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Featured Application: Potential applications of the work include novel ML-based systems for
sustainable smart cities and smart territory control.

Abstract: The rapid development of modern information technology (IT), power supply, communica-
tion and traffic information systems and so on is resulting in progress in the area of distributed and
energy-efficient (if possible, powered by renewable energy sources) smart grid components securely
connected to entire smart city management systems. This enables a wide range of applications
such as distributed energy management, system health forecasting and cybersecurity based on huge
volumes of data that automate and improve the performance of the smart grid, but also require
analysis, inference and prediction using artificial intelligence. Data management strategies, but also
the sharing of data by consumers, institutions, organisations and industries, can be supported by edge
clouds, thus protecting privacy and improving performance. This article presents and develops the
authors’ own concept in this area, which is planned for research in the coming years. The paper aims
to develop and initially test a conceptual framework that takes into account the aspects discussed
above, emphasising the practical aspects and use cases of the Social Internet of Things (SIoT) and
artificial intelligence (AI) in the everyday lives of smart sustainable city (SSC) residents. We present
an approach consisting of seven algorithms for the integration of large data sets for machine learning
processing to be applied in optimisation in the context of smart cities.

Keywords: artificial intelligence; machine learning; data processing; smart sustainable city; Social
Internet of Things; 6G; Industry 5.0

1. Introduction

The advancement of artificial intelligence, eHealth, information and communication
technologies (ICT) and the Internet of Things (IoT) has caused the mindset of consumers
(of services, products, water, energy and other goods) to change from being completely
passive towards active monitoring of and even participation in the market. This is creating
new smart city communities focused on sustainability and lowering the cost of living. Key
factors shaping these attitudes are identified, and the relationship between them and socio-
economic and behavioural factors is shown [1]. There is a need for further research and tests
to modify individual factors and groups of factors. The social networks of today’s cities are
strongly and increasingly influenced by new ICT. Its integration into urban operations has
fostered the development of information cities, ease of communication and the creation
of smart communities. IoT applications and especially the Social IoT (SIoT) have resulted
in the emergence of smart cities (SCs) supporting urban operations with minimal human
intervention and often even minimal human interaction. This means that data generated by
SC residents (also travellers, etc.) and collected by the SIoT can be used to create new smart
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services within the SC paradigm [2]. We are thus channelling dispersed people into virtual
communities centred around work, interests or lifestyles. This can take forms distinct from
the previous behaviour within a place of residence (street, quarter, neighbourhood) or
workplace. The place of residence or work may become less about social class or even ease
of commuting (nursery or children’s schools, shops) and more about a conscious choice
based on the financial situation and the ability to afford a particular one. Learning, working
and providing services (banking, commercial, health and other) online is slowly becoming
the norm. The concept of local and global trust in the provision of services in SC based on
online social networks (OSNs) has emerged. The local trust model allows you to determine
the so-called central user within the local cluster. The global trust model allows you to
indicate the so-called opinion leaders. Filtration of the above-mentioned central users and
opinion leaders results in the dispersion and significant limitation of networks such as
Facebook or X. However, data posted by citizens on OSNs can enable the creation and
promotion of new services, thus mitigating the impact of untrusted users [2].

Industry 5.0 is focused on people and the environment; therefore, it seems natural
to integrate low-emission or zero-emission industry (production, services, etc.) into the
human environment, so it can be included not only in smart factories, sustainable smart
cities and smart territories, but also in the 15-min city paradigm. This places enormous
demands on modern industrial solutions, service infrastructure and management systems,
including the optimisation of operation, energy consumption and carbon footprint. The
goal of the SC, since its appearance at the beginning of the 21st century, has been to develop
optimal care for its inhabitants through the implementation of breakthrough technologies.
The meaning of SC expands and becomes more precise as concepts, implementations,
new technologies and trends develop, up to the concept of smart territories [1]. These
trends have been changing: they started with the transformation of vast metropolitan areas,
but their vastness and the dynamics of the surroundings result in the implementation
of intelligent technologies only in a small proportion of the processes, and the progress
generated by this may be unnoticeable to a large proportion of the inhabitants. The current
stage involves focusing on smart micro-territories and satellite cities. The current global
population is 8 billion, and estimates for 2050 say it will reach 9.7 billion, concentrated in
and around cities, with their overpopulation threatening the quality of life of residents. This
forces the optimisation of solutions in the SC, including towards sustainable use of resources
that offset the effects of economic crises, uneven access to goods, contamination, diseases,
and ineffective services and processes [3]. Aggregation, anonymisation, pre-processing
and cascaded learning in machine learning systems remain major challenges in smart
home environments, especially in areas such as health monitoring, energy consumption
management and mobility/transportation. These tasks need to be performed efficiently and
cost-effectively while ensuring sustainability, but current methods often fail to meet these
goals. The complexity of integrating different data sources and ensuring privacy while
maintaining system performance highlights a critical research gap. Filling this gap is critical
to developing smart home capabilities to be both smart and practical. As the demand for
smart home technology increases, solving these challenges becomes more urgent. The aim
of this article is to develop and initially test the concept of an AI solution taking into account
the research gap and research problem discussed above, emphasising practical aspects and
cases of using the SIoT and AI in the everyday life of SSC residents (health, sustainable
energy use, sustainable transport and mobility of residents/SSC users). The challenge of
developing simple, transparent, low-cost and fast solutions for smart home data cascading
remains unsolved. Current approaches are either based on simple algorithms tailored to
specific types of data, limiting their generalisability, or on complex deep learning models
that lack transparency and struggle to meet evolving legal standards, especially for sensitive
data such as emotions. These deep learning methods, while powerful, are often opaque
and cannot always accommodate the diverse data streams in the smart home. As a result,
they do not offer a comprehensive solution that balances efficiency, transparency and
compliance. This ongoing issue highlights an important gap in the development of effective
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smart home technologies. This will constitute the basis for further development of the
proposed solution, both in the areas of horizontal scaling (adding more sensors, effectors
and analysis segments) and vertical scaling (greater emphasis on edge computing, as well
as delegating authority to lower decision-making levels despite maintaining a reliable
overall image at cloud level).

The novelty of the work lies in defining from scratch the structure for analysing real
data (from data sets regarding health, renewable energy sources and energy management,
as well as mobility and transport of residents/users) and the algorithms used, as well
as creating the basis for further development of this group of algorithms and solutions
for SSC.

The contribution of our solution is not only the expansion of application possibilities in
the area of SSC, but also fundamental research on new families of simple algorithms capable
of quickly learning based on initial data sets, learning based on new data, and adding new
segments without losing reliability and redundancy. This seems to be the strength of our
solution: scaling horizontally instead of vertically, whenever possible, while avoiding deep
learning that is difficult for humans to understand. With the help of ML, it is possible
to reduce computational complexity, energy intensity, environmental impact and carbon
footprint by choosing between cascading processing with simple ML algorithms and deep
learning. The chosen solution is determined by the complexity of the running system and
the data set being analysed, as well as the selection priorities, which are often conflicting
(e.g., speed of operation vs. low energy consumption). Difficult analyses (controlling
temperature, monitoring safety, performing supervisory or maintenance activities) can be
simplified and performed completely independently by ML under human supervision. The
ultimate criterion still seems to be to improve/maintain people’s quality of life; otherwise,
they will not want to live/stay in an SSC.

Such a defined contribution and research gap should be highlighted in relation to the
current state of knowledge. AI is the cornerstone of the sustainable smart city concept, en-
abling more efficient resource management, improved public services and a higher quality
of life while addressing environmental challenges. The continued development and integra-
tion of AI technologies will be crucial to the future of sustainable urban development. The
development of artificial intelligence (AI) in the context of sustainable smart cities (SSCs)
is progressing rapidly, playing a key role in optimising city life, reducing environmental
impact and improving quality of life for residents (Figure 1).

We are looking for AI systems that interact with humans in their immediate environ-
ment, not replace them. Hence, the solution to the research problem will be a cascade of
a group of simple AI algorithms: understandable and friendly, also in terms of service
and functionality. The excessive complexity of AI systems creates a sense of threat and
resistance, and the number of people who do not understand how basic devices work
should not increase.
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2. AI in SSC

AI and the IoT enable the optimisation of citizen-centric SCs by

• Performing collection, analysis, inference and prediction from large amounts of data
describing residents, services and facilities of the SC;

• Process automation;
• Improving efficiency and supporting the economy;
• Securing and creating opportunities for residents;
• Respecting the environment and its resources [3].

2.1. General Picture of AI in SSCs

AI is playing an increasingly important role in the development of SSCs, supporting
resource management, energy efficiency improvements and environmental monitoring. AI
enables the optimisation of urban processes such as public transport, waste management
or air quality control, contributing to the sustainability of cities. AI-based systems also
support real-time data analysis, enabling faster responses to problems such as traffic jams
or infrastructure failures. The developing AI technologies in SSCs are helping to integrate
different city systems, leading to a more holistic approach to city management. At the
same time, AI is becoming crucial in areas such as public health, where it can monitor and
predict the spread of disease or support the care of seniors. As cities become smarter, AI is
helping to drive data-driven decision-making, leading to more efficient use of resources.
However, the development of AI in SSCs brings challenges, such as the need to protect
privacy, transparency of algorithms and regulatory compliance. It is also important that AI
technologies are accessible and understandable to all residents to avoid digital exclusion.
As technology advances, AI has the potential to become a cornerstone of sustainable urban
development, but this requires further research and innovation to maximise benefits and
minimise risks. Currently, SC goals are generally focused on striving for

• Better education and work/career opportunities and achieving work–life balance (as
part of the so-called individual success);
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• Higher ecological performance (including natural diversity);
• Support of the health of residents, including support based on preventive medicine,

faster and more accurate diagnoses and timely healthcare services, and the well-being
of residents;

• Support of the social activity of residents as a community.

This means that SC ‘in the background’ supports economic, social and health activi-
ties while balancing budget, risk and technological upgrades. By monitoring, analysing
and responding (both to correct operations and to anomalies such as failures) in real or
near real time, smart city processes can be streamlined and optimised. This will become
increasingly easier as platforms develop, standardise and the price of sensors, effectors
and other IoT components (including cloud services and edge computing) falls [6]. An
increase in available computing power at a much lower cost is expected, which is very
beneficial for the broader use of AI [7]. Detailed visualisations of predictions, such as
paraconsistent analysis, are needed, creating a framework for the use of other systems,
both collecting data and carrying out the resulting analysis in SC [7]. The challenge here
is the technological heterogeneity of SCs, which use very different approaches, protocols,
methods and communication technologies (also depending on their manufacturers and SC
implementers) (Table 1) [8,9].

Table 1. Developing status of AI in SSC.

Area Subarea Tasks

Urban planning and
development

Simulation and modelling
AI helps simulate urban development scenarios, enabling

planners to assess the sustainability of different projects and
optimise the use of space, resources and energy.

Building smart infrastructure
AI helps in the design and management of smart buildings that
optimise energy consumption, increase user comfort and reduce

environmental impact.

Energy management
and efficiency

Smart grids

AI is used to manage smart grids that optimise energy
distribution and consumption in real time. This helps to reduce

energy waste and integrate renewable energy sources
more effectively.

Predictive maintenance
AI algorithms predict when infrastructure, such as power lines
or renewable energy equipment, will require maintenance, thus

preventing downtime and reducing operational costs.

Transport and mobility

Traffic management

Traffic management systems based on artificial intelligence
optimise traffic flow, reducing congestion and emissions. These

systems can adjust traffic signals in real time based on
traffic patterns.

Deployment
of autonomous vehicles

Self-driving cars and public transport systems based on
artificial intelligence are being tested and deployed to reduce

congestion and carbon emissions.

Water management

Intelligent water systems
AI monitors water quality and consumption, ensuring efficient
distribution and reducing water waste. It also helps detect leaks

and manage water resources during droughts.

Flood prediction AI models are used to predict flooding, enabling cities to take
proactive measures to minimise damage and protect citizens.

Air quality monitoring

Real-time air quality monitoring
AI systems continuously monitor air quality, providing

real-time data to help identify sources of pollution and take
immediate action to mitigate them.

Pollution prediction
AI can predict pollution levels based on weather patterns and

human activity, enabling cities to implement
preventative measures.
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Table 1. Cont.

Area Subarea Tasks

Waste management

Intelligent waste collection
AI is used in waste management to optimise collection routes,
reducing fuel consumption and operational costs. AI can also

help sort waste more efficiently, increasing recycling rates.

Waste prediction
models

AI models predict trends in waste generation, helping cities to
better plan waste treatment and recycling.

Climate resilience

Climate modelling AI models help cities understand the long-term impacts of
climate change and develop mitigation strategies.

Disaster response
AI is used in disaster management systems to predict natural
disasters, such as earthquakes or hurricanes, and effectively

coordinate response actions.

Other areas

Smart governance
AI is used to analyse data from citizen feedback and social

media to improve public services and respond more effectively
to citizens’ needs.

Public safety AI enhances public safety with surveillance systems that can
detect and respond to criminal activity or accidents in real time.

Resource allocation
Artificial intelligence helps optimise the allocation of urban

resources, ensuring that sustainability goals are achieved
without compromising efficiency.

Big Data analysis
AI processes vast amounts of data from a variety of city sensors

and IoT devices, providing insights that help city managers
make informed decisions about sustainability initiatives.

Basic requirements for the current SC include

• Careful planning, taking into account the objectives of the SC and its inhabitants;
• Differentiation according to geographical, demographic, economic, social, etc., factors;
• Collection and analysis of data to extract valuable knowledge associated with location

and navigation strategies;
• Optimal response of the SC according to social rules (cyberdemocracy);
• Sustainable management of resources;
• Strong and comprehensive ICT platform;
• Cybersecurity;
• Dynamic modernisation at different levels and time horizons of operational improve-

ments;
• The search for new models, solutions and technologies (self-developing SC) [10–12].

Redundancy (and, indirectly, heterogeneity) of systems is already stardom. SC in its
daily work should not depend on the correct functioning of a single platform, but rather
on the management systems of a group of such platforms. Therefore, it must be possible
to combine smart city platforms with other types of platforms and management systems
for such scalable integrated group platforms [6]. Such platforms must be efficient, scalable,
flexible and integrable. The challenge is to create smart systems to simultaneously manage
smart territories, i.e., urban and rural areas for services targeting users with different needs.
Residents do not need to be knowledgeable (or even aware) of the smart systems they use
but must be able to rely on the reliability of the technological infrastructure [7,13].

2.2. AI in Selected Areas of SSCs

Mobility within SCs is a problem where poor management will lead not only to traffic
congestion and protests by residents, but also to a waste of fuel, loss of residents’ time
and their employers’ time (e.g., due to lateness and absence from work) and delays in the
supply chain (and, consequently, a shortage in products and services). So far, electric cars,
car sharing or public transport as integrated transport solutions have seemed to be the
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right solution that could reduce traffic on the roads and reduce the emission of harmful
gases into the atmosphere (i.e., reducing smog), often while maintaining the privacy of
users [11,12]. With an ageing population, supporting elderly people’s mobility and day-
to-day activities, and preventing falls, require monitoring of residents without disrupting
their daily activities or making them feel like they are being watched [6]. It seems that a
responsible and well-thought-out combination of urban innovations will lead to the creation
of effective SSCs that shape the comfort of, and have a positive impact on, the lives of their
residents [13]. An underestimated aspect is the durability of SSCs despite their ongoing,
required evolution in areas as important as transport and preventive medicine [3]. With
the development of ICT (new generation, sixth generation communication system [6G])
and modifications in ways of life and methods of communication, the continuous evolution
of urban environments has led to the emergence of the concept of a smart sustainable city
(SSC). This will further connect city infrastructure (including vehicles, robots and sensors)
in order to communicate, respond and act in real or near real time with high efficiency
of city operations and services. 6G candidate technologies primarily include terrestrial
networks, advanced mobile edge computing, vision-enhanced wireless communications,
artificial intelligence (AI)-based wireless communications, and integrated sensing and
communications [14]. This makes it possible for the SSC to constantly adapt the concept
to the conditions [15]. Participation indicators, open innovations (not only technological,
but also social) should be promoted in the SSC within social networks [16]. Currently, data
aggregation within SSCs focuses on specific application areas, classifications or predictions,
but the goal is to create conditions for a multi-layered “common operational picture”
(military analogy) for imaging, analysis and management of data:

1. data from various IoT sources:

• Scattered;
• Heterogeneous;
• Non-linear;
• Monitoring and tracking objects;

2. data analysed using various methods:

• Mathematical (including probabilistic);
• Computational (including artificial intelligence) [17].

This requires energy-efficient communication along with quality of service (QoS) opti-
misation [17]. The transformation towards sustainable AI-based management of renewable
energy sources is becoming a reality, including for energy cooperatives, which is of great im-
portance for SSCs. AI enables faster responses, optimised operations, improved efficiency,
lower costs and a shift to cleaner and more sustainable energy sources [18,19]. Produc-
tion technologies in the areas of technology and materials take into account sustainable
development through the selection of processing technologies (e.g., casting, machining, 3D
printing, etc.), materials, energy savings, emitted particles and waste, which is supported
by AI-based management, thus enabling the assessment of equipment consumption (as
part of predictive maintenance), materials, the amount of pollution and the waste generated
by production lines, packaging and transport systems. Self-learning programs adapt to
changes in near real time, complementing previously used metrics and software [20,21].
Such systems collect data and analysis results, and draw conclusions to solve current and
future problems, also allowing the support and education of people and specialists in
creative design, and solving SSC issues.

SSCs will have a better ability to respond quickly and with fewer errors to health
threats, including mass threats such as poisonings and pandemics. Policies, strategies and
actions based on AI technology enable crisis management, improve the health of residents
and increase the resilience of SSCs. In particular, coping and recovery are possible through:

• Improving and equalising access to digital SSC services;
• Improving the digital skills of residents (including children, elderly people and dis-

abled people);
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• Improving physical and mental health;
• Increasing social participation and connections;
• Maintaining the functionality of educational and economic systems [22–24].

E-health, smart manufacturing and logistics, traffic monitoring and car sharing (and,
in the future, autonomous driving) are all data-driven. This requires the implementation of
three main functionalities:

• Real-time intelligence;
• Distributed intelligence;
• Law enforcement with privacy;

Using technologies of the third decade of the 21st century:

• 6G mobile networks (bit-pipe connectivity);
• Smart edges (realising the burden of intelligent computing as close as possible to the

consumers of services);
• AI/ML

Provides the Internet of Medical Things (IoMT, Figure 2) and electronic health records
(EHR). In a sustainable, AI-powered smart city, the IoMT revolutionises healthcare by seam-
lessly integrating AI-powered insights with connected medical devices. Smart sensors and
wearables continuously monitor the health of residents, transmitting real-time data to AI
systems that analyse and predict potential health issues, thus enabling proactive interven-
tions. These AI-powered insights optimise resource allocation, ensuring efficient healthcare
delivery while minimising waste. Smart city infrastructure supports the IoMT network
with renewable energy, reducing the environmental impact of healthcare operations.AI also
enhances telemedicine by providing accurate diagnostics and personalised treatment plans,
reducing the need for physical visits and lowering transportation emissions. Using ma-
chine learning, AI systems detect patterns in health data, therefore identifying public health
trends and enabling a rapid response to potential disease outbreaks. Integrating the IoMT
with AI ensures that healthcare is not only personalised but also scalable, meeting the needs
of a growing urban population. This collaboration between the IoMT and AI contributes
to the city’s sustainability goals by improving health outcomes while reducing resource
consumption. Additionally, robust cybersecurity measures have been implemented to
protect sensitive medical data, and so ensure trust and privacy in the IoMT ecosystem.
Ultimately, the combination of the IoMT and AI in a sustainable smart city creates a future
where healthcare is efficient, environmentally friendly and highly responsive to the needs
of its residents. More effective legacy data acquisition and centralised ML models have less
data security and privacy, and mass sensing, data provisioning and SSC service delivery
may be more difficult as the population and sensing population grow [23–29]. Sensors can
measure air quality, traffic volume and other features of the urban environment, and in the
“drive-by” paradigm, sensors can be installed in the vehicles of various companies, thus
increasing range and reducing costs. Until now, the main problems have lain in reconciling
the massiveness and privacy of data with the required short learning time of AI. It provides
a distributed training approach capable of solving the aforementioned problems.

Appl. Sci. 2024, 14, x FOR PEER REVIEW  9  of  26 
 

and personalised  treatment plans,  reducing  the need  for physical visits  and  lowering 

transportation emissions. Using machine  learning, AI systems detect patterns  in health 

data, therefore identifying public health trends and enabling a rapid response to poten‐

tial disease outbreaks. Integrating the IoMT with AI ensures that healthcare is not only 

personalised but also scalable, meeting  the needs of a growing urban population. This 

collaboration between  the  IoMT and AI contributes  to  the city’s sustainability goals by 

improving health outcomes while reducing resource consumption. Additionally, robust 

cybersecurity measures have been implemented to protect sensitive medical data, and so 

ensure trust and privacy in the IoMT ecosystem. Ultimately, the combination of the IoMT 

and AI in a sustainable smart city creates a future where healthcare is efficient, environ‐

mentally friendly and highly responsive to the needs of its residents. More effective leg‐

acy data acquisition and centralised ML models have less data security and privacy, and 

mass sensing, data provisioning and SSC service delivery may be more difficult as  the 

population and sensing population grow [23–29]. Sensors can measure air quality, traffic 

volume and other features of  the urban environment, and  in  the “drive‐by” paradigm, 

sensors can be installed in the vehicles of various companies, thus increasing range and 

reducing costs. Until now,  the main problems have  lain  in reconciling  the massiveness 

and privacy of data with the required short learning time of AI. It provides a distributed 

training approach capable of solving the aforementioned problems. 

Figure 2. IoMT main concept (own version based on [23–29]). 

Local data are used to train local models and, in turn, local models are used to up‐

date the global model. This aggregated global model is returned to the local models for 

further  training  and  this procedure  is  repeated until  the  global model  converges  and 

works to further maintain this convergence, i.e., a common operational picture at all lev‐

els [30–38]. Large volumes of IoMT data can be harnessed without sharing, complex dy‐

namics  and  complex data‐sharing agreements. However, handling data  from multiple 

locations presents another challenge [35–38]. Deep reinforcement learning (DRL), digital 

twins  and  generative  adversarial  networks  (GANs)  may  be  particularly  useful  here 

[38–42]. 

There is not much research on AI‐based data and energy management within energy 

cooperatives (this is how SSCs should be considered); this area is only  just being trans‐

formed  [43].  In doing  so,  it  is clear  that SSCs will  face  the need  for  lighting and heat‐

ing(especially in the global south), e.g., warming as a result of climate change and as a 

side effect of urbanisation, which will increase the need for cooling. GIS‐based urban heat 

island estimation, energy modelling and rooftop solar potential have been used for resi‐

dential energy stress (REST) buildings (Amaravati, India). This allows for the application 

of decentralized optimisation solutions for energy control and peer‐to‐peer energy shar‐

ing on a neighbourhood scale. In this solution, decision tree algorithms based on energy 

justice variables classify energy grid data  in a sustainability framework to alleviate en‐

ergy stress at the SSC level. This allows an up to 80% reduction in energy consumption in 

SSCs, including based on the optimisation of planning variables (such as floor area ratio 

and building density) and optimisation of current energy consumption. Therefore, these 

Figure 2. IoMT main concept (own version based on [23–29]).



Appl. Sci. 2024, 14, 8288 9 of 25

Local data are used to train local models and, in turn, local models are used to
update the global model. This aggregated global model is returned to the local models
for further training and this procedure is repeated until the global model converges and
works to further maintain this convergence, i.e., a common operational picture at all
levels [30–38]. Large volumes of IoMT data can be harnessed without sharing, complex
dynamics and complex data-sharing agreements. However, handling data from multiple
locations presents another challenge [35–38]. Deep reinforcement learning (DRL), digital
twins and generative adversarial networks (GANs) may be particularly useful here [38–42].

There is not much research on AI-based data and energy management within en-
ergy cooperatives (this is how SSCs should be considered); this area is only just being
transformed [43]. In doing so, it is clear that SSCs will face the need for lighting and
heating(especially in the global south), e.g., warming as a result of climate change and as
a side effect of urbanisation, which will increase the need for cooling. GIS-based urban
heat island estimation, energy modelling and rooftop solar potential have been used for
residential energy stress (REST) buildings (Amaravati, India). This allows for the appli-
cation of decentralized optimisation solutions for energy control and peer-to-peer energy
sharing on a neighbourhood scale. In this solution, decision tree algorithms based on
energy justice variables classify energy grid data in a sustainability framework to alleviate
energy stress at the SSC level. This allows an up to 80% reduction in energy consumption
in SSCs, including based on the optimisation of planning variables (such as floor area ratio
and building density) and optimisation of current energy consumption. Therefore, these
indicators must be taken into account when planning the construction of an SSC, and the
mere use of AI for SSC management may produce lesser results [44–46].

The rapid development of modern IT, power, communication and road information
systems, etc., develops distributed and energy-saving (if possible, powered by renewable
energy sources) elements of the smart grid safely connected with entire smart city man-
agement systems. This enables a wide range of applications such as distributed energy
management, system health forecasting and cybersecurity based on huge volumes of data
that automate and improve the performance of the smart grid, but also require analysis,
inference and prediction using artificial intelligence. Data management strategies, but
also the sharing of data by consumers, institutions, organisations and industries, can be
supported by edge clouds, thus protecting privacy and improving performance. Many so-
lutions (e.g., mobility systems) usually operate based on the agents’/vehicles’ self-interest,
as part of integration with solutions for autonomous drivers [3]. Traffic simulation tools
can be used to determine the duration of transport use. Pedestrian traffic routes pose
a challenge; they can also be used for autonomous vehicles delivering parcels to shops,
service premises and houses or apartments. Found in areas intended for pedestrian traffic
stakeholders in such a logistics process are primarily courier service providers and their
customers, but also SSC traffic and logistics managers—fragmentation of the “last mile”
of transport services in this way will shorten the time in which the shipment reaches the
recipient (also, regardless of the time, in 24 h) [3]. Automated diagnostics and support
in apartments, nursing homes, rehabilitation centres, hospitals and sanatoriums require
the use of edge computing, fog and clouds for rapid processing and response. It is also
the only alternative in the absence of caregivers, physiotherapists or doctors, and perhaps
also psychologists and family. The complexity of such a problem requires hybrid solutions
combining mathematical models with ML [3,12].

SSCs can promote so-called active transport, such as walking or cycling. In turn, such
appropriately measured activity may contribute to increasing the overall level of physical
activity and changing activity habits, and, over time, dietary habits, work–private life
balance or preferred forms of tourism. Apps for smartphones, tablets, smart TVs and
vehicle infotainment can also promote this behavioural change. The aggregate benefits
from such seemingly minor changes within the SSC may be significant and, in the long
run, inevitable, and should therefore be monitored and stimulated to avoid going in the
wrong direction [47–55]. It is worth looking for cheap solutions so that the application
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has the potential to affect many copies on a mass scale. The impact of the time it takes
to get to work and school (on foot or by various means of transport) on the quality of
life is large: the longer employees’ commute time, the lower their satisfaction with work,
life and health. It is worth knowing how many vehicles, appropriately equipped with
sensors, would be needed to properly scan the SSC for a specific account. Publicly available
data on the movement of individual travellers is contained both in their smartphones
and in traffic lights and city monitoring. This allows, for example, the simplification of
location based on movement trajectories. Even controlling pedestrian and vehicle traffic
and effectively managing congestion and delays help reduce travel times and save many
valuable resources. Basing such a system on three basic elements: vehicle, infrastructure
and events, enables taking all scenarios and possible problems of the transport system
into account. (including the machine learning-based DBSCAN clustering method for
anomaly detection).

As people migrate between SSCs or from rural to urban environments, cities must
optimise their services (services, logistics and transport) to best respond to changing
demand [3]. ML can solve some of the problems associated with decentralised computing,
enhancing cyber security and data privacy, but it needs further development. This is
implemented, among other things, as part of a health impact assessment (HIA), health
economics, the impact of health recommendations on urban policies, the burden of dis-
ease/injury at the city level and the involvement of stakeholders (residents, city authorities,
representatives of associations of medical specialists and patients) [45–48]. This is the result
of a simple observation that if the aspirations, goals (and sometimes behaviour patterns) of
the upper and middle classes differ, such a distinction (provided with appropriate data)
can be made in more detail, sometimes even to the level of personalisation of interactions
within preventive medicine (healthy people) [45–48]. However, this imposes significant
organisational and technical requirements, such as

• Large amount of high-quality data;
• Agreement at the level of policies, their coherence and the participation of all stake-

holder groups;
• Health equity (measured cross-sectionally);
• Creative removal of barriers across various levels and areas.

Factors such as the use of energy in wastewater treatment plants (WWTPs) and
the need to ensure the energy balance of wastewater treatment plants become more
important [49,50].

AI plays a leading role in the transformation towards SSC by promoting and managing
smart grids, energy demand monitoring, service products and load/supply management
in line with energy efficiency, maintenance and asset management, carbon reduction,
risk management and even compliance and cyber security [18,19]. The current state of
knowledge indicates that attempts to develop AI solutions for SSC have focused on large
systems, which, with a large number of sensors, effectors and analysed data, tend to
transform over time and towards development into a “black box”, not susceptible to the
analysis of decision rules and causes in making a decision. Therefore, specific decisions are
made at a level that is not fully understandable to a human operator, even an engineer or
scientist (experts in their field). There is a need for simplification of the above analytical
and decision-making processes so that they become understandable to humans while
maintaining their effectiveness. There is a research gap in the development of cascading
systems using simple algorithms that are both easy to analyse and understand by humans.
These algorithms, when combined, should generate a sufficiently complex and accurate
picture to support decision-making in various aspects of smart sustainable cities (SSCs).
However, current research has not yet fully explored or achieved the balance between
simplicity, transparency and the ability to deal with the complexity of real-world data. The
challenge is to create a system where each algorithm makes a meaningful contribution to the
overall decision-making process without sacrificing clarity or interpretability. Addressing
this gap is critical to the development of practical and reliable decision support in SSC.
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3. Materials and Methods

The primary directive of the SSC is to ensure the well-being and comfort of residents
and maintain the continuity of city functions, including crisis management. We chose
three key areas of SSCs for modelling: health, energy management and mobility/transport.
This choice is supported by the fact that three areas of sustainable community management
turned out to be critical during the last two major crises: the pandemic and the war in
a neighbouring country (Ukraine). We assumed that additional areas may be added in
subsequent studies, as the number of sensors and effectors within each area/segment may
increase. This means system scalability.

3.1. Computational Methods

The first computational approach (named cascade of simple algorithms) includes sev-
eral levels of analysis shown in Figure 3: from edge computing (close to the source, possibly
AI-based, STAGE 1, algorithms 1–3 selected to suit the data) through data aggregation
from particular segments (STAGE 2, algorithms 4–6 selected to suit the data) to central
AI-based management at the level of the entire SSC (STAGE 3, algorithm 7 selected to suit
the data). ML with a distributed, local approach to data collection and pre-analysis (edge
computing) may provide a potential solution to various challenges regarding processing
speed, data confidentiality and cybersecurity (Figure 3). Here, ML provides conditions in
which multiple clients (data sources) jointly learn a model based on decentralised data sets.
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The algorithm numbers make orientation easier. Algorithms 1–7 are divided into
three stages:

• Stage 1 (algorithms 1–3): algorithms for edge processing;
• Stage 2 (algorithms 4–6): algorithms for data aggregation;
• Stage 3 (algorithm 7): global model algorithm.

Each one of algorithms 1–7 was tested and selected for the data it was to analyse:

• Algorithms 1–3: for segmented sensor data;
• Algorithms 4–6: for Stage 1 analysis data (to aggregate the segmented data);
• Algorithm 7: for Stage 2 (aggregated) analysis data.

The whole procedure for constructing the model includes, in turn

• selection of the overall structure of the cascade model (e.g., Figure 3: for 3 types of
input sensors/data sets),

• selection of data sets (Table 2),
• selection of the best algorithms for STAGE 1 for the given data sets (Tables 3–5),
• selection of the best STAGE 2 algorithms for the data sets (Tables 6–8),
• selection of algorithms for STAGE 3 best for given data sets,
• completion and tuning of the overall model (e.g., Figure 4: for 3 types of input

sensors/data sets).
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This approach provides maximum flexibility for a cascade model based on simple,
transparent algorithms, easy to increase the number and types of input data, and easy to
learn and upgrade, e.g., as new, more efficient algorithms emerge.

For greater readability of the models, the data used in the article are described in
Section 3.2 Data sets and the algorithms used in the Results section. These data and mod-
els will allow cities and local managers to better understand the burden and geographic
distribution of health, energy use and mobility/transportation variables in their jurisdic-
tions and help them plan interventions in the above areas. This enables in-depth analysis
and modelling of energy consumption behaviour and the discovery of complex factors
influencing changes in the studied areas.

The paper provides a framework for future work on integrating large data sets for
analysis using machine learning techniques to integrate data from different sources occur-
ring in SSCs. For the above-mentioned reasons, the study uses real data with naturally
occurring distributions. The integration procedure includes preprocessing the data by
checking the correctness and completeness of the data and their repeatability, possibly
removing outliers or unreliable data (e.g., out of range), if necessary, also normalising the
data, balancing them in classes and formatting them in the form of standard anonymised
feature vectors/matrices (usually significantly shortened in relation to the raw data). Such
a form of data is accepted by communication and data analysis systems, while improving
network throughput and data security. Section 3 describes the use of seven algorithms
selected in terms of criteria such as data prediction/classification accuracy and duration.
This selection consists in applying a set of algorithms and searching for those that give the
best results at each stage. Of course, in a real system, this process will take much less time
due to previously established, repeatable data preprocessing procedures and the repeatable
characteristics of device data.

For the purpose of reproducibility and replication of the study, we have included a
formal description of each of the stages, including the establishment of possible algorithms
to be used and their key hyperparameters. This will allow us to reproduce the work
performed, as well as to look for other approaches to improve the obtained results. Figure 3
shows a schematic general architecture of the AI-based management system. The algorithm
numbers in Figure 3 facilitate orientation. The selection of the number of algorithms
was made experimentally. The algorithms marked with numbers 1–7 are divided into
three stages: algorithms 1–3 for edge processing, algorithms 4–6 for data aggregation, and
algorithm 7 for the global model.The details of the algorithms (during the selection process)
are presented in Tables 2–8, and the final version with details of the selected algorithms is
presented in Figure 4.

In the process of selecting optimal algorithms, different data sets were searched and
machine learning algorithms were used, and then those that gave the best results were
selected. This approach results from the fact that despite the usual repeatability (similarity)
of data during normal operation, the data may also be subject to unexpected changes
that must be detected and properly classified, and a decision must be developed and an
appropriate response must be made on them. In the context of the decision-making process,
such selection and application of the above-mentioned algorithms contribute to

• reducing errors (i.e., incorrect response to input vectors/matrices);
• shortening response time;
• training the system to better adapt to the specificity of the data.

The process of integrating information from other areas important for smart cities,
such as data on citizen safety, education, etc., is analogous, but for the purposes of this
study, it was limited by the availability of databases. Expanding to a full model in all
10 areas of SSC activity supported by AI is our goal in subsequent studies.

It seems that the data in the SSC can be so volatile that the flexibility of the development
environments will be key when, for example, the sensor software is substantially replaced
by a new generation, and this cannot be achieved manually. The openness of the environ-
ment to the automated use of large data sets is also important. An important assumption
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may be that the implementation of connecting new sensors and effectors, and even whole
clusters of them, will take place in stages, with gradual learning by the algorithms.

We would like to point out that, in the study, we did not use complex systems,
but simple algorithms in order to exclude the “black box” phenomenon even in such
a large-scale solution as the handling of SSC functionality. This will preserve people’s
understanding of the rules governing SSC, although as advanced eHealth or sustainable
energy solutions are implemented, there is a risk of algorithms evolving into systems that
are more complex than they are today. Detailed data and descriptions of the algorithms
used are described in the Results section. The second computational approach is derived
from an article by Wu et al. concerning deep learning (DL) in smart cities [56]. We have used
three deep neural networks (Figure 5) [56]. Their results were aggregated as mean. Their
results, in order to obtain a single accuracy in calculations, were aggregated as average
values. The comparison was performed using the Bayesian Regularization of Artificial
Neural Network (BRANN) models dedicated to smart city data, presented in Figure 5,
based on the inverse of the Hessian data calculated in the evidence maximization loop,
described in detail in [56].
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3.2. Data Sets

In order to ensure the feasibility of the analyses, aggregated real data from the Kaggle
database covering three types of IoT sources were used for modelling:

• Medical data;
• Energy consumption data;
• Data on the movement of people and vehicles.

To develop and test our solution, we used three data sets from Kaggle dedicated to
three areas of SSC sensors: health management, energy consumption and human and vehi-
cle movement (Table 2). This approach stems from the difficulty of collecting a consistent
real-world data set from three such different areas. Table 2 describes the three data sets
used in the study.

Table 2. Data sets used in the study.

Data Set
Type Data Set Name Source

Medical data

500 cities local data for better health,
2018 [61]

https://www.kaggle.com/datasets/jaimeblasco/500-cities-
local-data-for-better-health-2019

City- and census region-level estimates for small area chronic
disease risk factors, health outcomes and use of clinical

preventive services for the largest 500 cities in the United States.

United States of America Health
Indicators [62]

https://www.kaggle.com/datasets/mahdiehhajian/united-
states-of-america-health-indicators

The database contains data from the World Health
Organisation’s data portal covering basic healthcare categories.

Energy production and
consumption data

Hourly Energy Consumption [63]

https://www.kaggle.com/datasets/robikscube/hourly-
energy-consumption

Database of the Eastern Interconnection network operating the
electric transmission system serving parts of the US containing

hourly energy consumption data.

Energy consumption prediction [64]

https://www.kaggle.com/datasets/mrsimple07/energy-
consumption-prediction

The data set includes temperature, humidity, occupancy, HVAC
and lighting use, renewable energy contribution, time stamp.

Movement of people
and vehicles

Smart city traffic patterns [65]
https://www.kaggle.com/datasets/utathya/smart-city-

traffic-patterns
The data set form Mckinsey Analytics Online Hackathon.

Traffic Prediction Dataset [66]

https://www.kaggle.com/datasets/fedesoriano/traffic-
prediction-dataset

This dataset 48120 observations of the number of vehicles each
hour in four different junctions.

A comparison was made for the proposed cascade solution with deep learning and
the results are shown in Figure 6 in the Results section. Data sets were divided into
three sample groups:

• Training (70%): presented to the network during training as the network is adjusted
according to this error;

• Validation (20%): is used to measure the generalisation of the network and to stop
training when the generalisation stops improving;

• Testing (10%): provides an independent measurement of network performance during
and after training [56].

https://www.kaggle.com/datasets/jaimeblasco/500-cities-local-data-for-better-health-2019
https://www.kaggle.com/datasets/jaimeblasco/500-cities-local-data-for-better-health-2019
https://www.kaggle.com/datasets/mahdiehhajian/united-states-of-america-health-indicators
https://www.kaggle.com/datasets/mahdiehhajian/united-states-of-america-health-indicators
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
https://www.kaggle.com/datasets/mrsimple07/energy-consumption-prediction
https://www.kaggle.com/datasets/mrsimple07/energy-consumption-prediction
https://www.kaggle.com/datasets/utathya/smart-city-traffic-patterns
https://www.kaggle.com/datasets/utathya/smart-city-traffic-patterns
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
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The above data sets were used in various configurations in the search for the best solution.

4. Results

For the purpose of this study, we tested a number of machine learning automation
environments. For the implementation, we chose ML in Visual Studio 2022 because of its
large selection of algorithms, fast semi-automatic learning and testing, and the ability to
download a file or API for further use within the SSC. Here is a brief description of the
algorithms used:

• LightGBM regression: A gradient boosting framework that uses tree-based learning
algorithms. It is designed to be fast and efficient, especially for large data sets, and is
known for its high performance and scalability.

• FastTreeTweedie regression: A variant of the FastTree algorithm that models the
Tweedie distribution, suitable for tasks such as insurance claims, where the target
variable has both zero and positive continuous values. It combines decision tree
learning with the Tweedie distribution to handle complex data distributions.

• LbfgsPoisson regression: A regression algorithm that uses the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) optimization method to fit a Poisson distribution
model. It is useful for numerical data where the output is a non-negative integer, such
as the number of occurrences of an event.

• FastTree Regression: A gradient-boosting algorithm that builds an ensemble of de-
cision trees for regression tasks. It is designed for fast execution and can efficiently
handle large data sets, making it suitable for high-dimensional data.

• FastForest Regression: An ensemble method that combines multiple decision trees to
increase predictive accuracy. It is a type of random forest algorithm that is particularly
good at reducing overfitting and improving generalization in regression tasks.

• SdcaRegression: Stochastic Dual Coordinate Ascent (SDCA) regression is an optimization-
based method for linear regression tasks. It is well-suited for large-scale problems and
achieves efficient, fast convergence by solving a dual original optimisation problem.

For each data set 1–7, we tested 41–78 algorithms, selecting the best ones (algorithms 1–7)
against the set criteria (high accuracy, low RMSE and short execution time). The best
selected algorithms are shown in Figure 4.

Algorithms 1–3 (Stage 1), considered best for analysing individual data, are shown in
Figure 5. In the individual areas, the best algorithms were for

• Health data: LightGbm Regression (0.8510) (Table 3);
• Energy consumption data: LbfgsPoissonRegression (0.7688) (Table 4);
• Traffic data: LightGbm Regression (0.8687) (Table 5).
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Important note: the LightGbm Regression algorithms for health data analysis and
traffic data analysis are algorithms trained on different data; thus, they result in different
models. Similarly, the LightGbm Regression algorithms used in Stage 1, Stage 2 and Stage 3
are different algorithms because we used different data sets for learning.

Table 3. Best algorithms to select the best algorithm for data sets from the health area (Stage 1).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

LightGbmRegression 0.8510 0.37 0.24 0.49
LightGbmRegression 0.8383 0.38 0.25 0.50
LightGbmRegression 0.8357 0.39 0.25 0.50

FastTreeTweedieRegression 0.8258 0.38 0.26 0.51
FastTreeTweedieRegression 0.8179 0.39 0.27 0.52

Table 4. Best algorithms to select the best algorithm for data sets from the energy consumption area
(Stage 1).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

LbfgsPoissonRegression 0.7688 975.90 1539806.29 1240.89
LbfgsPoissonRegression 0.7088 1046.44 1939766.85 1392.76
LbfgsPoissonRegression 0.6942 1128.64 2037087.58 1427.27
LbfgsPoissonRegression 0.5871 1277.95 2750434.96 1658.44
LbfgsPoissonRegression 0.5585 1317.30 2940633.20 1714.83

Table 5. Best algorithms to select the best algorithm for data sets from the movement area (Stage 1).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

LightGbmRegression 0.8687 4.96 55.89 7.48
FastTreeRegression 0.8639 5.11 57.91 7.61

LightGbmRegression 0.8506 5.30 63.56 7.97
LightGbmRegression 0.8388 5.53 68.61 8.28
FastTreeRegression 0.8370 5.54 69.35 8.33

Algorithms 4–6 (Stage 2), considered best for data aggregation, were from

• Health data (algorithm 4): LightGbm Regression (0.8501);
• Energy consumption data (algorithm 5): LbfgsPoissonRegression (0.7597);
• Traffic data (algorithm 6): LightGbm Regression (0.8567).

The algorithm considered best for cloud management (central/general view: algo-
rithm 7, Stage 3) was

• LightGbm Regression (0.8322).

The selection of SSC areas to be modelled (health, energy and mobility) and the levels
and modelling approaches seem correct, touching on the main current and partly future
SSC problem areas and related ESG policies and reports.

We considered all types of algorithms and networks, including traditional multilayer
perceptron (MLP) when comparing algorithms in each area (health, energy management,
traffic and transport). However, assuming a minimum accuracy threshold of 0.60, none of
them achieved the required results in a reasonable time (they took too long to learn). The
likely reason for this was that the data sets were relatively simple, but there were many of
them; hence, approaches that were effective for smaller data sets or complex data sets were
not optimal for their analysis. We have presented example results of comparisons with
other algorithms at a threshold of 0.60 in Table 6 (health), Table 7 (energy management) and
Table 8 (traffic and transport).We note that for other data sets (with different characteristics
of features, abundance, etc.) the optimal algorithms could be different.
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Table 6. Comparison of different health assessment algorithms (53 algorithms tested, only best
shown) to select the best algorithm for aggregation of data sets from the health area (Stage 2).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

FastForestRegression 0.6944 7.65 145.13 11.92
LightGbmRegression 0.7623 7.19 111.22 11.01
FastForestRegression 0.7521 6.78 114.43 11.17

FastTreeTweedieRegression 0.8367 5.55 66.22 7.97
SdcaRegression 0.7790 7.11 101.77 10.17

FastTreeRegression 0.8283 6.56 82.83 9.43
LbfgsPoissonRegressionRegression 0.7912 6.78 97.99 9.84

LightGbmRegression 0.8439 5.61 72.55 8.97
FastForestRegression 0.8407 5.19 67.43 8.43

FastTreeTweedieRegression 0.7979 6.78 101.11 10.01
SdcaRegression 0.8320 6.43 85.65 9.44

FastTreeRegression 0.7789 7.13 108.32 10.22
LbfgsPoissonRegressionRegression 0.7645 7.08 104.41 10.13

Table 7. Comparison of different energy consumption algorithms (48 algorithms tested, only best
shown) to select the best algorithm for aggregation of data sets from the energy management area
(Stage 2).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

LbfgsPoissonRegressionRegression 0.6534 1153.40 2311041.62 1520.21
LbfgsPoissonRegressionRegression 0.6542 1139.34 2305941.48 1518.53

FastTreeRegression 0.6283 1221.52 2478228.27 1574,24
LbfgsPoissonRegressionRegression 0.6972 1111.92 2018649.36 1420.79

FastTreeRegression 0.7427 1016.11 1715846.96 1309.90
LbfgsPoissonRegressionRegression 0.6895 1083.60 2070330.99 1438.86

FastTreeRegression 0.6145 1247.94 2570239.36 1603.20
LbfgsPoissonRegressionRegression 0.7056 1099.95 1963138.93 1401.2

FastTreeTweedieRegression 0.6013 1267.53 2658605.93 1630.52
FastTreeRegression 0.6049 1260.06 2634609.08 1623.15

LbfgsPoissonRegressionRegression 0.6112 1267.24 2592538.55 1610.14
FastTreeRegression 0.7604 974.84 1597501.02 1263.92

LbfgsPoissonRegressionRegression 0.6404 1219.63 2397823.37 1548.49

Table 8. Comparison of different movement and transport assessment algorithms (53 algorithms
tested, only best shown) to select the best algorithm for aggregation of data sets from the health area
(Stage 2).

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

FastForestRegression 0.7759 7.05 102.82 10.14
LightGbmRegression 0.7677 7.12 106.56 10.32
FastForestRegression 0.7542 7.44 112.75 10.62

LbfgsPoissonRegressionRegression 0.6620 7.42 155.06 12.45
FastTreeRegression 0.8010 6.65 91.32 9.56

LightGbmRegression 0.7808 6.69 100.56 10.03
FastTreeTweedieRegression 0.6788 7.82 147.36 12.14

FastForestRegression 0.7773 7.03 102.17 10.11
LbfgsPoissonRegressionRegression 0.7540 6.61 112.85 10.62

FastTreeRegression 0.8577 5.51 65.30 8.08
FastForestRegression 0.7801 7.00 100.86 10.04

LbfgsPoissonRegressionRegression 0.8173 6.28 83.83 9.16
LightGbmRegression 0.7845 6.89 98.86 9.94
FastTreeRegression 0.8442 5.74 71.48 8.45

FastTreeTweedieRegression 0.8507 5.20 68.50 8.28
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Table 8. Cont.

Agorithm RSsquared Absolute Loss Squared Loss RMS Loss

FastForestRegression 0.7820 6.98 100.00 10.00
LightGbmRegression 0.8150 6.06 84.85 9.21
FastTreeRegression 0.7627 7.02 108.89 10.44

FastForestRegression 0.7759 7.05 102.82 10.14

We have developed and tested a conceptual framework based on the data sets, but it
is the resulting model that needs further refinement and development, especially based on
real data. In the individual areas, the best deep learning results were for

• Health data: 0.8322;
• Energy consumption data: 0.6513;
• Traffic data: 0.7523.
• Mean aggregated value: 0.7453.

In machine learning algorithms, several key hyperparameters have been tuned to
optimise model performance:

• LightGbm Regression: The number of boosting iterations (num_iterations), learning
rate (learning_rate) and maximum tree depth (max_depth).These control the number
of trees built, the step size of model updates and the complexity of each tree;

• FastTreeTweedie Regression: the number of leaves (num_leaves), the minimum num-
ber of examples per leaf (min_leaf_count) and learning rate (learning_rate).These affect
the granularity of the tree, the minimum data needed in a leaf for further splitting,
and the speed of convergence;

• LbfgsPoissonRegression: the number of iterations (num_iterations), the strength of reg-
ularisation (l2_regularization) and the tolerance (convergence_tolerance).These govern
the maximum number of optimisation steps, the penalisation of large coefficients and
the convergence criteria of the algorithm;

• FastTreeRegression: number of trees (num_trees), minimum split gain (min_split_gain)
and learning rate (learning_rate).These control the ensemble size, the threshold for
splitting nodes and the rate of model adaptation;

• FastForestRegression: number of trees (num_trees), the number of features to consider
per split (num_features_per_split) and the minimum number of samples per leaf
(min_samples_per_leaf).These control the diversity and depth of the trees, as well as
the minimum data required to create a leaf;

• SdcaRegression: L1 and L2 regularisation terms (l1_regularization and l2_regularization)
and convergence tolerance (convergence_tolerance). These parameters control the
sparsity of feature selection, the model complexity penalty and the stopping criterion
of the optimisation process.

Cross-validation showed the superiority of the cascade of simple algorithms over the
concurrent solution described in [56] (Figure 6). It is worth considering that for a small
sample of smart city transportation data, this deep learning approach achieved 0.99978 [56].

5. Discussion

SSCs that are socially inclusive, safe (also from an energy and cybersecurity point
of view), resilient, and take into account the health and well-being of residents are a key
element of the Sustainable Development Goals (SDG) and the New Urban Agenda [45–48].
The operation of such a system is predictable in the short term, allowing the ongoing
management of SSCs based on current status, historical data and forecasts made 24 hours
in advance. Predictions for longer periods depend more strongly on the accuracy of other
predictions (e.g., weather forecasts) and can be shaped by long-term factors (e.g., seasonal
variation, seasonal employment, etc.); hence, they require greater management flexibility.
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The entire algorithm selection process is novel. We have provided a framework that
not only sets the stage for future work on integrating large data sets but also uses machine
learning techniques to synthesise data from different sources in SSCs. In particular, we have
described the use of seven carefully selected algorithms, selected based on criteria such as
prediction and classification accuracy, as well as computational efficiency. The selection
process involved systematically applying different algorithms and identifying those that
consistently delivered optimal results at each stage of the data processing process. These
algorithms, numbered 1 to 7, are divided into three distinct stages to facilitate a structured
approach to handling data:

• Algorithms 1–3 are dedicated to edge computing, where initial data refinement and
feature extraction occur;

• Algorithms 4–6 focus on data aggregation, where information from multiple sources
is consolidated;

• Algorithm 7 is used in the final stage to develop a global model that synthesises the
aggregated data into actionable insights.

This methodical approach enables the most effective algorithms to be applied at
each stage, which maximises overall system performance and reliability when handling
large-scale data integration tasks in SSC environments.

5.1. Comparison with Results of Previous Studies

In this article, we present an approach consisting of seven algorithms for the integra-
tion of large data sets for machine learning processing to be applied in optimisation in the
context of smart cities. The results of the bibliographic search on technical aspects (includ-
ing AI-based ones) in the transformation towards SSC showed 78 publications between 2012
and 2024, including 36 journal articles, 4 books or chapters and 37 conference/workshop
papers. As many as 64 (82.1%) of these were published in the last 5 years. Only 19 of these
were published as open access. However, the range of topics covered in them was very
broad: from the cognitive aspects of SSCs and their friendliness for residents/users through
the logistics and ecology of SSCs to meta-analyses of previous experiences and publications.
In the area addressed by this paper, a number of metaheuristic solutions are proposed for
the effective management of the big data collections generated by SSCs [51,52].

The problem of using simple AI/ML algorithms for simultaneous multi-level analysis
of different areas of SSC operations, including such key areas as health, energy consumption,
traffic and transport has not been explored in this way before. Single areas or groups of
areas can be modelled using deep learning, but in this case, they are resource-intensive and
large, multi-year projects are required to explore them, which are not cost-effective with
limited funding, nor are they time and energy-efficient. For the aforementioned reasons, the
proposed approach raises hopes for further systematic development by other researchers.

While deep neural networks (DNNs) are increasingly being used for IoT device
identification due to their high learning capability, they are vulnerable to attacks that
can significantly reduce device identification accuracy. DNN-based design of reliable de-
vice identification schemes and investigation of the impact of untargeted and targeted
adversary attacks on device identification require enrichment of evaluation criteria. Ef-
fective evaluation metrics should effectively show differences in the signal of individual
devices, even though the accuracy of IoT device identification decreases with increasing
attack/disturbance level and iteration step size [53].

Even more challenging are the formation flights of multiple unmanned aerial vehicles
(UAVs) with dynamic spectrum interaction for ordered communication of multiple UAVs
with limited bandwidth and in a countermeasure and jamming environment. Deep learning
algorithms with reinforcement (DRL) and networks with long- and short-term memory
(LSTM) provide the optimal strategy here, and also under conditions of environment inter-
action, UAV sharing and M/G/1 queueing are used for UAV prioritisation and packet loss
assessment. Therefore, faster convergence and better performance with limited bandwidth
are achieved [54].
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5.2. Opportunities for Further Exploration

AI-based solutions offer promising advances in SSC development, but there are several
limitations and challenges that need to be addressed. These include scalability, high
initial costs and infrastructure requirements, integration challenges, controlled energy
consumption, limited predictive accuracy and technology dependency. Scalability is a
significant constraint in sustainable AI-supported smart cities due to the huge number
of sensors, which can reach up to 50 million. This enormous scale creates challenges
in managing and processing the huge amount of data generated, leading to potential
bottlenecks in real-time decision-making. The complexity of coordinating thousands of
segments and ensuring seamless communication between them can place a strain on
infrastructure and computing resources. Additionally, the cost and energy consumption
required to maintain such a large system can be prohibitive. Finally, as the system grows, it
becomes increasingly difficult to ensure data security and privacy as more nodes create
more points of vulnerability.

High initial costs and infrastructure requirements are significant constraints for the
development of sustainable AI-supported smart cities, especially in developing countries.
These regions often lack the financial resources and existing infrastructure needed to
implement advanced technologies, making it difficult to adopt sustainable solutions. The
costs of installing sensors, upgrading networks and providing robust data management
systems can be prohibitively high, therefore delaying or preventing smart city initiatives.
Furthermore, the ongoing costs of maintenance, training and technology upgrades add to
the financial burden. As a result, the digital divide between developed and developing
regions may widen, exacerbating global inequalities in access to sustainable technology.

Integration challenges are a major constraint in sustainable AI-supported smart cities,
especially when integrating AI into existing urban infrastructure. Older systems, which
are often outdated and incompatible with new technologies, require significant modifi-
cation or replacement, making the integration process complex and costly. The lack of
standardisation between different technologies further complicates matters, as different
systems may not communicate effectively or share data seamlessly. These challenges can
lead to inefficiencies, delays and increased costs in implementing smart city initiatives.
Additionally, the need for expertise to manage these integrations can be a barrier, especially
in regions with limited technical resources.

Controlled energy consumption is an important constraint in sustainable AI-supported
smart cities as ML technologies are often energy-intensive. The computing power required
to process large data sets, run complex algorithms and support real-time decision-making
can lead to significant energy consumption. This increased energy demand can counteract
smart cities’ sustainability goals, potentially contributing to an increased carbon footprint.
As cities seek to balance the benefits of artificial intelligence with the need for energy
efficiency, this paradox challenges overall environmental goals. Furthermore, reliance
on energy-intensive technologies may require additional infrastructure to support clean
energy sources, thus adding complexity and cost.

Limited predictive accuracy is a significant limitation in SSCs supported by artificial
intelligence (AI) as machine learning (ML) models can struggle to accurately predict com-
plex urban dynamics. The challenge for these models is often the uncertainty of human
behaviour, which can be unpredictable and highly variable in different contexts. Addi-
tionally, factors such as changing weather conditions, economic changes and unexpected
events further complicate the accuracy of predictions. The inherent limitations of machine
learning algorithms in capturing and responding to these dynamic variables can lead to
suboptimal decision-making and planning. Consequently, reliance on AI forecasts can
sometimes result in ineffective or inefficient urban management strategies.

Dependence on technology is a significant limitation in sustainable AI-enabled smart
cities as over-reliance on AI systems can introduce vulnerabilities. In the event of technical
failures, cyber-attacks or natural disasters, critical systems can be compromised, leading
to disruptions in essential services such as transport, healthcare and utilities. The lack of
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human oversight and backup mechanisms in highly automated systems can exacerbate this
risk, potentially leaving cities unprepared for unexpected events. This dependency high-
lights the need for robust contingency plans to manage disruptions and ensure continuity
of services during emergencies. Without these safeguards, the resilience and sustainability
of smart cities could be compromised, undermining their intended benefits.

The framework is considered to be at an early stage of development, with challenges
primarily related to data origination, data aggregation, scalability and data security, espe-
cially in target production versions on SSCs of various sizes (number of inhabitants, data,
devices, employees, etc.) and their use cases. The next stage of the research will be to create
large data sets and evaluate them in difficult conditions. Processing based on AI integrated
with the cloud of data from many personalized IoMT devices (bedside, wearable) must
be characterised by high performance to provide the basis for building next-generation
intelligent healthcare. The SSC also needs a holistic approach to early detection of pan-
demics such as COVID-19 based on molecular diagnostics and computer-aided detection
(AI-based models) [55–59]. There is a certain challenge still in collecting and integrating
data (e.g., on health) from a wide variety of devices, not only from smart watches, scales
and smart shoes but also from thermographic sensors and sensors that examine people’s
movements as part of screening. Other data are easier to integrate if they are linked in
terms of geolocation.

Addressing these limitations requires a multidisciplinary approach involving urban
planners, policymakers, technologists (including AI specialists) and the public to develop
SSC solutions that are inclusive, secure and ethically sound [67–70].

On the other hand, automated machine learning (AutoML) can lead to high energy
consumption due to a large number of calculations and thus can significantly worsen its
carbon footprint. For this reason, there is a need to apply energy efficiency metrics to
advanced optimisation algorithms within AutoML so that the costs do not exceed the
results. These metrics allow the evaluation and optimisation of the algorithm’s energy
consumption, taking into account accuracy, sustainability and reduced environmental
impact with a minimal decrease in validation accuracy (e.g., by 0.5%). ML can be made
more sustainable by carefully considering the energy efficiency of computational pro-
cesses [71,72]. As biotechnological approaches evolve within smart cities, smart factories
and smart territories, these technologies can be integrated with IoT, especially in rain
gardens, urban vertical farming systems and urban photobioreactors. Biofuel cells can
also be used to power low-power sensor networks or self-powered biosensors (synthetic
biology: cell-based biosensors, bioactuators with synthetic genetic circuits as a development
direction for cyber-physical system—CPS) [73]. Technological advancement and innovation
path reviews provide a methodology for technological improvements and directions for
their search. This can be guided by building on R&D strengths and business value, and
structured technology exploration can be extended to explore and stimulate other forms of
development [74]. It is necessary to carefully consider whether and which industrial and
service optimisation processes (including the optimisation of machine resources as part of
preventive maintenance) are consistent with sustainable development [75–77].

6. Conclusions

The SSC policy emphasises the environmental aspects of urban areas, and their social
and economic sectors, enabling the development of practical plans for the sustainable
development of cities towards SSC. The pandemic, high energy prices, lack of drinking
water and security threats have accelerated the processes of transition to intelligent city
management (including ML-based management of urban services), and thus the transition
towards SSC.

In this study, we were able to analyse and manage three important areas of SSCs
(health, energy consumption, and traffic and transport) with accuracies of over 0.8322 at the
global level and 0.7688–0.8687 at the local level (the lowest values for energy management)
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using a cascade of a group of fairly simple algorithms. This shows that it is effective, and
further research work can contribute to higher values.

The SSC conceptual framework shown in the article emphasises the priorities, prac-
ticalities and use cases of SIoT and AI in the daily lives of SSC residents and users. The
experiences to date can be further extended to include new data and functional areas
of SSCs (e.g., energy cooperatives or the sales and marketing network). The proposed
AI/ML-based computational model in the transformation of SCs to SSCs with energy
markets in mind can lay the foundations for the further development of AI-based end-to-
end management of SSCs, with a focus on critical infrastructure, constraints and priority
development directions. It is worth combining various management strategies based on
both simpler methods (decision trees) and deep learning; even simple artificial intelligence
solutions may prove effective in reasoning and forecasting and making SSC management
more predictable and efficient for the benefit of residents and the environment.

Researchers and practitioners can contribute to the development of SSCs by prioritising
ethical issues, community engagement, and long-term environmental and social benefits,
in particular through research on

• Interdisciplinary approaches: interdisciplinary collaboration between computer scien-
tists, urban planners, environmental scientists and social scientists can lead to more
holistic and effective AI-based solutions for SSCs;

• Privacy-preserving AI: effective data analysis is possible while protecting the privacy
of SSC residents;

• Community engagement and citizen empowerment: AI can be used to increase cit-
izen engagement, participation and empowerment in sustainable urban develop-
ment projects;

• Resilience and disaster management: AI can contribute to building resilient smart
cities by developing robust systems for disaster prediction, response and recovery,
integrated with urban planning.
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