintaining the robustness of
the dataset.

3.3.2. Handling Outliers

Since outliers can significantly deviate from the majority of the dataset, they often
exert an undue influence on the interpretation of relationships among variables. Therefore,
identifying and properly addressing outliers is crucial in data analysis and modelling.

Box plots were used to analyse the numerical variables in the dataset. According
to Aguinis et al. [32], a box plot is a straightforward graphical technique for identifying
outliers. It provides a summary of a variable’s distribution, showing the minimum value
(excluding outliers), the lower quartile (Q1), the median (Q2), the upper quartile (Q3), and
the maximum value (excluding outliers). In a box plot, outliers are identified as data points
that lie beyond the whiskers, which extend from the minimum to the maximum value
within the range of typical non-outlier data.

Box plot analysis of the numerical variables revealed outliers in the “Foil_thickness”
variable, as depicted in Figure 2. This visualization clearly illustrates points that fall outside
the typical range, offering a comprehensive view of the distribution and the presence of
outliers for this variable.

The presence of outliers in the dataset can be definitively attributed to data entry errors.
This conclusion is based on the recorded values for foil thickness associated with the outlier
observations (0.023 micron), which do not align with the company’s specified foil material
specifications. Therefore, these outliers are considered error outliers, reflecting significant
deviations from expected values due to inaccuracies in the data collection process [32].

The appropriate approach for addressing error outliers is to either correct the data points
to their accurate values or remove the corresponding observations from the dataset [33]. Since
the “Foil_thickness” variable had only 32 outlier observations, accounting for 0.53% of
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the dataset, it was decided to exclude these observations. As a result, the total number of
observations decreased from 6036 to 6004.

Figure 2. Box plot depicting the distribution of the “Foil_thickness” variable.

3.3.3. Feature Selection

Feature selection involves carefully choosing a subset of relevant features while dis-
carding those that are irrelevant or redundant for the model built. This process has been
shown to significantly improve the efficiency of prediction tasks and enhance the used
machine learning model’s performance. By eliminating extraneous features, feature se-
lection not only enhances the clarity of the results but also streamlines the prediction
process [34]. Prioritizing the most influential features facilitates a clearer understanding of
the underlying relationships between the predictors and the target variable, aiding in the
extraction of meaningful insights and enabling more accurate decision making based on
the model’s output.

Feature selection offers numerous benefits that significantly enhance data modelling.
Firstly, it improves machine learning models’ performance by reducing the risk of overfit-
ting and minimizing the impact of irrelevant or noisy features. This ensures that the model
captures the most relevant patterns and relationships within the data, leading to improved
predictive accuracy. In addition to enhancing the model’s performance, feature selection
offers practical benefits. By excluding irrelevant features, it reduces the computational bur-
den, leading to faster model training and improved overall computational efficiency. This
streamlines data mining processes, enabling quicker analysis and more efficient decision
making.

After considering the available options for feature selection, the decision was made
to employ a filter method. In the realm of feature selection, there are two primary ap-
proaches: filter methods and wrapper methods. Filter methods rely solely on the intrinsic
characteristics of the data to identify relevant features, independent of any specific pre-
dictor. In contrast, wrapper methods incorporate predictor optimization as part of the
feature selection process [35]. In this particular case, the filter method was chosen due to
its computational efficiency, making it the preferred approach for this study.

To evaluate the relationship between the independent variables and the dependent
target variable, correlation tests were conducted. Two separate tests were employed, de-
pending on the nature of the independent variable, whether it was numerical or categorical.

A chi-square independence test was performed to evaluate the correlation between
the categorical independent variables and the binary target variable. This statistical test
aims to determine whether there is a relationship between two categorical variables by
examining whether the observed frequency distribution significantly differs from the
expected distribution under the assumption of independence. The calculation of the chi-
square (χ2) statistic is given by the following:
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∑ χ2
i−j =

(O − E)2

E
, (1)

where O is the observed value, E the expected value, χ2
i the i cell’s chi-square value, and

∑ χ2
i−j the sum of all the cell chi-square values with i − j representing all the cells, i.e., from

the first cell (i) to the last (j) cell.
Table 3 provides a summary of the χ2 value and its corresponding p-value that to-

gether assess the relationship between each independent categorical variable and the
correspondent target variable.

Table 3. Chi-square independence test summary: independent variables vs. “Complaint (Y/N)”.

Variable χ2 p-Value

Material_Ref 2603.59 3.05 × 10−78

Destination_Country 249.03 1.92 × 10−46

External_Warehouse(Y/N) 0.18 0.67
Carrier_ID 767.33 2.74 × 10−41

SAP_Customer_number 1679.51 5.49 × 10−48

WOOD_PALLET 274.67 4.38 × 10−46

LAYER_SEPARATOR 163.29 6.52 × 10−32

Based on the results presented in Table 3, there is insufficient statistical evidence to
conclude that the variable “External_Warehouse(Y/N)” is not independent of the target
variable “Complaint (Y/N)”. As a result, the variable “External_Warehouse(Y/N)” was
excluded from further analysis.

A similar test was conducted to examine potential correlations between the remaining
independent categorical variables that were not excluded following the initial analysis with
the target variable “Complaint (Y/N)”. The results, presented in Table 4, revealed a statisti-
cally significant correlation between “Material_Ref”, “Carrier_ID”, “SAP_Customer_number”,
and the variable “Destination_Country”. As a result, the three aforementioned variables
were excluded from further analysis, while “Destination_Country” was retained for subse-
quent analysis.

Table 4. Chi-square independence test summary between the remainder categorical variables and
“Destination_Country”.

Variable χ2 p-Value

Material_Ref 165,937.62 0.00
Carrier_ID 54,922.74 0.00

SAP_Customer_number 251,841.51 0.00
WOOD_PALLET 0.83 0.061

LAYER_SEPARATOR 0.77 0.082

To evaluate the correlation between a continuous numeric variable and a binary
target variable, the point-biserial correlation coefficient was computed. This coefficient
represents Pearson’s product-moment correlation specifically designed for scenarios where
one variable is dichotomous (binary) while the other is continuous [36].

The point-biserial correlation coefficient, denoted as rpb, ranges between −1 and 1
(one). The sign of the coefficient indicates the direction of the relationship between the
variables. A positive value signifies a positive association, implying that higher values
of the continuous variable tend to be associated with the presence of the binary variable.
Conversely, a negative value suggests a negative association, where higher values of the
continuous variable are more likely to be linked with the absence of the binary variable.
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The magnitude, i.e., the absolute value, of rpb indicates the strength of the relationship,
with values closer to 1 (one) signifying a stronger association, while values closer to 0 (zero)
indicate a weaker relationship, according to the following:

rpb =
Ȳ1 − Ȳ0

s̄y
×

√
N1 × N0

N × (N − 1)
, (2)

where Ȳ0 and Ȳ1 are the mean of the continuous observations coded 0 (zero) and 1 (one),
respectively, N0 and N1 the number of observations coded 0 (zero) and 1 (one), respectively,
N the total number of observations (N0 + N1), and s̄y the standard deviation of all the
continuous observations, given as follows:

s̄y =
∑ Y2 − (∑ Y)2

N
N − 1

. (3)

Table 5 summarizes the point-biserial correlation coefficient values (rpb) and their
corresponding p-values, which assess the relationship between the independent contin-
uous variables and the target variable. These values offer insights into the strength and
significance of the associations. Additionally, Figure 3 displays a point-biserial scatter plot
illustrating the relationship between the continuous variable “Temperature_Delivery_Date”
and the target variable “Complaint (Y/N)”, providing a visual representation of
their relationship.

Table 5. Point-biserial correlation coefficient test summary: independent variables vs. “Complaint
(Y/N)”.

Variable rpb p-Value

Distance 0.14 5.80 × 10−28

Temperature_Delivery_Date 0.12 1.77 × 10−19

Delivery Date_Picking Date 0.02 0.15
Warehousing_Time −0.002 0.88

Foil_thickness 0.14 3.36 × 10−27

Larger_Side −0.03 0.04
Smaller_side −0.05 1.41 × 10−4

Container_Diameter −0.11 4.65 × 10−19

Container_Bearing_Diameter −0.08 1.85 × 10−9

Container_Weight −0.01 0.42
Container_Height 0.06 4.89 × 10−7

Pallet_Height −0.02 0.23
Truck_Weight 0.01 0.64

Figure 3. Point-biserial scatter plot “Temperature_Delivery_Date” vs. “Complaint (Y/N)”.
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Based on the findings, one can conclude that there is insufficient statistical evidence
to establish a significant correlation between the variables “Delivery Date - Picking Date”,
“Warehousing_Time”, “Container_Weight”, “Pallet_Height”, and “Truck_Weight”, and the
target variable. Consequently, these variables were excluded from further analysis due to
the lack of significant evidence.

3.3.4. Data Discretization

Data discretization is a fundamental data preprocessing technique that involves con-
verting continuous data into discrete or categorical forms by partitioning a continuous
variable into a limited number of intervals or categories.

The research described in Peker and Kubat [37] emphasized the importance of data
discretization in reducing the dimensionality and complexity of continuous variables. This
reduction can lead to improved computational efficiency, enhanced model generalization,
and a better understanding of underlying patterns and relationships within the data.
Considering these benefits, the decision was made to discretize the variable “Distance” into
three distinct bins, as shown in Table 6. As a result of this discretization process, a new
variable named “Trip” was created.

Table 6. Discretization of the variable “Distance” and consequent creation of the variable “Trip”.

Distance Trip

<150 short
[150, 2000] medium
>2000 long

To assess the correlation between the newly created variable “Trip” and the target vari-
able, a Spearman’s rank correlation test was conducted. The Spearman’s rank correlation
coefficient (rS) was used to measure the strength and direction of the relationship between
two variables, whether continuous or ordinal. Given that “Trip” is an ordinal variable, the
Spearman’s rank correlation test was deemed the appropriate method for this analysis.

The Spearman’s rank correlation focuses on the rank order of the two datasets under
study. Its coefficient can take values between −1 and 1 (one), where a value of 1 (one)
indicates a perfect monotonic increasing relationship, while a value of −1 indicates a perfect
monotonic decreasing relationship. The closer the absolute value of rS is to 1 (one), the
stronger the monotonic relationship between the datasets [38].

The calculation of the Spearman’s rank correlation coefficient (rS) is given by the
following:

rS =
∑n

i=1(xi − x̄)× (yi − ȳ)√
∑n

i=1(xi − x̄)2 ×
√

∑n
i=1(yi − ȳ)2

, (4)

where xi is the rank of the measurement for the i-th sample of the X (“Trip”) set, x̄ the
sample mean of X, yi the rank of the measurement for the i-th sample of the Y (“Complaint
(Y/N)”) set, ȳ the sample mean of Y, and n the datasets’ size.

Based on the findings presented in Table 7, one can conclude that there is a statistically
significant correlation between the variables “Trip” and “Complaint (Y/N)”. This result
supports the effectiveness of the discretization applied to the initial continuous values, as it
successfully captured the underlying relationship between the variables.

Table 7. Spearman’s rank correlation coefficient test: “Trip” vs. “Complaint (Y/N)”.

Variable rs p-Value

Trip 0.07 4.14 × 10−7

In Table 8 the variables to be modelled after the data preparation phase are presented.
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Table 8. Final variables to be included in the machine learning models after data preparation.

Variable

Destination_Country
Trip

Temperature_Delivery_Date
WOOD_PALLET

LAYER_SEPARATOR
Foil_thickness
Larger_Side
Smaller_side

Container_Diameter
Container_Bearing_Diameter

Container_Height
Complaint (Y/N)

3.4. Modelling

To tackle the task of predicting pallet collapse resulting from specific transportation
activities, a thorough exploration of different modelling techniques was undertaken. In
particular, Decision Tree and Random Forest models were considered and evaluated. These
models were chosen for their strong interpretability, effectiveness in handling imbalanced
data, ability to highlight feature importance, and overall performance.

Decision Tree allows for a clear visualization of decision-making processes, which is
crucial for understanding how specific variables influence the prediction of pallet collapses
during transportation. On the other hand, Random Forest is particularly well suited for
predicting rare events, such as pallet collapse in an imbalanced dataset. By averaging
multiple decision trees, they effectively reduce overfitting and enhance generalization to
unseen data, making them highly effective in this context. Also, both Decision Tree and
Random Forest provide mechanisms for assessing feature importance, allowing one to
identify and rank the factors that contribute to pallet collapse and guide the development
of effective preventive strategies. Finally, prior studies, such as Panchapakesan et al. [17]
and Wu et al. [15], have demonstrated the effectiveness of Decision Tree and Random Forest
models in similar classification tasks.

Although there are many other machine learning methods, such as Neural Networks,
Multiple Discriminant Analysis, and Logistic Regression, which could also be applied,
Decision Tree and Random Forest were chosen for their balance of performance, inter-
pretability, and ease of use. In particular, Neural Networks, while powerful, often require
larger datasets and more computational resources and can be challenging to interpret,
which was not ideal for the goals of this study.

For all approaches addressing the classification problem, Grid Search Cross-Validation
(GridSearchCV) was utilized. As described by Yasin et al. [39], GridSearchCV partitions
the parameter space into a grid and systematically evaluates every possible combination
of hyperparameters. It then selects the combination that achieves the best performance
according to the specified evaluation metrics.

The dataset was initially divided into two distinct subsets: a training set and a test set.
In this particular scenario, the training set was created by randomly selecting 80% of the
original data, while the remaining 20% was allocated to the test set.

As previously mentioned, the hyperparameters to be tuned were specified, and a list
of hyperparameter combinations to be evaluated was generated.

The training data underwent k-fold cross-validation, a method where the dataset is
divided into k equally sized folds. In this case, k was set to 10, resulting in the creation
of 10 folds. During each iteration of the cross-validation process, one fold is used as the
validation set to assess the performance of different hyperparameter combinations, while
the remaining k − 1 folds are combined to form the training set. This iterative process is
repeated k times, providing a thorough evaluation of the model’s performance. By using
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multiple train–test splits, the risk of bias from a single split is reduced, thus improving the
reliability of the model evaluation.

Given the imbalanced distribution of the target variable, as illustrated in Figure 4,
where the target variable “Complaint (Y/N)” distribution is shown, it was essential to
address this imbalance to prevent the model from biasing towards predicting only the
majority category. To address this issue, various data balancing techniques were imple-
mented to ensure a more equitable representation of both minority and majority categories
within the dataset. These balancing techniques were applied within each iteration of the
cross-validation process, specifically to the training data.

Figure 4. Target variable “Complaint (Y/N)” distribution in the studied dataset.

Random oversampling was selected to address the class imbalance in the dataset,
specifically targeting the minority class within the training data. This technique involves
randomly selecting minority examples, denoted as Smin, from the original training set, S,
and adding a set E of replicated examples from the minority class to augment the training
set. By applying this approach, the total number of examples in the minority class, denoted
as Smin, is augmented by |E|, thereby increasing the representation of the minority class in
the training set. Consequently, the class distribution of the overall training set is adjusted
to account for the added replicating examples [40]. Four distinct variations of the random
oversampling method were utilized, each addressing different class distributions of the
target variable. The explored four variations were as follows:

• |Smin |
|S| = 0.25;

• |Smin |
|S| = 0.3;

• |Smin |
|S| = 0.4;

• |Smin |
|S| = 0.5.

A comprehensive analysis of the developed machine learning models is provided in
the following sections, discussing their characteristics and capabilities in detail to identify
the most suitable approach for addressing the problem under study.

3.4.1. Decision Tree

The Decision Tree algorithm begins by using a collection of examples to construct
a tree-like structure designed to classify new cases. Each example is defined by a set of
attributes, which may be numeric or categorical, and is assigned a label indicating its class.

In the Decision Tree model, each internal node performs a test on an attribute, and the
result of this test determines the path to follow. If the test outcome is true, the case moves
to the left branch; if false, it moves to the right branch. The leaf nodes of the tree represent
class labels rather than further tests [41].
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In this study, the implementation of the Decision Tree model involved careful tuning
of hyperparameters and selecting appropriate values for exploration during the tuning
process. The model was implemented using the R programming language, specifically
through the rpart package, which provides tools for fitting and analysing classification and
regression problems [42]. This package offers robust functionality for handling various
types of variables, including categorical and continuous data, and includes mechanisms to
control the complexity of the resulting tree model through parameters that facilitate the
pruning of unnecessary branches.

One of the tuned hyperparameters was the splitting criterion, denoted as split in the
package. The options for the splitting criteria were limited to Information Gain and the Gini
index. The Decision Tree model developed here using Information Gain as the splitting
criterion can be seen as a hybrid of the ID3 and C4.5 algorithms. This is because it combines
the Information Gain criterion from ID3 with the capability to handle various variable
types and the built-in pruning mechanism of C4.5.

The complexity parameter (cp) was another hyperparameter tuned in the model. This
parameter acts as a threshold to determine whether a split improves the overall accuracy
sufficiently to justify its inclusion. To identify the optimal value for cp, a range from 0.001
to 0.01 was tested, with increments of 0.001. Pruning, guided by the complexity parameter,
is essential for preventing overfitting by reducing the complexity of the tree and ensuring
better generalization to unseen data.

The final hyperparameter tuned in the Decision Tree model was minbucket, which
specifies the minimum number of observations required in any terminal leaf node. This
parameter determines when to cease splitting a node based on the number of observations
it contains. Together with the cp parameter, minbucket helps control the complexity of
the tree and mitigate overfitting. During the tuning process, minbucket was tested across
a range of values from 2 to 100, with increments of 1 (one). Additionally, the minsplit
parameter, which defines the minimum number of observations needed in a node for a
split to be attempted, was set to three times the value of minbucket.

In Table 9, the hyperparameters that were tuned in the Decision Tree model are
presented, along with the range of values that were tested for each parameter.

Table 9. Decision Tree model’s tuned hyperparameters and correspondent values.

Hyperparameter Range of values

split Information Gain or Gini index
cp 0.001 to 0.01, with increments of 0.001

minbucket 2 to 100, with increments of 1 (one)

3.4.2. Random Forest

In Breiman [43], the concept of Random Forest was introduced as an ensemble of
tree predictors, where each tree’s outcome depends on a randomly sampled vector that
is independently and identically distributed across all trees in the ensemble. Random
Forest is an ensemble method used for both classification and regression tasks. It combines
multiple Decision Trees to make predictions, and the final prediction is obtained by aggre-
gating the predictions from all individual trees, employing a majority voting scheme for
classification tasks.

Similarly to the Decision Tree algorithm, the Random Forest model was implemented
using the R programming language. The randomForest package was employed for this
purpose, providing comprehensive tools for building Random Forest models to tackle both
classification and regression problems [44].

Consistent with the Decision Tree model, the splitting criterion, referred to as splitrule
package, was one of the hyperparameters optimized in the Random Forest implementation.
The values considered for the splitting criterion were Information Gain and the Gini index,
as the Gain Ratio option was not available in this context, similar to the rpart package.
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The number of trees (ntree) was another hyperparameter tuned in the model. This
parameter determines the size of the ensemble and significantly impacts the model’s
predictive performance and generalization ability. However, increasing the number of trees
excessively can lead to diminishing returns or higher computational costs. In this study,
the tested values for ntree ranged from 100 to 120, with increments of 1 (one).

The feature selection process in this study utilized the Forest-RI approach, which
involves random input selection for splitting at each node. Accordingly, hyperparameter
tuning was performed for the variable mtry, which denotes the number of variables ran-
domly sampled as candidates for each split. The values tested for mtry ranged from 1 to 4,
with increments of 1 (one).

The minimum size of terminal nodes, represented as nodesize in the randomForest
package, was the final hyperparameter tuned in the study. This parameter determines
when to stop splitting a node based on the minimum number of examples required in any
terminal leaf. It helps regulate the complexity of the trees and reduces the risk of overfitting
the training data. During the tuning process, nodesize values were tested from 2 to 20, with
increments of 1 (one).

Table 10 details the hyperparameters tuned in the Random Forest model, including
the range of values tested for each parameter during the tuning process.

Table 10. Random Forest model’s tuned hyperparameters and correspondent values.

Hyperparameter Range of Values

splitrule Information Gain or Gini index
ntree 100 to 120, with increments of 1 (one)
mtry 1 to 4, with increments of 1 (one)

nodesize 2 to 20, with increments of 1 (one)

4. Results and Discussion

The final two stages of the CRISP-DM methodology are presented in this section. First,
the models built in the previous phase are assessed. Then, a set of recommendations for
preventative strategies based on predictive modelling results are discussed.

4.1. Evaluation Results

Within the CRISP-DM methodology, the evaluation phase holds significant impor-
tance as it allows for a comprehensive assessment of the quality and effectiveness of the
developed machine learning models. As already mentioned, to address the challenge of
predicting pallet collapse, this study employed Decision Tree and Random Forest due to
their proven effectiveness in handling classification tasks, particularly in scenarios with
class imbalances. Decision Tree was chosen for its simplicity and interpretability, mak-
ing it easier to understand the decision-making process. Random Forest, an ensemble
method, was selected for its ability to reduce overfitting and improve predictive accuracy
by averaging the results of multiple trees.

During this phase, the primary objective was to assess the models’ generalization
capabilities, specifically their accuracy in predicting unseen data. To achieve this, 20%
of the dataset was reserved during the initial split as a dedicated test set. This reserved
set was used to evaluate the models’ performance on data that was not seen during
training. By employing this separate test dataset, the evaluation phase ensured an unbiased
assessment of each model’s predictive performance and its ability to generalize beyond the
training data.

The evaluation of the developed models, which addressed a binary classification
problem, involved constructing a confusion matrix for each model. The confusion matrix
provides a detailed view of a model’s accuracy, allowing for the calculation of various
performance metrics. Given the objective of identifying pallets at risk of collapsing during
transportation, minimizing false negatives is critical. At the same time, it is important to
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avoid excessive false positives to prevent unnecessary alerts. The F1-score was chosen as
the primary metric for optimization during the hyperparameter tuning process. The F1-
score metric, which represents the harmonic mean of Precision and Recall, offers a balanced
evaluation of the model’s performance:

F1-score =
2 × Precision × Recall

Precision + Recall
, (5)

where Precision and Recall are calculated as follows:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

and TP stands for true positives, TN for true negatives, FP for false positives, and FN for
false negatives.

To facilitate a comparison among the developed models, Table 11 was built, presenting
a comprehensive overview of each model’s performance. This table allows for an analysis of
each model’s strengths and weaknesses based on the Precision, Recall, and F1-score values.

To aid in interpreting Table 11, it is important to note the naming convention used: for
example, “DecisionTrees7525” refers to the Decision Tree model with a class imbalance,
where 75% indicates the prevalence of the majority class (“No”) and 25% represents the
minority class (“Yes”). This convention helps identify each model’s specific configuration
and clarifies the class distribution used during training.

Table 11. Models’ performance taking into account the Precision, Recall, and F1-score metrics.

Model Precision Recall F1-score

DecisionTrees7525 0.350 0.533 0.423
DecisionTrees7030 0.333 0.543 0.413
DecisionTrees6040 0.283 0.648 0.394
DecisionTrees5050 0.299 0.695 0.418

RandomForests7525 0.442 0.455 0.448
RandomForests7030 0.415 0.509 0.457
RandomForests6040 0.405 0.582 0.478
RandomForests5050 0.392 0.591 0.471

The confusion matrix for the model with the best performance, RandomForests6040,
based on the F1-score results, is presented in Table 12. This matrix shows the results for the
1206 examples in the test set, facilitating the calculation of the metrics previously discussed.

Table 12. Confusion matrix for RandomForests6040, the best-performing model built.

Actual Positive (1) Actual Negative (0)

Predicted Positive (1) 64 94
Predicted Negative (0) 46 1002

Tables 13 and 14 present the optimal values of the hyperparameters that resulted in
the maximum F1-score values during the tuning process for the Decision Tree and Random
Forest models, respectively. Hyperparameter tuning involved an exhaustive grid search,
where key parameters such as cp, minbucket, splitrule, ntree, and mtry were adjusted to
optimize the F1-score. This tuning process ensured that the models were fine-tuned to
strike the right balance between sensitivity (Recall) and precision (Precision).
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Table 13. Optimal hyperparameters for the Decision Tree model to maximize F1-score.

Model Split cp Minbucket

DecisionTrees7525 Information Gain 0.004 13
DecisionTrees7030 Information Gain 0.004 10
DecisionTrees6040 Information Gain 0.002 7
DecisionTrees5050 Information Gain 0.001 7

Table 14. Optimal hyperparameters for the Random Forest model to maximize F1-score.

Model Splitrule Ntree Mtry Nodesize

RandomForests7525 Information Gain 111 2 7
RandomForests7030 Gini index 106 2 16
RandomForests6040 Information Gain 103 2 19
RandomForests5050 Gini index 111 2 19

The analysis of the results clearly shows that the Random Forest model outperformed
the Decision Tree model based on the F1-score metric, which was the primary metric of
interest. The Random Forest model proved to be more effective at capturing the complexi-
ties of the classification problem, resulting in more accurate predictions than the Decision
Tree model. This is in line with previous studies, such as Panchapakesan et al. [17], that
demonstrate the superiority of Random Forest over other models such as the Decision Tree
and Neural Network algorithms.

Several steps were taken to refine the dataset, including normalization of continuous
variables, encoding of categorical variables, and handling missing data. These preprocess-
ing steps significantly improved the models’ performance, particularly the Random Forest
model, which is sensitive to feature scaling and encoding. Also, the superior performance
of the Random Forest model can be attributed to its ensemble nature, which aggregates
the predictions of multiple decision trees to reduce variance and improve generalization.
Unlike the single Decision Tree, the Random Forest model was able to capture complex
interactions between features, leading to higher accuracy and a better balance between
Precision and Recall.

Identifying the most informative features, which are critical for solving a classification
problem, is essential in addressing the underlying challenge. In this context, the concept
of Impurity Decrease was used to evaluate each feature’s contribution to reducing data
impurity during the decision-making splits in the Decision Tree model. This approach was
applied within the RandomForests6040 model, which demonstrated superior performance.

The relative importance of features was assessed by calculating the average Impurity
Decrease across all 103 trees in the model. The analysis identified “Destination_Country”
as the most influential variable in the prediction task, followed closely by the “Con-
tainer_Height”, “Container_Diameter”, and “Temperature_Delivery_Date” features. These
findings are visually represented in Figure 5. The high importance of features like “Destina-
tion_Country” and “Container_Height” can be linked to the inherent logistics and handling
challenges in different regions and the physical dimensions of the cargo, respectively. This
insight is critical for logistics companies to understand where to focus their efforts in
securing cargo during transit.

Comparing the results of a study with the ones of the existing literature is crucial in
research, as it helps validate and contextualize the findings within a broader knowledge
framework. Evaluating the alignment or divergence of a new study’s results with the ones
of prior studies allows for an assessment of their consistency, reliability, and generalizability.
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Figure 5. Feature importance, within the RandomForests6040 model, as measured by Impurity Decrease.

The findings of this study align with those of Panchapakesan et al. [17], as both identify
the Random Forest model as the most effective approach for addressing the problem under
study. However, a discrepancy arises in identifying the most influential feature for predict-
ing complaints about shipping containers. While Panchapakesan et al. [17] identified the
duration of container storage as the most informative variable, the current study found that
the corresponding variable, “Warehousing_Time”, did not show a statistically significant
correlation with the target variable, “Complaint (Y/N)”. This divergence in findings may
be attributed to differences in the contexts of the two studies and the varying influence of
business type, which could lead to different outcomes.

The research by Wu et al. [15] offered valuable insights into predicting cargo loss
severity during transportation. Their study highlighted Transit Types, Product Categories,
and Shipping Destinations as key features. While the dataset used in the current study
lacked sufficient information to directly verify the findings related to Transit Types and
Product Categories, the identification of Shipping Destinations as a significant feature
aligns with their results. Consistent with Wu et al. [15], the current study found “Destina-
tion_Country” to be the most critical factor in predicting pallet collapses during transport.
This agreement on the importance of Shipping Destinations strengthens the validity of the
current study’s conclusions.

This study makes a novel contribution to the existing literature by identifying new
variables related to the geometry of the shipped product, specifically “Container_Height”
and “Container_Diameter”, as well as the average temperature recorded at the delivery
location on the delivery date, denoted as “Temperature_Delivery_Date”. These variables
are found to be highly informative for predicting pallet collapse during transportation.
This is the first study to recognize the significance of these variables in addressing the
issue. Moreover, this research breaks new ground as the first to specifically focus on
predicting pallet collapse during transportation. It also addresses the unique product-
related challenges encountered in the glass industry, adding to its innovative approach.

4.2. Preventive and Mitigation Strategies

The predictive analysis conducted in this study reveals key insights into the factors
contributing to pallet collapses during transportation. Therefore, based on the identified
influential features, several preventative strategies can be implemented to reduce cargo loss.

Firstly, optimizing packaging specifications is crucial. The study identified both
“Container_Height” and “Container_Diameter” as significant predictors of pallet collapse.
To address this, companies should standardize packaging dimensions to ensure stability.
By adhering to optimal container sizes and avoiding excessive height or diameter, the
likelihood of imbalances that could lead to collapses is reduced. Additionally, reinforcing
packaging through the use of double-walled or specially designed containers for high-risk
shipments can further enhance stability. Testing packaging designs for their ability to
withstand various transport conditions is also recommended.
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Temperature control is another critical factor. The “Temperature_Delivery_Date” fea-
ture was found to impact the risk of pallet collapse significantly. To mitigate this risk, it is
essential to implement measures for maintaining optimal temperature conditions during
transport. This could involve utilizing temperature-controlled trucks or containers and
ensuring regular monitoring to adhere to specified temperature ranges. Integrating temper-
ature logging systems into the shipping process can provide real-time data, allowing for
prompt corrective actions if temperature deviations occur.

Reviewing and adjusting shipping routes based on the analysis of the “Destina-
tion_Country” feature can also help reduce risks. It is important to analyse shipping routes
and destination-specific factors that may contribute to increased risk, such as exposure
to extreme weather conditions or rough terrains. Developing a risk assessment frame-
work based on historical data for different destination countries can guide adjustments in
shipping strategies and packaging solutions according to the risk profile of each destination.

Improving handling procedures is another vital strategy. Enhancing training programs
for handling and loading procedures will ensure that personnel are well informed about
best practices for securing and managing loads. This can significantly reduce the chances of
pallet collapses. Additionally, investing in high-quality handling equipment and perform-
ing regular maintenance will prevent equipment failures during loading and unloading.

Leveraging predictive analytics for proactive measures is also recommended. Devel-
oping early warning systems that utilize predictive models to flag high-risk shipments
based on identified features can trigger preventive actions, such as additional packaging or
routing adjustments, before shipment dispatch. Continuous monitoring of predictive mod-
els as new data become available allows for real-time adjustments to strategies, improving
overall risk management.

Finally, collaborating with industry partners can enhance these efforts. Sharing best
practices and learning from others’ experiences can lead to improved standards and inno-
vative solutions. Engaging with stakeholders and partners can foster collaborative efforts
to address common challenges in transportation and logistics.

By implementing the aforementioned strategies, businesses can proactively address
the factors contributing to pallet collapses and effectively reduce cargo loss during trans-
portation. The insights derived from predictive modelling will support informed decision
making and enhance the efficiency and safety of the supply chain.

5. Conclusions

This study aimed to predict potential pallet collapse incidents using advanced data
analytics proactively and to recommend preventative strategies based on these predictions
to reduce the incidence of cargo loss. To achieve this goal, the CRISP-DM methodology was
employed, which facilitated a systematic progression through six key stages that structured
the research process and the development of the predictive tool.

Two primary modelling techniques were employed: the Decision Tree and Random
Forest models. These models were selected for their proven effectiveness in predictive
analytics within similar contexts. The hyperparameters of both models were meticulously
fine-tuned through Grid Search Cross-Validation, and the class imbalance problem was
addressed using random oversampling to balance the dataset between the majority and
minority classes.

The conducted evaluation focused on F1-score, a metric chosen for its ability to harmo-
nize the trade-off between Recall and Precision. The results demonstrated that the Random
Forest model consistently outperformed the Decision Tree model, aligning with previous
studies that highlight the Random Forest model as superior for this type of prediction.

Significantly, this study not only reaffirmed the importance of the destination country
as a key predictor but also introduced novel insights into other influential factors. Variables
such as container height, container diameter, and delivery date temperature emerged as
crucial predictors of pallet collapse, marking an advancement in the literature.
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Future work should aim to expand the scope of this research by incorporating ad-
ditional data sources and variables to refine further the predictive models, as well as
exploring alternative machine learning techniques. Additionally, investigating the real-
time application of these models in operational settings could provide practical insights
and further validate their effectiveness. Addressing these areas will not only advance the
current research but also contribute to more robust and adaptive solutions for the glass
industry and beyond.
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