The Influence of Feeding Type on Quality and Nutritional Characteristics of Pork Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Fat Extraction
2.2.2. Oxidative Stability of Pork Fats
2.2.3. Determination of Peroxide Value
2.2.4. Determination of Fatty Acid Profiles
2.2.5. Nutritional Indexes
2.2.6. Distribution of Fatty Acids between sn-2 and sn-1,3 Positions of Triacylglycerols
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Oxidative Stability of Groin, Jowl, and Trimming Shoulder Fats
3.2. Peroxide Value of Groin, Jowl, and Trimming Shoulder Fats
3.3. Fatty Acid Profiles and Health Indexes of Groin, Jowl, and Trimming Shoulder Fats
3.4. Distribution of Fatty Acids between Internal (sn-2) and External (sn-1,3) Positions of Triacylglycerols in Groin, Jowl, and Trimming Shoulder Fats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Averette, G.L.; See, M.T.; Hansen, J.A.; Sutton, D.; Odle, J. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. Anim. Sci. J. 2002, 80, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality—A review. Meat Sci. 2003, 64, 219–237. [Google Scholar] [CrossRef]
- Stephenson, E.W.; Vaughn, M.A.; Burnett, D.D.; Paulk, C.B.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Goodband, R.D.; Woodworth, J.C.; Gonzalez, J.M. Influence of dietary fat source and feeding duration on finishing pig growth performance, carcass composition, and fat quality. Anim. Sci. J. 2016, 94, 2851–2866. [Google Scholar] [CrossRef]
- Mourot, J.; Hermier, D. Lipids in mono gastric animal meat. Reprod. Nutr. Dev. 2001, 41, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Apple, J.K.; Maxwell, C.V.; Galloway, D.L.; Hutchison, S.; Hamilton, C.R. Interactive effects of dietary fat source and slaughter weight in growing-finishing swine: I. Growth performance and longissimus muscle fatty acid composition. J. Anim. Sci. 2009, 87, 1407–1422. [Google Scholar] [CrossRef]
- Piotrowska, A.; Świąder, K.; Waszkiewicz-Robak, B.; Świderski, F. Możliwość uzyskania mięsa i przetworów z mięsa wieprzowego o podwyższonej zawartości wielonienasyconych kwasów tłuszczowych n-3. ŻYWNOŚĆ Nauka Technol. Jakość 2012, 84, 5–19. (In Polish) [Google Scholar]
- Wood, J.D.; Enser, M. Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. W: New Aspects of Meat Quality—From Genes to Ethnics (red. P. P. Purslow); Woodhead Publishing: Cambridge, UK, 2017; pp. 501–535. [Google Scholar]
- Górecka, D.; Lipidy, W. Mięso—Podstawy Nauki i Technologii (Red. A. Pisula i E Pospiech); Wydawnictwo SGGW: Warszawa, Polska, 2011; pp. 167–177. (In Polish) [Google Scholar]
- Kouba, M.; Ensert, M.; Whittington, F.M.; Nute, G.R.; Wood, J.D. Effect of high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 2003, 81, 1967–1979. [Google Scholar] [CrossRef]
- Doichev, V.; Angelov, A.; Szostak, S.R.; Katzarov, V. Fatty acid composition of fat tissue triglicerides and skeletal muscle tissue histostructure of pigs fed diet containing flax seed. Technol. Aliment. 2003, 2, 135–141. [Google Scholar]
- Mitchaothani, J.; Yuangklang, C.; Wittayakun, S.; Vasupen, K.; Wongsutthavas, S.; Srenanul, P.; Hovinier, R.; Everts, H.; Beynen, A.C. Efects of dietary fat type on meat quality and fatty acid composition of various tissues in growing-finishing swine. Meat Sci. 2007, 76, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechnmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, P.D.; Nowachowicz, J.; Michalska, G.; Bucek, T.; Lynch, B.; Mullen, A.M. Backfat fatty acid profile of crossbred pigs fed a diet supplemented with conjugated linoleic acid or sunflower oil. Ann. Anim. Sci. 2012, 12, 433–443. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef]
- Migdał, W.; Paściak, P.; Wojtysiak, D.; Barowicz, T.; Pieszka, M.; Pietras, M. The effect of dietary CLA supplementation on meat and eating quality, and the histochemical profile of the m. longissinus dorsi from stress susceptible fatteners slaughtered at heavier weights. Meat Sci. 2004, 66, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Turyk, Z.; Osek, M.; Milczarek, A.; Janocha, A. Skład chemiczny mięsa i lipidogram krwi tuczników żywionych mieszankami zawierającymi jęczmień lub pszenżyto. Rocz. Nauk. Pol. Tow. Zootech. 2015, 2, 71–79. (In Polish) [Google Scholar]
- Luo, J.; Zeng, D.; Cheng, L.; Mao, X.; Yu, J.; Yu, B.; Chen, D. Dietary b-glucan supplementation improves growth performance, carcass traits and meat quality of finishing pigs. Anim. Nutr. 2019, 5, 380–385. [Google Scholar] [CrossRef]
- Wen, W.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; He, J.; Luo, Y.; Yan, H.; Chen, H.; Zheng, P.; et al. Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs. Anim. Nutr. 2022, 8, 256–264. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, Z.; Song, B.; Zheng, C.; Duan, Y.; Kong, X.; Deng, J.; Li, F. Dietary supplementation with betaine or glycine improves the carcass trait, meat quality and lipid metabolism of finishing mini-pigs. Anim. Nutr. 2021, 7, 376–383. [Google Scholar] [CrossRef]
- Liu, S.; Du, M.; Tu, Y.; You, W.; Chen, W.; Liu, G.; Li, J.; Wang, J.; Lu, Z.; Wang, T.; et al. Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. Anim. Nutr. 2023, 12, 87–95. [Google Scholar] [CrossRef]
- Mykhalko, O.H.; Shostia, A.M.; Usenko, S.O.; Verbelchuk, T.V.; Verbelchuk, S.P.; Koberniuk, V.V.; Lavryniuk, O.O.; Kryvoruchenko, L.V. Fattening and slaughter performance of pigs on liquid and dry feeds. Bull. Sumy Natl. Agrar. Univ. Ser. Livest. 2023, 4, 30–40. [Google Scholar]
- Vázquez, N.A.; Barragán, H.B.; Aguilar, N.C.V.; Brenner, E.G.; Dávila, F.S.; Trejo, A.M.; Ramírez, M.C. Effect of wet feeding of finishing pigs on production performance, carcass composition and meat quality. Rev. Mex. Cienc. Pecu. 2021, 12, 370–385. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. JBC 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized liquid extraction of lipids for the determination of oxysterols in egg-containing food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of thermal properties of goat milk fat and goat milk chocolate by using DSC, PDSC and TGA methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- ISO 3960; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. International Organization for Standardization: Geneva, Switzerland, 2017.
- Polish Norm: PN-EN ISO: 5509:2001; Oil and Vegetable and Animal Fats. Preparation of Methyl Ester of Fatty Acids. Polish Committee for Standardization: Warsaw Poland, 2001.
- Bryś, J.; Flores, L.F.V.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 1, 319–327. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2022, 77, 187–194. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Stability of biodiesel and its blends: A review. Renew. Sustain. Energy Rev. 2010, 14, 667–678. [Google Scholar] [CrossRef]
- Pereira, G.G.; Marmesat, S.; Barrera-Arellano, D.; Dobarganes, M.C. Evolution of oxidation in soybean oil and its biodiesel under the conditions of the oxidation stability test. Grasas Aceites 2013, 64, 482–488. [Google Scholar]
- Frankel, E.N. Lipid oxidation: Mechanisms, products and biological significance. J. Am. Oil Chem. Soc. 1984, 61, 1908–1917. [Google Scholar] [CrossRef]
- Knothe, G. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 2007, 88, 669–677. [Google Scholar] [CrossRef]
- Krupska, A.; Olkiewicz, M. Wpływ lokalizacji tłuszczu w tuszy wieprzowej na jego właściwości fizykochemiczne. Postępy Nauk. Technol. Przemysłu Rolno-Spożywczego 2012, 67, 43–52. (In Polish) [Google Scholar]
- FAO 2010; Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation. FAO: Rome, Italy, 2010.
- Alonso, V.; Najes, L.M.; Provincial, L.; Guillen, E.; Gil, M.; Roncales, P.; Beltran, J.A. Influence of dietary on pork eating quality. Meat Sci. 2012, 92, 366–373. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, L.Y.; Yin, J.D.; Everts, A.K.R.; Li, D.F. Effects of soybean oil and linseed oil on fatty acid compositions of muscle lipids and cooked pork flacour. Meat Sci. 2008, 80, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Kumar, F.; Sharma, D.; Biswas, A.; Verma, A.K. Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Eur. J. Lipid Sci. Technol. 2018, 120, 1700470. [Google Scholar] [CrossRef]
- Salvatori, G.; Pantaleo, L.; Di Cesare, C.; Maiorano, G.; Filetti, F.; Oriani, G. Fatty acid composition and cholesterol content of muscles as related to genotype and vitamin E treatment in crossbred lambs. Meat Sci. 2004, 67, 45–55. [Google Scholar] [CrossRef]
- Alvarenga, A.; Sousa, R.V.; Parreira, G.G.; Chiarini-Garcia, H.; Almeida, F. Fatty acid profile, oxidativestability of pork lipids and meat quality indicators are not affected by birth weight. Animal 2014, 8, 660–666. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Stasiak, D.M.; Ferysiuk, K.; Solska, E. The influence of sonication on the oxidative stability and nutritional value of organic dry-fermented beef. Meat Sci. 2019, 148, 113–119. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Szwajgier, D.; Zaricka, E. Fatty acid profile, antioxidative status and dietary value of the breast muscle of broiler chickens receivingglycine-Zn chelates. Anim. Prod. Sci. 2020, 60, 1095–1102. [Google Scholar] [CrossRef]
- Correa, L.B.; Zanetti, M.A.; Del Claro, G.R.; de Melo, M.P.; Rosa, A.F.; Netto, A.S. Effect of supplementation of two sources and two levels of copper on lipid metabolism in Nellore beef cattle. Meat Sci. 2012, 91, 466–471. [Google Scholar] [CrossRef]
- Minelli, G.; D’Ambra, K.; Macchioni, P.; Lo Fiego, D.P. Effect of pig dietary n-6/n-3 polyunsaturated fatty acids ratio and gender on carcass traits, fatty acid profiles, nutritional indices of lipids depots and oxidative stability of meat in medium-heavy pigs. Foods 2023, 12, 4106. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cartoni Mancinelli, A.; Vaudo, G.; Cavallo, M.; Castellini, C.; Mattioli, S. Indexing of fatty acids in poultry meat for its characterization in healthy human nutrition: A comprehensive application of the scientific literature and new proposals. Nutrients 2022, 14, 3110. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kourimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Acay, A.; Ulu, M.S.; Ahsen, A.; Ozkececi, G.; Demir, K.; Ozuguz, U.; Yuksel, S.; Acarturk, G. Atherogenic index as a predictor of atherosclerosis in subjects with familial Mediterranean fever. Medicina 2014, 50, 329–333. [Google Scholar] [CrossRef]
- Lisa, M.; Velinska, H.; Holcapek, M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal. Chem. 2009, 81, 3903–3910. [Google Scholar] [CrossRef]
- Hunter, J.E. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 2001, 36, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.; Rey, A.I.; Olivares, Á.; Cambero, M.I.; Escudero, R.; Ávila, M.D.R.; Palomo, A.; López-Bote, C. Free-Range Feeding Alters Fatty Acid Composition at the sn-2 Position of Triglycerides and Subcutaneous Fat Physicochemical Properties in Heavy Pigs. Animals 2021, 11, 2802. [Google Scholar] [CrossRef]
- Nagy, K.; Sandoz, L.; Destaillats, F.; Schafer, O. Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry. J. Lipid Res. 2013, 54, 290–305. [Google Scholar] [CrossRef]
- productivity and food safety. Recent Adv. Anim. Nutr. 2001, 13, 49–63.
- Canibe, J.; Jensen, B.B. Fermented and nonfermented liquid feed to growing pigs: Effects on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci. 2003, 81, 2019–2031. [Google Scholar] [CrossRef]
- Lawlor, P.G.; Lynch, P.B.; Gardiner, G.E.; Caffrey, P.J.; O’Doherty, J.V. Effect of liquid feeding weaned pigs on growth performance to harvest. J. Anim. Sci. 2002, 80, 1725–1735. [Google Scholar] [CrossRef]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of choice white grease and soybean oil on growth performance, carcass characteristics, and carcass fat quality of growing-finishing pigs. J. Anim. Sci. 2011, 89, 404–413. [Google Scholar] [CrossRef]
Ingredients | Share of Ingredients (%) | |||
---|---|---|---|---|
Grower Feed | Finisher Feed | |||
Liquid | Dry | Liquid | Dry | |
Wheat | 41.30 | 38.25 | 38.62 | 35.15 |
Barley | 13.77 | 12.65 | 12.87 | 11.75 |
Wheat food | 10.00 | 10.00 | 20.00 | 20.00 |
Soybean meal | 18.37 | 2.00 | 10.05 | - |
Full-fat soy | - | 21.50 | - | 12.50 |
Rapeseed meal | 5.00 | 5.00 | 10.00 | 10.00 |
Fishmeal | 2.50 | 2.50 | - | - |
Fat mixture | - | - | - | 2.50 |
Soybean oil | 5.96 | 2.00 | 5.36 | 2.00 |
Molasses | - | 3.00 | - | 3.00 |
Minerals and vitamins | 3.10 | 3.10 | 3.10 | 3.10 |
Nutritional specification of feed | ||||
Liquid | Dry | Liquid | Dry | |
DE (MJ/kg) | 14.75 | 14.72 | 14.13 | 14.22 |
Lysine (%) | 1.22 | 1.17 | 0.94 | 0.89 |
Calcium (%) | 0.79 | 0.90 | 0.73 | 0.83 |
Phosphorus (%) | 0.68 | 0.67 | 0.59 | 0.56 |
Sodium (%) | 0.40 | 0.42 | 0.40 | 0.40 |
Sample | Oxidation Induction Time (min) | ||
---|---|---|---|
100 °C | 120 °C | 140 °C | |
GF_L | 108.46 ± 1.03 d | 25.24 ± 0.89 e | 6.06 ± 0.24 c |
GF_D | 108.56 ± 2.07 d | 25.59 ± 1.13 e | 5.92 ± 1.28 c |
JF_L | 89.05 ± 0.11 a | 21.76 ± 1.42 b | 4.04 ± 0.47 a |
JF_D | 91.65 ± 0.08 b | 20.70 ± 0.76 a | 5.29 ± 0.29 b |
TSF_L | 103.70 ± 0.05 c | 23.63 ± 0.51 d | 5.92 ± 0.28 c |
TSF_D | 91.49 ± 0.03 b | 23.01 ± 0.95 c | 5.31 ± 0.63 b |
GF_L | GF_D | JF_L | JF_D | TSF_L | TSF_D | |
---|---|---|---|---|---|---|
Peroxide value (meq O2/kg of fat) | 1.42 ± 0.39 d | 1.17 ± 0.24 b,c | 1.41 ± 0.24 d | 0.71 ± 0.24 a | 1.23 ± 0.24 c | 1.07 ± 0.24 b |
Fatty Acids Group | GF_L | GF_D | JF_L | JF_D | TSF_L | TSF_D |
---|---|---|---|---|---|---|
MUFA (%) | 46.11 ± 3.03 a | 46.50 ± 2.84 a | 51.97 ± 3.01 c | 51.16 ± 4.01 b | 52.15 ± 4.14 c | 46.56 ± 2.38 a |
PUFA (%) | 10.78 ± 1.02 a | 12.05 ± 1.81 c | 11.37 ± 1.98 b | 12.95 ± 3.03 d | 10.59 ± 1.14 a | 13.67 ± 1.89 e |
SFA (%) | 43.11 ± 1.32 f | 41.45 ± 0.99 e | 36.66 ± 1.07 b | 35.89 ± 0.86 a | 37.26 ± 0.98 c | 39.77 ± 1.16 d |
PUFA/SFA | 0.25 | 0.29 | 0.31 | 0.36 | 0.28 | 0.34 |
n-6/n-3 | 9.48 a | 10.37 bc | 9.26 ab | 10.54 bc | 8.57 a | 11.01 c |
IA | 0.57 | 0.54 | 0.45 | 0.44 | 0.48 | 0.50 |
IT | 1.35 | 1.29 | 1.05 | 1.01 | 1.07 | 1.19 |
HH | 1.99 | 2.03 | 2.48 | 2.51 | 2.39 | 2.20 |
HPI | 1.75 | 1.84 | 2.20 | 2.27 | 2.09 | 2.00 |
Fatty Acid | Fatty Acid Percentage in TAG (%) | Fatty Acid Percentage in Positions (%) | Fatty Acid Share in sn-2 Position (%) | |
---|---|---|---|---|
sn-2 | sn-1,3 | |||
GF_L | ||||
14:0 | 1.97 ± 0.45 a | 5.06 | 0.43 | 85.62 |
16:0 | 24.46 ± 2.03 e | 61.67 | 5.86 | 84.04 |
18:0 | 15.16 ± 1.02 d | 4.97 | 20.26 | 10.93 |
18:1 n-9 | 42.30 ± 2.87 f | 15.99 | 55.46 | 12.60 |
18:2 n-6 | 9.17 ± 1.27 b | 5.44 | 11.04 | 19.77 |
GF_D | ||||
14:0 | 1.64 ± 0.38 a | 4.04 | 0.44 | 82.12 |
16:0 | 25.16 ± 1.84 e | 62.14 | 6.67 | 82.32 |
18:0 | 13.83 ± 0.95 d | 4.39 | 18.55 | 10.58 |
18:1 n-9 | 42.66 ± 2.53 f | 15.68 | 56.15 | 12.25 |
18:2 n-6 | 10.44 ± 1.36 c | 5.49 | 12.92 | 17.52 |
Fatty Acid | Fatty Acid Percentage in TAG (%) | Fatty Acid Percentage in Positions (%) | Fatty Acid Share in sn-2 Position (%) | |
---|---|---|---|---|
sn-2 | sn-1,3 | |||
JF_L | ||||
14:0 | 1.63 ± 0.25 b | 4.29 | 0.30 | 87.73 |
16:0 | 22.07 ± 1.48 g | 57.49 | 4.36 | 88.83 |
18:0 | 11.92 ± 0.86 f | 4.61 | 15.58 | 12.89 |
18:1 n-9 | 47.83 ± 2.49 i | 20.71 | 61.39 | 14.43 |
18:2 n-6 | 9.62 ± 1.11 c | 5.98 | 11.44 | 20.72 |
JF_D | ||||
14:0 | 1.45 ± 0.71 a | 3.92 | 0.22 | 90.11 |
16:0 | 22.34 ± 1.21 g | 59.03 | 3.99 | 88.08 |
18:0 | 11.24 ± 1.42 e | 4.16 | 14.78 | 12.34 |
18:1 n-9 | 46.93 ± 3.01 h | 19.13 | 60.83 | 13.59 |
18:2 n-6 | 11.06 ± 0.82 d | 6.48 | 13.35 | 19.53 |
Fatty Acid | Fatty Acid Percentage in TAG (%) | Fatty Acid Percentage in Positions (%) | Fatty Acid Share in sn-2 Position (%) | |
---|---|---|---|---|
sn-2 | sn-1,3 | |||
TSF_L | ||||
14:0 | 1.83 ± 0.56 b | 4.69 | 0.40 | 85.43 |
16:0 | 22.52 ± 2.07 g | 56.99 | 5.29 | 84.35 |
18:0 | 11.75 ± 0.99 d | 4.94 | 15.16 | 14.01 |
18:1 n-9 | 48.10 ± 2.96 j | 20.83 | 61.72 | 14.44 |
18:2 n-6 | 8.91 ± 0.77 c | 5.69 | 10.52 | 21.29 |
TSF_D | ||||
14:0 | 1.50 ± 0.39 a | 3.86 | 0.32 | 85.78 |
16:0 | 24.02 ± 2.69 h | 59.30 | 6.38 | 82.29 |
18:0 | 13.27 ± 1.23 f | 4.99 | 17.41 | 12.53 |
18:1 n-9 | 42.81 ± 2.64 i | 18.53 | 54.95 | 14.43 |
18:2 n-6 | 11.87 ± 0.86 e | 6.87 | 14.37 | 19.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Dasiewicz, K.; Słowiński, M. The Influence of Feeding Type on Quality and Nutritional Characteristics of Pork Fat. Appl. Sci. 2024, 14, 8291. https://doi.org/10.3390/app14188291
Górska A, Wirkowska-Wojdyła M, Ostrowska-Ligęza E, Dasiewicz K, Słowiński M. The Influence of Feeding Type on Quality and Nutritional Characteristics of Pork Fat. Applied Sciences. 2024; 14(18):8291. https://doi.org/10.3390/app14188291
Chicago/Turabian StyleGórska, Agata, Magdalena Wirkowska-Wojdyła, Ewa Ostrowska-Ligęza, Krzysztof Dasiewicz, and Mirosław Słowiński. 2024. "The Influence of Feeding Type on Quality and Nutritional Characteristics of Pork Fat" Applied Sciences 14, no. 18: 8291. https://doi.org/10.3390/app14188291
APA StyleGórska, A., Wirkowska-Wojdyła, M., Ostrowska-Ligęza, E., Dasiewicz, K., & Słowiński, M. (2024). The Influence of Feeding Type on Quality and Nutritional Characteristics of Pork Fat. Applied Sciences, 14(18), 8291. https://doi.org/10.3390/app14188291