
Citation: Lee, H.J.; Kim, M.-S.; Lee,

M.C. Path Planning Based on

Artificial Potential Field with an

Enhanced Virtual Hill Algorithm.

Appl. Sci. 2024, 14, 8292. https://

doi.org/10.3390/app14188292

Academic Editor: Christos Bouras

Received: 27 August 2024

Revised: 9 September 2024

Accepted: 12 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Path Planning Based on Artificial Potential Field with an Enhanced
Virtual Hill Algorithm
Hyun Jeong Lee 1 , Moon-Sik Kim 2,* and Min Cheol Lee 1,*

1 School of Mechanical Engineering, Pusan National University, Pusan-si 46241, Republic of Korea;
lhjeong98@gmail.com

2 Department of Intelligent Mobility Engineering, Kongju National University,
Cheonan-si 31080, Republic of Korea

* Correspondence: mskim2@kongju.ac.kr (M.-S.K.); mclee@pusan.ac.kr (M.C.L.)

Abstract: The artificial potential field algorithm has been widely applied to mobile robots and robotic
arms due to its advantage of enabling simple and efficient path planning in unknown environments.
However, solving the local minimum problem is an essential task and is still being studied. Among
current methods, the technique using the virtual hill concept is reliable and suitable for real-time path
planning because it does not create a new local minimum and provides lower complexity. However,
in the previous study, the shape of the obstacles was not considered in determining the robot’s
direction at the moment it is trapped in a local minimum. For this reason, longer or blocked paths are
sometimes selected. In this study, we propose an enhanced virtual hill algorithm to reduce errors in
selecting the driving direction and improve the efficiency of robot movement. In the local minimum
area, a dead-end algorithm is also proposed that allows the robot to return without entering deeply
when it encounters a dead end.

Keywords: mobile robots; artificial potential field; local minima problem; enhanced virtual hill;
dead-end algorithm

1. Introduction

Unlike complex global path planning [1], which requires a vast amount of prior
information, the local method allows for path planning, including obstacle avoidance, in an
unknown environment with a small amount of computation. Local path planning using the
APF (artificial potential field) technique has been widely used in real-time path planning
due to its easy implementation and high computational efficiency [2–9]. APF is formed by
the sum of the attractive potential field to reach the destination and the repulsive potential
field to avoid obstacles [10]. Due to the potential at each point, the robot travels to the
destination without colliding. In this process, when the sum of potentials approaches ‘0’,
local minima may occur, in which the robot stops operating [11,12]. In order to apply the
APF technique, this problem must be solved, and various techniques have been studied
so far. There are methods of modifying the potential field function or the repulsive force
function [6,13–15] or adding vortex fields or local attractors [16–18]. In [17], vortex fields
prevent collisions between obstacles and robots and enable smooth running when the
robot moves through narrow corridors. However, it is difficult to determine when to
apply vortex potential for optimal performance, and it may not be effective in complex
environments. References [7,19] propose a short and optimal path planning method using
bacterial foraging optimization. In [7], virtual particles are initially moved randomly, the
cost is calculated at each location, the best particle is found, and the robot’s driving path
is created. The optimal path can be found even in complex environments. Reference [19]
shows that when a robot is trapped in a local minimum, a virtual obstacle suitable for the
location condition is created, and the robot is guided to move to a new path. However, both
of these techniques require an iterative learning process to optimize the path and virtual

Appl. Sci. 2024, 14, 8292. https://doi.org/10.3390/app14188292 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14188292
https://doi.org/10.3390/app14188292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-5764-7294
https://orcid.org/0009-0004-4255-5896
https://orcid.org/0000-0003-4472-1267
https://doi.org/10.3390/app14188292
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14188292?type=check_update&version=2

Appl. Sci. 2024, 14, 8292 2 of 17

obstacles. In the bacterial potential field method [20], the problems of the APF are solved
by applying the bacterial evolutionary algorithm (BEA) in addition. There are also methods
to plan the optimal path while solving the local minimum using simulated annealing (SA),
a genetic algorithm (GA), or reinforcement learning [21–24]. Reference [24] introduces an
algorithm that converges to the optimal path using reward and value functions. The optimal
path can be found through automatic learning without prior information. However, since
it starts randomly, it can be unstable and requires a lot of calculations to optimize the path.
References [25,26] propose new algorithms to be combined with APF. In [26], the improved
A* algorithm is fused with APF, and search accuracy and efficiency are improved using a
heuristic method. To escape the local minimum, a virtual target point is set in [27,28], and a
grid-based obstacle cell is used in [29,30]. In [30], efficient computation is possible using
a discrete grid, and local minima can be avoided by creating a new repulsive potential
between adjacent obstacles. However, if the resolution of the grid is low, precise path
planning is difficult, and if the resolution is high, the amount of calculation increases. A
perpendicular approach based on APF has been proposed as a local path plan for unknown
obstacles along with a global path plan performed before the departure of the robot [31].
This method can solve the local minima problem with a relatively short calculation time,
but it is difficult to apply in an unknown environment because it requires prior information
about obstacles.

Recently, research on learning-based optimization techniques has been introduced to
overcome the shortcomings of APF. These methods can find the optimal path for robots even
in complex environments and efficiently avoid and escape local minima. However, there
are issues such as the robot being unstable at the beginning of the learning process, results
varying depending on the initial conditions, and high computational load. Additionally, in
unknown environments, the robot’s responsiveness is reduced until the learning process
is completed, making immediate path planning difficult. On the other hand, the artificial
potential field algorithm with a virtual hill used in this paper has the advantage of being
able to avoid obstacles, escape local minima, and reach the destination without a learning
process in unknown environments.

In [32], a method of escaping from the local minimum using a virtual hill is introduced.
The virtual hill generates extra force instead of attractive force to repel the robot from a
local minimum. The virtual hill technique does not require prior information about space
and obstacles, modeling [33] and learning [23,24] processes for generating potential fields
may be omitted, and a new local minimum is not created. It also has the advantage of
being applicable to dynamic environments and being easy to implement. And in most
cases, a robot can escape from the local minimum. This is an easy and safe way for a robot
to move to a destination while avoiding obstacles in an unknown environment without
being trapped in a new local minimum. The virtual hill technique is a method of moving
along the outline of the obstacle that caused the local minimum. The robot determines
which direction to follow among the left and right obstacles to drive as soon as it is trapped
in the local minimum. Efficient and reliable path planning is possible if the robot selects
the obstacle that leads to the shortest distance. In the previous study [32], the direction
of movement was selected only in the relative positional relationship between the robot,
the closest obstacle, and the destination without considering the shape of the path. As a
result, the robot may go a long distance or choose a dead end. Therefore, there is a need to
reduce errors in the selection of the direction of driving regardless of obstacle shape and to
improve the efficiency of the robot’s movement.

This paper proposes ‘the enhanced virtual hill’ technique, a method of determining
the driving direction that considers the shape of surrounding obstacles. At the moment
the robot is trapped in a local minimum, the distance to obstacles is measured, and it is
determined which of the two directions is the more open path. The driving efficiency of
the robot can be improved by blocking closed-path driving in advance. Additionally, a
dead-end algorithm is proposed that allows the robot to come back without going deep

Appl. Sci. 2024, 14, 8292 3 of 17

when it encounters a dead end. Through simulations, it is confirmed that the robot’s
moving distance is reduced when the proposed methods are applied.

2. Simulation Environments

For evaluating the path planning algorithm, a mobile robot model, LiDAR sensor,
visualization function, and maps provided by MATLAB 2022b’s Mobile Robotics Simulation
Toolbox are utilized. Figure 1a,b shows the directions of the linear velocity and angular
velocity of the robot and the environment of the Mobile Robotics Simulation Toolbox,
respectively. The forward/inverse geometry of the robot is provided, and the position,
posture, movement path, sensor measurement distance(the dashed blue lines), etc. of the
robot are shown through the visualization function, as in Figure 1b. For the simulation,
the radius of the wheel of the mobile robot is set to 0.1 [m], and wheelbase, which is the
distance from the left wheel to the right wheel, is set to 0.5 [m]. The local coordinate
system of the robot is fixed to the center of the robot. In the simulation environment, the
LiDAR sensor is configured in a radial form, with the center of the robot as the origin.
According to the user settings, the robot obtains obstacle information of up to 4 m at
19 points through the LiDAR sensor. LiDAR sensors are widely used to create maps or
model and track objects using numerous measurement points. However, in this paper,
since large amounts of data in the form of a cloud are not required, the LiDAR sensor is
simulated by a low-cost ultrasonic sensor widely used in mobile robots. In the reference
paper [32], 5–7 robot skeleton points are set, and the distance from each point to the obstacle
is calculated and simulated. Although this paper also uses the LiDAR sensor supported by
MATLAB’s Toolbox, it receives distance data by dividing 360 degrees into 19 points as if it
were equipped with 19 ultrasonic sensors. Computation time can be saved by reducing the
amount of processed data. The maximum measurement distance is set to 4 m. This study
targets mobile robots that provide services in offices or commercial facilities. Accordingly,
4 m is considered the distance that people can feel as an open space in general indoor
office environments. At too far a distance, the spacing between each sensor data increases,
making it inappropriate to treat it as information about continuous obstacles. Reference [32]
is referred to for the path planning and control process of the robot. All simulations are
saved as figures, data files, and videos.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 18

when it encounters a dead end. Through simulations, it is confirmed that the robot’s mov-

ing distance is reduced when the proposed methods are applied.

2. Simulation Environments

For evaluating the path planning algorithm, a mobile robot model, LiDAR sensor,

visualization function, and maps provided by MATLAB 2022b’s Mobile Robotics Simula-

tion Toolbox are utilized. Figure 1a,b shows the directions of the linear velocity and an-

gular velocity of the robot and the environment of the Mobile Robotics Simulation

Toolbox, respectively. The forward/inverse geometry of the robot is provided, and the

position, posture, movement path, sensor measurement distance(the dashed blue lines),

etc. of the robot are shown through the visualization function, as in Figure 1b. For the

simulation, the radius of the wheel of the mobile robot is set to 0.1 [m], and wheelbase,

which is the distance from the left wheel to the right wheel, is set to 0.5 [m]. The local

coordinate system of the robot is fixed to the center of the robot. In the simulation envi-

ronment, the LiDAR sensor is configured in a radial form, with the center of the robot as

the origin. According to the user settings, the robot obtains obstacle information of up to

4 m at 19 points through the LiDAR sensor. LiDAR sensors are widely used to create maps

or model and track objects using numerous measurement points. However, in this paper,

since large amounts of data in the form of a cloud are not required, the LiDAR sensor is

simulated by a low-cost ultrasonic sensor widely used in mobile robots. In the reference

paper [32], 5–7 robot skeleton points are set, and the distance from each point to the ob-

stacle is calculated and simulated. Although this paper also uses the LiDAR sensor sup-

ported by MATLAB’s Toolbox, it receives distance data by dividing 360 degrees into 19

points as if it were equipped with 19 ultrasonic sensors. Computation time can be saved

by reducing the amount of processed data. The maximum measurement distance is set to

4 m. This study targets mobile robots that provide services in offices or commercial facil-

ities. Accordingly, 4 m is considered the distance that people can feel as an open space in

general indoor office environments. At too far a distance, the spacing between each sensor

data increases, making it inappropriate to treat it as information about continuous obsta-

cles. Reference [32] is referred to for the path planning and control process of the robot.

All simulations are saved as figures, data files, and videos.

(a) (b)

Figure 1. MATLAB 2022b simulation environment: (a) mobile robot model, linear velocity 𝑣, angu-

lar velocity 𝜔; (b) visualizer of the Mobile Robotics Simulation Toolbox.

3. Virtual Hill Concept and Open Path Indicator, 𝑵𝒆𝒘 𝒆𝒃

The virtual hill concept allows the robot to escape from the local minimum by gener-

ating extra force instead of attractive force when in the local minimum area. As explained

in Section 3.1, the extra force follows the direction of the unit tangent vector 𝐞𝑡 of 𝛾 ,

which represents the trajectory of the nearest obstacle while the robot is moving within

the local minimum. The unit tangent vector is determined as the cross product of the unit

Figure 1. MATLAB 2022b simulation environment: (a) mobile robot model, linear velocity v, angular
velocity ω; (b) visualizer of the Mobile Robotics Simulation Toolbox.

3. Virtual Hill Concept and Open Path Indicator, New eb

The virtual hill concept allows the robot to escape from the local minimum by generat-
ing extra force instead of attractive force when in the local minimum area. As explained in

Appl. Sci. 2024, 14, 8292 4 of 17

Section 3.1, the extra force follows the direction of the unit tangent vector et of γ, which
represents the trajectory of the nearest obstacle while the robot is moving within the local
minimum. The unit tangent vector is determined as the cross product of the unit normal
vector en and the unit binormal vector eb. Since en is the vector between the nearest obstacle
and the robot, the decisive factor that determines the robot’s driving direction is eb. Unlike
the previous eb determined according to the relative positions of the robot, the closest
obstacle, and the goal, the new eb proposed in this paper operates as an open path indicator.
new eb, which is determined by the shape of surrounding obstacles, makes the robot travel
on a more open path, improving path efficiency.

3.1. Virtual Hill Concept

APF can be expressed as the sum of the attractive potential corresponding to the
goal and the repulsive potential generated by the obstacle [10]. The artificial forces that
determine the control output of the robot, that is, the linear velocity and angular velocity,
are the negative gradients of the potentials [10,12]. The attractive potential Uatt, force Fatt,
and the repulsive potential Urep, force Frep, are obtained as follows.

Uatt =

{
kad2, d ≤ d0

ka
(
2d0d − d2

0
)
, d > d0

(1)

Fatt = −∇Uatt =

 −2ka

(
P − Pgoal

)
, d ≤ d0

−2kad0
P−Pgoal

d , d > d0

(2)

Urep =

{
1
2 kr

(
1
ρ − 1

ρ0

)2
, ρ ≤ ρ0

0 , ρ > ρ0

(3)

Frep = −∇Urep =

{
kr

(
1
ρ − 1

ρ0

)
P−Pco

ρ3 , ρ ≤ ρ0

0 , ρ > ρ0
(4)

d0 is the radius of the quadratic range, ka is the proportional gain of the function,
and d =

∥∥∥P − Pgoal

∥∥∥. In the quadratic area, the attractive force is proportional to distance
between the goal and the robot. If d0 is large, a robot smoothly and slowly stops at the goal.
P and Pgoal are the position vectors of the robot and the goal. ρ0 is a potential field’s distance
limit of repulsive potential influence, and ρ is the shortest distance between the robot and
its closest obstacle, where ρ = ∥P − Pco∥. Pco is the position vector of the closest obstacle
to the robot. The entire artificial force Ftotal is Fatt + Frep. The robot is controlled by this
force, which is converted to speed and angular velocity according to the force-to-velocity
conversion method [32].

However, before arriving at the goal, the robot is trapped in local minima and stops
driving when the attractive force and the repulsive force are the same or very similar. In [32],
the virtual hill allows the robot to escape from the LM (local minimum) by generating an
extra force instead of an attractive force when in the LM area. The artificial force, Ftotal ,
applied to the robot from the moment of being trapped in the LM to the moment of escape,
is Frep + Fext. After the robot is out of the LM, Ftotal = Fatt+Frep is applied to move to the
goal. Extra force can be applied even in complex environments and does not create a new
local minimum. Extra potential is applied from the moment the robot is trapped in the LM
until the escape is completed and is defined as follows.

Uext = −ke1Ψ + ke2ρ2 (5)

ke1 and ke2 are proportional constants. ρ is the distance between the robot and the
closest obstacle. Ψ is the path integral, which is the line integral for γ and expressed as

Appl. Sci. 2024, 14, 8292 5 of 17

Ψ =
∫

γ
dΨ, γ(t) : {Q(t∗) : t0≤ t∗ ≤ t and t0 ≤ t ≤ tk } (6)

Q(ti) = Pco(ti) where i = 0, 1, · · · , K (7)

γ is defined as the path of the closest obstacles, indicating the trajectory of the clos-
est obstacle while the robot is moving within the LM. The concept of γ is shown in
Figure 2a [34]. t0 is the time when the robot is trapped in the LM, and tk is the time when
it escapes from the LM. Q is the position vector of the closest obstacle on the continuous
trajectory. Pco is the position vector of the closest obstacle measured discretely by the range
sensor. ti represents a discrete sampling time of the range sensor. Assuming that Q is
continuously interpolated and differentiable, Ψ can be written as follows.

Ψ(t) =
∫

γ(t)
dΨ =

∫ t

t0

dΨ
dt

dt =
∫ t

t0

.
∥Q∥dt where

.
Q = dQ/dt (8)

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18

𝐐(𝑡𝑖) = 𝐏𝑐𝑜(𝑡𝑖) where 𝑖 = 0,1,⋯ , 𝐾 (7)

𝛾 is defined as the path of the closest obstacles, indicating the trajectory of the closest

obstacle while the robot is moving within the LM. The concept of 𝛾 is shown in Figure 2a

[34]. 𝑡0 is the time when the robot is trapped in the LM, and 𝑡𝑘 is the time when it escapes

from the LM. 𝐐 is the position vector of the closest obstacle on the continuous trajectory.

𝐏𝑐𝑜 is the position vector of the closest obstacle measured discretely by the range sensor.

𝑡𝑖 represents a discrete sampling time of the range sensor. Assuming that 𝐐 is continu-

ously interpolated and differentiable, 𝛹 can be written as follows.

𝛹(𝑡) = ∫ 𝑑𝛹
𝛾(𝑡)

= ∫
𝑑𝛹

𝑑𝑡

𝑡

𝑡0

𝑑𝑡 = ∫ ‖𝐐‖̇
𝑡

𝑡0

𝑑𝑡 where �̇� = 𝑑𝐐/𝑑𝑡 (8)

𝛹(𝑡) denotes a distance from 𝐐(𝑡0) to 𝐐(𝑡) along 𝛾. The extra force is the negative

gradient of extra potential, and it is shown in Equation (9).

𝐅𝑒𝑥𝑡 = −∇𝑈𝑒𝑥𝑡 = 𝑘𝑒1∇𝛹 − 𝑘𝑒2∇(𝜌2) (9)

This can also be expressed as Equation (10) [34].

𝐅𝑒𝑥𝑡 = 𝑘𝑒1𝐞𝑡 − 2𝑘𝑒2𝜌𝐞𝑛 (10)

In Figure 2b, 𝐞𝑡 is defined as the unit tangent vector of 𝛾, and the derivative of 𝐐

has the direction of 𝐞𝑡.

𝐞𝑡 =
�̇�

‖𝐐‖̇
= 𝐞𝑛 × 𝐞𝑏 (11)

(a) (b)

Figure 2. Within the local minimum area: (a) concept of 𝛾; (b) concept of 𝐞𝑡, 𝐞𝑛, and 𝐞𝑏 with re-

spect to 𝛾.

𝐞𝑡(𝑡0) can be obtained by the cross product of the unit normal vector 𝐞𝑛 and unit

binormal vector 𝐞𝑏.

𝐞𝑛 =
𝐏 − 𝐏𝑐𝑜

‖𝐏 − 𝐏𝑐𝑜‖
=

𝐏 − 𝐏𝑐𝑜

𝜌
 (12)

𝐞𝑏 = 𝐞𝑡 × 𝐞𝑛 = 𝐞𝑡 ×
𝐏 − 𝐏𝑐𝑜

𝜌
 (13)

𝐏𝑐𝑜 is the closest point from the robot to 𝛾, and 𝐏𝐏𝑐𝑜 is always vertical to 𝛾. The

initial direction of 𝛾 is determined by 𝐞𝑡(𝑡0). In order for the initial direction of 𝛾 to be

directed toward goal, 𝐞𝑏 is defined as follows.

𝐞𝑏 =
(𝐏𝑔𝑜𝑎𝑙 − 𝐏𝑡𝑜) × (𝐏(𝑡0) − 𝐏𝑡𝑜)

‖(𝐏𝑔𝑜𝑎𝑙 − 𝐏𝑡𝑜) × (𝐏(𝑡0) − 𝐏𝑡𝑜)‖
 𝑤ℎ𝑒𝑟𝑒 𝐏𝑡𝑜 = 𝐏𝑐𝑜(𝑡0) (14)

Figure 2. Within the local minimum area: (a) concept of γ; (b) concept of et, en, and eb with respect
to γ.

Ψ(t) denotes a distance from Q(t0) to Q(t) along γ. The extra force is the negative
gradient of extra potential, and it is shown in Equation (9).

Fext = −∇Uext = ke1∇Ψ − ke2∇
(

ρ2
)

(9)

This can also be expressed as Equation (10) [34].

Fext = ke1et − 2ke2ρen (10)

In Figure 2b, et is defined as the unit tangent vector of γ, and the derivative of Q has
the direction of et.

et =

.
Q
.

∥Q∥
= en × eb (11)

et(t0) can be obtained by the cross product of the unit normal vector en and unit
binormal vector eb.

en =
P − Pco

∥P − Pco∥
=

P − Pco

ρ
(12)

eb = et × en = et ×
P − Pco

ρ
(13)

Pco is the closest point from the robot to γ, and PPco is always vertical to γ. The initial
direction of γ is determined by et(t0). In order for the initial direction of γ to be directed
toward goal, eb is defined as follows.

Appl. Sci. 2024, 14, 8292 6 of 17

eb =

(
Pgoal − Pto

)
× (P(t0)− Pto)∥∥∥(Pgoal − Pto

)
× (P(t0)− Pto)

∥∥∥ where Pto = Pco(t0) (14)

P(t0) is the position vector of the robot when it is trapped in the LM. As shown in
Figure 3, eb is set to K or −K at the time of t0 according to the relative positions of the robot,
the closest obstacle, and the goal. At the moment the robot is trapped in the LM, et(t0),
which is the direction for the robot to move, is determined according to the sign of eb.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18

𝐏(t0) is the position vector of the robot when it is trapped in the LM. As shown in

Figure 3, 𝐞𝑏 is set to 𝐊 or −𝐊 at the time of 𝑡0 according to the relative positions of the

robot, the closest obstacle, and the goal. At the moment the robot is trapped in the LM,

𝐞𝑡(𝑡0), which is the direction for the robot to move, is determined according to the sign of

𝐞𝑏.

(a) (b)

Figure 3. Direction of 𝛾: (a) when 𝐞𝑏 = 𝐊; (b) when 𝐞𝑏 = −𝐊.

3.2. Problems with 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑏

𝑭𝑡𝑜𝑡𝑎𝑙 = 𝑭𝑟𝑒𝑝 + 𝑭𝑒𝑥𝑡 = {
𝑘𝑒1𝒆𝑡 + (𝑘𝑟 (

1

𝜌
−

1

𝜌0
)

1

𝜌2
− 2𝑘𝑒2𝜌) 𝒆𝑛, 𝜌 ≤ 𝜌0

𝑘𝑒1𝒆𝑡 − 2𝑘𝑒2𝜌𝒆𝑛, 𝜌 > 𝜌0

 (15)

From the moment the robot is trapped in the LM to the moment of its escape, the

artificial force applied to the robot is 𝐅𝑟𝑒𝑝 + 𝐅𝑒𝑥𝑡. In Equation (10), the first term 𝑘𝑒1𝐞𝑡 of

𝐅𝑒𝑥𝑡 acts for a robot to move along the obstacle. The second term −2𝑘𝑒2𝜌𝐞𝑛 acts in the

opposite direction to the repulsive force so that the robot does not move too far away from

the obstacle. The extra force operates to move the robot along the outline of the obstacle

until the robot escapes the LM without being too far away from the obstacle. In the previ-

ous virtual hill algorithm, 𝐞𝑏 was determined by the location relationship, and the form

of the surrounding obstacle was not considered. Therefore, depending on the form of the

map, the robot sometimes set an inefficient path. Figure 4 shows the moment when the

robot is trapped in the LM, and 𝐏𝑡𝑜 is the position of the closest obstacle at the moment

when it is trapped in the LM. According to Equation (14) used in the previous algorithm,

𝐞𝑏 has the −𝐊 direction. In the LM section, since 𝐞𝑡 indicating the driving direction is

𝐞𝑛 × 𝐞𝑏, the robot moves in the negative direction (clockwise). Eventually, it goes around

the blocked path, as shown in Figure 5 (Point E is the moment it is determined that the

robot has escaped the LM). Depending on which direction is selected at the moment when

the robot is trapped in the LM, it may take quite a long path, or a dead path may be se-

lected. Determining 𝐞𝑏 by considering only the relative positions, as in Equation (14),

may complicate the movement path, as in Figure 5. Therefore, a more effective path plan-

ning algorithm that considers the form of obstacles is required.

Figure 3. Direction of γ: (a) when eb = K; (b) when eb = −K.

3.2. Problems with Previous eb

Ftotal = Frep + Fext =

{
ke1et +

(
kr

(
1
ρ − 1

ρ0

)
1
ρ2 − 2ke2ρ

)
en, ρ ≤ ρ0

ke1et − 2ke2ρen, ρ > ρ0
(15)

From the moment the robot is trapped in the LM to the moment of its escape, the
artificial force applied to the robot is Frep + Fext. In Equation (10), the first term ke1et of Fext
acts for a robot to move along the obstacle. The second term −2ke2ρen acts in the opposite
direction to the repulsive force so that the robot does not move too far away from the
obstacle. The extra force operates to move the robot along the outline of the obstacle until
the robot escapes the LM without being too far away from the obstacle. In the previous
virtual hill algorithm, eb was determined by the location relationship, and the form of the
surrounding obstacle was not considered. Therefore, depending on the form of the map,
the robot sometimes set an inefficient path. Figure 4 shows the moment when the robot
is trapped in the LM, and Pto is the position of the closest obstacle at the moment when it
is trapped in the LM. According to Equation (14) used in the previous algorithm, eb has
the −K direction. In the LM section, since et indicating the driving direction is en × eb, the
robot moves in the negative direction (clockwise). Eventually, it goes around the blocked
path, as shown in Figure 5 (Point E is the moment it is determined that the robot has escaped
the LM). Depending on which direction is selected at the moment when the robot is trapped
in the LM, it may take quite a long path, or a dead path may be selected. Determining eb by
considering only the relative positions, as in Equation (14), may complicate the movement
path, as in Figure 5. Therefore, a more effective path planning algorithm that considers the
form of obstacles is required.

3.3. Open Path Indicator, New eb

new eb is proposed, in which the obstacle form is considered. As soon as the robot is
trapped in the LM, it is necessary to select in which of the two directions to move. This is
divided into the (+) direction and (−) direction based on P(t0). For each direction, the rate
of change in the obstacle contour is calculated. The direction with the larger rate of change
is considered the more open path, that is, the driving direction. This direction setting helps

Appl. Sci. 2024, 14, 8292 7 of 17

the robot avoid a closed path and reach the destination with a shorter moving distance.
More efficient path planning becomes possible when the driving direction is determined in
consideration of the shape of the obstacle.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

(a) (b)

Figure 4. Direction determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏: (a) the moment the robot is trapped in the local

minimum; (b) 𝐞𝑡 determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏.

Figure 5. Driving path determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 44.26 [m].

3.3. Open Path Indicator, 𝑁𝑒𝑤 𝑒𝑏

𝑛𝑒𝑤 𝑒𝑏 is proposed, in which the obstacle form is considered. As soon as the robot is

trapped in the LM, it is necessary to select in which of the two directions to move. This is

divided into the (+) direction and (−) direction based on 𝐏(𝑡0). For each direction, the

rate of change in the obstacle contour is calculated. The direction with the larger rate of

change is considered the more open path, that is, the driving direction. This direction set-

ting helps the robot avoid a closed path and reach the destination with a shorter moving

distance. More efficient path planning becomes possible when the driving direction is de-

termined in consideration of the shape of the obstacle.

3.3.1. Two-Directional Obstacle Measurement and 𝑁𝑒𝑤 𝑒𝑏

In the simulation environment, the range sensor is configured in a radial form with

the center of the robot as the origin. The degree of openness in both directions is estimated

using the rate of change in the detection distance according to the measurement angle of

each sensor data. In order to calculate the rate of change in the obstacle detection distance,

it is expressed as a polar coordinate system fixed to the center of the robot. Figure 6 shows

the polar coordinate system with the origin at the center of the robot and the angle of each

sensor data set in the simulation. The angle and detection distance for each sensor data

are expressed as 𝜃𝑖 and 𝑟𝑖. At the moment when the robot is trapped in the LM, the rate

of change in the outline of the obstacle is calculated for both the left and right directions

based on the 𝑛-th sensor data that measured 𝐏𝑡𝑜. The one with the larger value is consid-

ered the open path and becomes the direction for the robot to move. When the contour of

the two-directional obstacle is expressed as continuous functions 𝜒𝑝 and 𝜒𝑚, the moment

Figure 4. Direction determined by previous eb: (a) the moment the robot is trapped in the local
minimum; (b) et determined by previous eb.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

(a) (b)

Figure 4. Direction determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏: (a) the moment the robot is trapped in the local

minimum; (b) 𝐞𝑡 determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏.

Figure 5. Driving path determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 44.26 [m].

3.3. Open Path Indicator, 𝑁𝑒𝑤 𝑒𝑏

𝑛𝑒𝑤 𝑒𝑏 is proposed, in which the obstacle form is considered. As soon as the robot is

trapped in the LM, it is necessary to select in which of the two directions to move. This is

divided into the (+) direction and (−) direction based on 𝐏(𝑡0). For each direction, the

rate of change in the obstacle contour is calculated. The direction with the larger rate of

change is considered the more open path, that is, the driving direction. This direction set-

ting helps the robot avoid a closed path and reach the destination with a shorter moving

distance. More efficient path planning becomes possible when the driving direction is de-

termined in consideration of the shape of the obstacle.

3.3.1. Two-Directional Obstacle Measurement and 𝑁𝑒𝑤 𝑒𝑏

In the simulation environment, the range sensor is configured in a radial form with

the center of the robot as the origin. The degree of openness in both directions is estimated

using the rate of change in the detection distance according to the measurement angle of

each sensor data. In order to calculate the rate of change in the obstacle detection distance,

it is expressed as a polar coordinate system fixed to the center of the robot. Figure 6 shows

the polar coordinate system with the origin at the center of the robot and the angle of each

sensor data set in the simulation. The angle and detection distance for each sensor data

are expressed as 𝜃𝑖 and 𝑟𝑖. At the moment when the robot is trapped in the LM, the rate

of change in the outline of the obstacle is calculated for both the left and right directions

based on the 𝑛-th sensor data that measured 𝐏𝑡𝑜. The one with the larger value is consid-

ered the open path and becomes the direction for the robot to move. When the contour of

the two-directional obstacle is expressed as continuous functions 𝜒𝑝 and 𝜒𝑚, the moment

Figure 5. Driving path determined by previous eb. The path length is 44.26 [m].

3.3.1. Two-Directional Obstacle Measurement and New eb

In the simulation environment, the range sensor is configured in a radial form with
the center of the robot as the origin. The degree of openness in both directions is estimated
using the rate of change in the detection distance according to the measurement angle of
each sensor data. In order to calculate the rate of change in the obstacle detection distance,
it is expressed as a polar coordinate system fixed to the center of the robot. Figure 6 shows
the polar coordinate system with the origin at the center of the robot and the angle of each
sensor data set in the simulation. The angle and detection distance for each sensor data
are expressed as θi and ri. At the moment when the robot is trapped in the LM, the rate of
change in the outline of the obstacle is calculated for both the left and right directions based
on the n-th sensor data that measured Pto. The one with the larger value is considered
the open path and becomes the direction for the robot to move. When the contour of the
two-directional obstacle is expressed as continuous functions χp and χm, the moment of
the LM is shown in Figure 7. The differential lengths dχp and dχm in the polar coordinate
system can be written as follows.

d
→
χp = dr ar + r dθ aθ d

→
χm = dr ar + r dθ aθ (16)

Appl. Sci. 2024, 14, 8292 8 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

of the LM is shown in Figure 7. The differential lengths 𝑑𝜒𝑝 and 𝑑𝜒𝑚 in the polar coor-

dinate system can be written as follows.

𝑑𝜒𝑝⃗⃗⃗⃗ = 𝑑𝑟 𝐚𝑟 + 𝑟 𝑑𝜃 𝐚𝜃 𝑑𝜒𝑚⃗⃗ ⃗⃗ ⃗ = 𝑑𝑟 𝐚𝑟 + 𝑟 𝑑𝜃 𝐚𝜃 (16)

(a) (b)

Figure 6. Local polar coordinate system with an origin at the center of the robot: (a) sensor meas-

urement angle 𝜃𝑖 and detection distance 𝑟𝑖; (b) sensor data numbers(1⋯L) and measurement an-

gles.

Figure 7. The (+) directional obstacle 𝜒𝑝 and (−) directional obstacle 𝜒𝑚 based on the 𝑛 -th

sensor data in which 𝐏𝑡𝑜 is measured (enlargement of Figure 4a).

The rate of change in the obstacle contour for 𝜃, 𝑑𝜒𝑝/𝑑𝜃 and 𝑑𝜒𝑚/𝑑𝜃, is as follows.

|
𝑑𝜒𝑝

𝑑𝜃
| = √(

𝑑𝑟

𝑑𝜃
)
2

+ 𝑟2 |
𝑑𝜒𝑚

𝑑𝜃
| = √(

𝑑𝑟

𝑑𝜃
)
2

+ 𝑟2 (17)

The obstacle contour is discretized as distance values received from the 𝐿 sensor

data, {𝐑1(𝑟1, 𝜃1), 𝐑2(𝑟2, 𝜃2), … , 𝐑𝑖(𝑟𝑖 , 𝜃𝑖), …𝐑𝐿(𝑟𝐿, 𝜃𝐿)} . If 𝑑𝑟/𝑑𝜃 is replaced with ∆𝑟/∆𝜃 ,

the sum of the power of the rate of change in each of the two directions based on the 𝑛-th

sensor data may be written as follows.

𝑃𝑠𝑢𝑚 = ∑ (
𝑟𝑖+1 − 𝑟𝑖

∆𝜃
)
2

+ 𝑟𝑖
2

𝑛+𝐿/2

𝑖=𝑛

 𝑀𝑠𝑢𝑚 = ∑ (
𝑟𝑖+1 − 𝑟𝑖

∆𝜃
)
2

+ 𝑟𝑖
2

𝑛

𝑖=𝑛−𝐿/2

 (18)

The angle and obstacle measurement distance of the 𝑖-th and (𝑖 + 1)-th sensor data

are expressed in the polar coordinate system, as in Figure 8. The angle change ∆𝜃 with

the neighboring sensor data is determined according to the sensor resolution 𝐿 and is

calculated as 2𝜋/𝐿. 𝑃𝑠𝑢𝑚 is the sum of squares of the rate of change in the obstacle con-

tour in the (+) direction based on the 𝑛-th sensor data, and 𝑀𝑠𝑢𝑚 is the sum of squares

of the rate of change in the (−) direction. The direction with the further distance to the

obstacle and the greater rate of change is regarded as an open path. That is, 𝐞𝑏 is set to

+𝐊 when 𝑃𝑠𝑢𝑚 > 𝑀𝑠𝑢𝑚 and to −𝐊 when 𝑃𝑠𝑢𝑚 < 𝑀𝑠𝑢𝑚 . In the map of Figure 4,

Figure 6. Local polar coordinate system with an origin at the center of the robot: (a) sensor measure-
ment angle θi and detection distance ri; (b) sensor data numbers (1· · ·L) and measurement angles.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

of the LM is shown in Figure 7. The differential lengths 𝑑𝜒𝑝 and 𝑑𝜒𝑚 in the polar coor-

dinate system can be written as follows.

𝑑𝜒𝑝⃗⃗⃗⃗ = 𝑑𝑟 𝐚𝑟 + 𝑟 𝑑𝜃 𝐚𝜃 𝑑𝜒𝑚⃗⃗ ⃗⃗ ⃗ = 𝑑𝑟 𝐚𝑟 + 𝑟 𝑑𝜃 𝐚𝜃 (16)

(a) (b)

Figure 6. Local polar coordinate system with an origin at the center of the robot: (a) sensor meas-

urement angle 𝜃𝑖 and detection distance 𝑟𝑖; (b) sensor data numbers(1⋯L) and measurement an-

gles.

Figure 7. The (+) directional obstacle 𝜒𝑝 and (−) directional obstacle 𝜒𝑚 based on the 𝑛 -th

sensor data in which 𝐏𝑡𝑜 is measured (enlargement of Figure 4a).

The rate of change in the obstacle contour for 𝜃, 𝑑𝜒𝑝/𝑑𝜃 and 𝑑𝜒𝑚/𝑑𝜃, is as follows.

|
𝑑𝜒𝑝

𝑑𝜃
| = √(

𝑑𝑟

𝑑𝜃
)
2

+ 𝑟2 |
𝑑𝜒𝑚

𝑑𝜃
| = √(

𝑑𝑟

𝑑𝜃
)
2

+ 𝑟2 (17)

The obstacle contour is discretized as distance values received from the 𝐿 sensor

data, {𝐑1(𝑟1, 𝜃1), 𝐑2(𝑟2, 𝜃2), … , 𝐑𝑖(𝑟𝑖 , 𝜃𝑖), …𝐑𝐿(𝑟𝐿, 𝜃𝐿)} . If 𝑑𝑟/𝑑𝜃 is replaced with ∆𝑟/∆𝜃 ,

the sum of the power of the rate of change in each of the two directions based on the 𝑛-th

sensor data may be written as follows.

𝑃𝑠𝑢𝑚 = ∑ (
𝑟𝑖+1 − 𝑟𝑖

∆𝜃
)
2

+ 𝑟𝑖
2

𝑛+𝐿/2

𝑖=𝑛

 𝑀𝑠𝑢𝑚 = ∑ (
𝑟𝑖+1 − 𝑟𝑖

∆𝜃
)
2

+ 𝑟𝑖
2

𝑛

𝑖=𝑛−𝐿/2

 (18)

The angle and obstacle measurement distance of the 𝑖-th and (𝑖 + 1)-th sensor data

are expressed in the polar coordinate system, as in Figure 8. The angle change ∆𝜃 with

the neighboring sensor data is determined according to the sensor resolution 𝐿 and is

calculated as 2𝜋/𝐿. 𝑃𝑠𝑢𝑚 is the sum of squares of the rate of change in the obstacle con-

tour in the (+) direction based on the 𝑛-th sensor data, and 𝑀𝑠𝑢𝑚 is the sum of squares

of the rate of change in the (−) direction. The direction with the further distance to the

obstacle and the greater rate of change is regarded as an open path. That is, 𝐞𝑏 is set to

+𝐊 when 𝑃𝑠𝑢𝑚 > 𝑀𝑠𝑢𝑚 and to −𝐊 when 𝑃𝑠𝑢𝑚 < 𝑀𝑠𝑢𝑚 . In the map of Figure 4,

Figure 7. The (+) directional obstacle χp and (−) directional obstacle χm based on the n-th sensor
data in which Pto is measured (enlargement of Figure 4a).

The rate of change in the obstacle contour for θ, dχp/dθ and dχm/dθ, is as follows.

∣∣∣∣dχp

dθ

∣∣∣∣ =
√(

dr
dθ

)2
+ r2

∣∣∣∣dχm

dθ

∣∣∣∣ =
√(

dr
dθ

)2
+ r2 (17)

The obstacle contour is discretized as distance values received from the L sensor data,
{R1(r1, θ1), R2(r2, θ2), . . . , Ri(ri, θi), . . . RL(rL, θL)}. If dr/dθ is replaced with ∆r/∆θ, the
sum of the power of the rate of change in each of the two directions based on the n-th
sensor data may be written as follows.

Psum =
n+L/2

∑
i=n

(
ri+1 − ri

∆θ

)2
+ r2

i Msum =
n

∑
i=n−L/2

(
ri+1 − ri

∆θ

)2
+ r2

i (18)

The angle and obstacle measurement distance of the i-th and (i + 1)-th sensor data
are expressed in the polar coordinate system, as in Figure 8. The angle change ∆θ with
the neighboring sensor data is determined according to the sensor resolution L and is
calculated as 2π/L. Psum is the sum of squares of the rate of change in the obstacle contour
in the (+) direction based on the n-th sensor data, and Msum is the sum of squares of the
rate of change in the (−) direction. The direction with the further distance to the obstacle
and the greater rate of change is regarded as an open path. That is, eb is set to +K when
Psum > Msum and to −K when Psum < Msum. In the map of Figure 4, previous eb is −K,
and the robot rotates in the direction of −θ. new eb, determined by the new algorithm, is
+K, and the robot rotates in the direction of +θ, as shown in Figure 9. More efficient path
planning is possible. If the degree of opening in both directions is similar by satisfying the
following conditions, previous eb is maintained. threshold is determined experimentally.

Appl. Sci. 2024, 14, 8292 9 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 is −𝐊, and the robot rotates in the direction of −𝜃. 𝑛𝑒𝑤 𝐞𝑏, determined by

the new algorithm, is +𝐊, and the robot rotates in the direction of +𝜃, as shown in Figure

9. More efficient path planning is possible. If the degree of opening in both directions is

similar by satisfying the following conditions, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 is maintained. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is

determined experimentally.

Figure 8. The 𝑖-th and the (𝑖 + 1)-th vectors of the L sensor data.

𝑖𝑓 𝑃𝑠𝑢𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑀𝑠𝑢𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛 𝑛𝑒𝑤 𝐞𝑏 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 (19)

Figure 9. Driving path determined by 𝑛𝑒𝑤 𝐞𝑏 (in comparison to Figure 5). The path length is

13.82 [m].

3.3.2. Dead-End Algorithm

When the robot encounters a dead end while traveling to the destination, it is efficient

to avoid it unless the destination is inside the dead end. When a robot encounters a dead

end, if it is not on the way to its destination, it can avoid the dead end using the dead-end

algorithm. Figure 10a shows the path planning results when 𝐞𝑡 is determined by

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. This is the path where the robot trapped in the LM at point 𝐏(t0) moves to

the destination along the obstacle ABCD section using the virtual hill technique. The

ABCD section is a dead end and unnecessarily increases the robot’s travel distance and

time. In this case, the robot can also come back through the dead-end algorithm just as

people come back after confirming that it is a dead-end path.

Figure 8. The i-th and the (i + 1)-th vectors of the L sensor data.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 is −𝐊, and the robot rotates in the direction of −𝜃. 𝑛𝑒𝑤 𝐞𝑏, determined by

the new algorithm, is +𝐊, and the robot rotates in the direction of +𝜃, as shown in Figure

9. More efficient path planning is possible. If the degree of opening in both directions is

similar by satisfying the following conditions, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 is maintained. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is

determined experimentally.

Figure 8. The 𝑖-th and the (𝑖 + 1)-th vectors of the L sensor data.

𝑖𝑓 𝑃𝑠𝑢𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑀𝑠𝑢𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛 𝑛𝑒𝑤 𝐞𝑏 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 (19)

Figure 9. Driving path determined by 𝑛𝑒𝑤 𝐞𝑏 (in comparison to Figure 5). The path length is

13.82 [m].

3.3.2. Dead-End Algorithm

When the robot encounters a dead end while traveling to the destination, it is efficient

to avoid it unless the destination is inside the dead end. When a robot encounters a dead

end, if it is not on the way to its destination, it can avoid the dead end using the dead-end

algorithm. Figure 10a shows the path planning results when 𝐞𝑡 is determined by

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. This is the path where the robot trapped in the LM at point 𝐏(t0) moves to

the destination along the obstacle ABCD section using the virtual hill technique. The

ABCD section is a dead end and unnecessarily increases the robot’s travel distance and

time. In this case, the robot can also come back through the dead-end algorithm just as

people come back after confirming that it is a dead-end path.

Figure 9. Driving path determined by new eb (in comparison to Figure 5). The path length is 13.82 [m].

i f Psum > threshold & Msum > threshold then new eb = previous eb (19)

3.3.2. Dead-End Algorithm

When the robot encounters a dead end while traveling to the destination, it is efficient
to avoid it unless the destination is inside the dead end. When a robot encounters a dead
end, if it is not on the way to its destination, it can avoid the dead end using the dead-end
algorithm. Figure 10a shows the path planning results when et is determined by previous eb.
This is the path where the robot trapped in the LM at point P(t0) moves to the destination
along the obstacle ABCD section using the virtual hill technique. The ABCD section is a
dead end and unnecessarily increases the robot’s travel distance and time. In this case, the
robot can also come back through the dead-end algorithm just as people come back after
confirming that it is a dead-end path.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

(a) (b) (c)

Figure 10. Dead-end algorithm: (a) driving path determined by a virtual hill with 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The

path length is 32.87 [m]. (b) The moment the robot notices a dead end. (c) Driving path determined

by the dead-end algorithm. The path length is 28.99 [m].

The robot returns to the point 𝐏(t0) and then moves in the opposite direction. The

robot travels along obstacles closer to the destination. If the dead-end algorithm is applied

when encountering a dead end, the robot can avoid the dead end without completely en-

tering it, as shown in Figure 10c. This algorithm is applied between the beginning and the

end of the LM. The flowchart of the dead-end algorithm is shown in Figure 11. The criteria

for determining that the robot is at a dead end are as follows.

Figure 11. Flowchart of the dead-end algorithm.

𝑖𝑓 𝑟(𝜃) < 𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒, −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑖𝑠 𝑎 𝑑𝑒𝑎𝑑 𝑒𝑛𝑑. (20)

𝑟(𝜃) is the distance of the obstacle detected by the sensor, and 𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒 is the sen-

sor’s maximum detection distance. If the obstacle detection distance of all sensor data in

Figure 10. Dead-end algorithm: (a) driving path determined by a virtual hill with previous eb. The
path length is 32.87 [m]. (b) The moment the robot notices a dead end. (c) Driving path determined
by the dead-end algorithm. The path length is 28.99 [m].

Appl. Sci. 2024, 14, 8292 10 of 17

The robot returns to the point P(t0) and then moves in the opposite direction. The
robot travels along obstacles closer to the destination. If the dead-end algorithm is applied
when encountering a dead end, the robot can avoid the dead end without completely
entering it, as shown in Figure 10c. This algorithm is applied between the beginning and
the end of the LM. The flowchart of the dead-end algorithm is shown in Figure 11. The
criteria for determining that the robot is at a dead end are as follows.

i f r(θ) < maxRange,−π

2
≤ θ ≤ π

2
then the path is a dead end. (20)

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

(a) (b) (c)

Figure 10. Dead-end algorithm: (a) driving path determined by a virtual hill with 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The

path length is 32.87 [m]. (b) The moment the robot notices a dead end. (c) Driving path determined

by the dead-end algorithm. The path length is 28.99 [m].

The robot returns to the point 𝐏(t0) and then moves in the opposite direction. The

robot travels along obstacles closer to the destination. If the dead-end algorithm is applied

when encountering a dead end, the robot can avoid the dead end without completely en-

tering it, as shown in Figure 10c. This algorithm is applied between the beginning and the

end of the LM. The flowchart of the dead-end algorithm is shown in Figure 11. The criteria

for determining that the robot is at a dead end are as follows.

Figure 11. Flowchart of the dead-end algorithm.

𝑖𝑓 𝑟(𝜃) < 𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒, −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑖𝑠 𝑎 𝑑𝑒𝑎𝑑 𝑒𝑛𝑑. (20)

𝑟(𝜃) is the distance of the obstacle detected by the sensor, and 𝑚𝑎𝑥𝑅𝑎𝑛𝑔𝑒 is the sen-

sor’s maximum detection distance. If the obstacle detection distance of all sensor data in

Figure 11. Flowchart of the dead-end algorithm.

r(θ) is the distance of the obstacle detected by the sensor, and maxRange is the sen-
sor’s maximum detection distance. If the obstacle detection distance of all sensor data
in the [−π/2,π/2] section corresponding to the front portion of the robot is shorter than
maxRange, it is determined that the robot has entered a dead end. If the robot is at a dead
end, whether to enter or avoid further depends on the location of the destination. The
following two conditions are examined to determine whether the destination is inside or
outside the dead end.

∣∣∣PL
goal

∣∣∣ < rk

−π
2 ≤ α ≤ π

2 , PL
goal =

∣∣∣PL
goal

∣∣∣ ∠α
(21)

PL
goal represents the location vector of the destination for the local coordinate system

with an origin at the center of the robot, as shown in Figure 6a. rk is the measured distance

of the k-th sensor data, which is at the angle closest to the vector
→

Pgoal − P among all sensor

data.
∣∣∣PL

goal

∣∣∣ < rk means that there is no obstacle between the robot and the destination. α

is the angle of PL
goal in the local coordinate system. −π/2 ≤ α ≤ π/2 means that the goal is

at the front portion of the robot. If both conditions are satisfied, it is determined that the

Appl. Sci. 2024, 14, 8292 11 of 17

destination is inside the dead end. If the destination is inside the dead end, the robot is
controlled to the destination with Ftotal = Fatt+ Frep. This Fatt is an attractive force heading
to the initially set goal (destination). If the destination is outside the dead-end road, the
robot returns to P(t0) and moves in the opposite direction. In order for the robot to return
to P(t0), Pgoal is temporarily changed to P(t0), and Ftotal = Fatt(P(t0))+ Frep is applied to
the control. Fatt(P(t0)) described an attractive force generated when P(t0) is set as Pgoal .
When the robot arrives at the position P(t0), Pgoal is reset to the initial goal, and it moves in
the opposite direction to et(t0). Ftotal = Fext+ Frep is applied until the robot escapes from
the LM.

4. Simulations

Some conditions for simulation are referred to in [32]. The virtual hill algorithm has
several parameters for controlling the robot, such as the constant coefficients of the extra
force, the application distance of the reactive force, and the like. Depending on the setting,
the degree to which the robot approaches or moves away from obstacles, the straightness
of the driving, and similar parameters may vary. Some maps provided by MATLAB are
applied in sizes of 10 [m] × 10 [m]. The total artificial force is converted into linear velocity
and angular velocity by the force-to-velocity conversion method [32]. The path length is
indicated in each figure description.

Figures 12 and 13 show the results of the enhanced virtual hill algorithm. In the
previous algorithm, when the robot is trapped in an LM (local minimum), the direction
of progress is determined by the relative positions of P(t0), Pto, and the goal. According
to this algorithm, as shown in Figure 12a, the robot moves along the obstacle BCDE. On
the other hand, when the enhanced virtual hill algorithm including new eb is applied, the
robot moves along the obstacle BA, as shown in Figure 12b. When the robot reaches the
goal by following the obstacle BA, the efficiency of the driving path may be improved.
In the case of Figure 13, according to the direction determination by the previous virtual
hill algorithm, that is, previous eb, the robot goes around in the (+) direction, as shown in
Figure 13a. The robot moves along the obstacle ABCDEFGH until it escapes the LM. Since
the path determined by new eb goes to the goal along obstacle OA, unnecessary driving
may be avoided. In Figure 13, the driving distance varies considerably depending on the
direction determination at the LM.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

distance. Figure 14b travels along the (+) direction according to 𝑛𝑒𝑤 𝐞𝑏 and travels the

shortest distance along the obstacle BA. Figure 14c shows the result of applying the dead-

end algorithm during driving, as shown in Figure 14a. After recognizing the obstacle

BCDE as a blocked road, the robot returns to 𝐏(t0) and moves in the direction of obstacle

BA. In Figure 17c, as the robot rotates in the (+) direction, the recognition of the blocked

road, arrival at 𝐏(t0), and setting of the opposite direction occur almost simultaneously,

drawing a path similar to that in Figure 17b without any special driving.

In Figure 20, (c) shows the moment of the LM, (a) shows the driving path determined

by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏, and (b) shows the driving path determined by the 𝑛𝑒𝑤 𝐞𝑏. Using 𝑛𝑒𝑤 𝐞𝑏,

𝐞𝑡 is determined so that the robot may travel on a more open path. However, depending

on the map, the direction that was the more open path may be blocked, as shown in Figure

20. The more open direction is the (+) direction when comparing (+) and (−) directions

from the robot’s position shown in Figure 20c, but the robot eventually encounters a dead

end. Nevertheless, there is no significant difference in path length between Figure 20a,b.

In Figure 20a, the robot avoids the dead end using 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 but follows obstacles far

from the destination. In Figure 20b, the robot enters the dead end, but the path length is

reduced by following obstacles closer to the destination due to 𝑛𝑒𝑤 𝐞𝑏.

Table 1 shows how much the robot’s mileage is reduced by the proposed algorithm.

It represents the distance and ratio reduced by 𝑛𝑒𝑤 𝐞𝑏 and the dead-end algorithm based

on the path determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 for all simulations shown in the paper. The driv-

ing distance is reduced by up to 68 [%] using 𝑛𝑒𝑤 𝐞𝑏 and by up to 44 [%] using the dead-

end algorithm. It is confirmed that the virtual hill algorithm is improved by the proposed

method.

(a) (b)

Figure 12. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 16.51 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 11 [m].

(a) (b)

Figure 13. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 41.08 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 12.91 [m].

Figure 12. Driving paths: (a) Determined by previous eb. The path length is 16.51 [m]. (b) Determined
by new eb. The path length is 11 [m].

Figures 14–19 show the simulations of the driving path by new eb and the dead-end
algorithm. If the robot recognizes that it is at a dead end while driving in the LM section, it
returns to the robot’s position P(t0). At P(t0), the robot moves in the opposite direction and
follows a closer obstacle to its goal. In the case of Figure 14a, at the point of t0, it travels in
the (−) direction and travels along the obstacle ABCDEFGHI for a long distance. Figure 14b
travels along the (+) direction according to new eb and travels the shortest distance along

Appl. Sci. 2024, 14, 8292 12 of 17

the obstacle BA. Figure 14c shows the result of applying the dead-end algorithm during
driving, as shown in Figure 14a. After recognizing the obstacle BCDE as a blocked road,
the robot returns to P(t0) and moves in the direction of obstacle BA. In Figure 17c, as the
robot rotates in the (+) direction, the recognition of the blocked road, arrival at P(t0), and
setting of the opposite direction occur almost simultaneously, drawing a path similar to
that in Figure 17b without any special driving.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

distance. Figure 14b travels along the (+) direction according to 𝑛𝑒𝑤 𝐞𝑏 and travels the

shortest distance along the obstacle BA. Figure 14c shows the result of applying the dead-

end algorithm during driving, as shown in Figure 14a. After recognizing the obstacle

BCDE as a blocked road, the robot returns to 𝐏(t0) and moves in the direction of obstacle

BA. In Figure 17c, as the robot rotates in the (+) direction, the recognition of the blocked

road, arrival at 𝐏(t0), and setting of the opposite direction occur almost simultaneously,

drawing a path similar to that in Figure 17b without any special driving.

In Figure 20, (c) shows the moment of the LM, (a) shows the driving path determined

by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏, and (b) shows the driving path determined by the 𝑛𝑒𝑤 𝐞𝑏. Using 𝑛𝑒𝑤 𝐞𝑏,

𝐞𝑡 is determined so that the robot may travel on a more open path. However, depending

on the map, the direction that was the more open path may be blocked, as shown in Figure

20. The more open direction is the (+) direction when comparing (+) and (−) directions

from the robot’s position shown in Figure 20c, but the robot eventually encounters a dead

end. Nevertheless, there is no significant difference in path length between Figure 20a,b.

In Figure 20a, the robot avoids the dead end using 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 but follows obstacles far

from the destination. In Figure 20b, the robot enters the dead end, but the path length is

reduced by following obstacles closer to the destination due to 𝑛𝑒𝑤 𝐞𝑏.

Table 1 shows how much the robot’s mileage is reduced by the proposed algorithm.

It represents the distance and ratio reduced by 𝑛𝑒𝑤 𝐞𝑏 and the dead-end algorithm based

on the path determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 for all simulations shown in the paper. The driv-

ing distance is reduced by up to 68 [%] using 𝑛𝑒𝑤 𝐞𝑏 and by up to 44 [%] using the dead-

end algorithm. It is confirmed that the virtual hill algorithm is improved by the proposed

method.

(a) (b)

Figure 12. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 16.51 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 11 [m].

(a) (b)

Figure 13. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 41.08 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 12.91 [m].
Figure 13. Driving paths: (a) Determined by previous eb. The path length is 41.08 [m]. (b) Determined
by new eb. The path length is 12.91 [m].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

(a) (b) (c)

Figure 14. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 36.66 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 12.87 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.7 [m].

(a) (b) (c)

Figure 15. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 35.95 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 15.98 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.72 [m].

(a) (b) (c)

Figure 16. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 25.6 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 17.33 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.02 [m].

Figure 14. Driving paths: (a) Determined by previous eb. The path length is 36.66 [m]. (b) Determined
by new eb. The path length is 12.87 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 21.7 [m].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

(a) (b) (c)

Figure 14. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 36.66 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 12.87 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.7 [m].

(a) (b) (c)

Figure 15. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 35.95 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 15.98 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.72 [m].

(a) (b) (c)

Figure 16. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 25.6 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 17.33 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.02 [m].

Figure 15. Driving paths: (a) Determined by previous eb. The path length is 35.95 [m]. (b) Determined
by new eb. The path length is 15.98 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 21.72 [m].

Appl. Sci. 2024, 14, 8292 13 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

(a) (b) (c)

Figure 14. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 36.66 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 12.87 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.7 [m].

(a) (b) (c)

Figure 15. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 35.95 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 15.98 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 21.72 [m].

(a) (b) (c)

Figure 16. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 25.6 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 17.33 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.02 [m].

Figure 16. Driving paths: (a) Determined by previous eb. The path length is 25.6 [m]. (b) Determined
by new eb. The path length is 17.33 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.02 [m].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

(a) (b) (c)

Figure 17. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.34 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 18.96 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.14 [m].

(a) (b) (c)

Figure 18. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.87 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 20.17 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 28.99 [m].

(a) (b) (c)

Figure 19. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 26.12 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 16.61 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.48 [m].

Figure 17. Driving paths: (a) Determined by previous eb. The path length is 32.34 [m]. (b) Determined
by new eb. The path length is 18.96 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.14 [m].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

(a) (b) (c)

Figure 17. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.34 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 18.96 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.14 [m].

(a) (b) (c)

Figure 18. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.87 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 20.17 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 28.99 [m].

(a) (b) (c)

Figure 19. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 26.12 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 16.61 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.48 [m].

Figure 18. Driving paths: (a) Determined by previous eb. The path length is 32.87 [m]. (b) Determined
by new eb. The path length is 20.17 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 28.99 [m].

Appl. Sci. 2024, 14, 8292 14 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

(a) (b) (c)

Figure 17. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.34 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 18.96 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.14 [m].

(a) (b) (c)

Figure 18. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 32.87 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 20.17 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 28.99 [m].

(a) (b) (c)

Figure 19. Driving paths: (a) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The path length is 26.12 [m]. (b) Deter-

mined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 16.61 [m]. (c) Determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and the dead-end

algorithm. The path length is 19.48 [m].

Figure 19. Driving paths: (a) Determined by previous eb. The path length is 26.12 [m]. (b) Determined
by new eb. The path length is 16.61 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.48 [m].

In Figure 20, (c) shows the moment of the LM, (a) shows the driving path determined
by previous eb, and (b) shows the driving path determined by the new eb. Using new eb, et
is determined so that the robot may travel on a more open path. However, depending on
the map, the direction that was the more open path may be blocked, as shown in Figure 20.
The more open direction is the (+) direction when comparing (+) and (−) directions from
the robot’s position shown in Figure 20c, but the robot eventually encounters a dead end.
Nevertheless, there is no significant difference in path length between Figure 20a,b. In
Figure 20a, the robot avoids the dead end using previous eb but follows obstacles far from
the destination. In Figure 20b, the robot enters the dead end, but the path length is reduced
by following obstacles closer to the destination due to new eb.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18

(a) (b) (c)

Figure 20. For a map that contains a dead end: (a) The driving path determined by 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏. The

path length is 29.41 [m]. (b) The driving path determined by 𝑛𝑒𝑤 𝐞𝑏. The path length is 30.91 [m].

(c) The moment of the local minimum.

Table 1. Reduction in mileage according to algorithms.

Mileage Using
𝑷𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝐞𝒃

[m]

Mileage Using

𝑵𝒆𝒘 𝐞𝒃 [m]

Mileage Using

Dead-End Algo-

rithm [m]

Reduction Proportion

Using 𝑵𝒆𝒘 𝐞𝒃 [%]

Reduction Proportion

Using Dead-End Algo-

rithm [%]

Figure 9 44.26 13.82 - 68.78 -

Figure 12 16.51 11 - 33.37 -

Figure 13 41.08 12.9 - 68.60 -

Figure 14 36.66 12.87 14.96 64.89 40.81

Figure 15 35.95 15.98 14.23 55.55 39.58

Figure 16 25.6 17.33 6.58 32.30 25.70

Figure 17 33.66 19.02 14.83 43.49 44.06

Figure 18 32.87 20.17 3.88 38.64 11.80

Figure 19 26.12 16.61 6.64 36.41 25.42

Figure 20 29.41 30.91 - −5.10 -

Average [%] - - - 43.69 31.23

5. Discussion

In order to compare with the previous virtual hill algorithm, simulations are per-

formed on the same environment for both 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 and 𝑛𝑒𝑤 𝐞𝑏. Also, the dead-end

algorithm is applied when entering a blocked road, and how the path changes is checked.

The circle mark is displayed at the position of 𝐏(t0) for visual confirmation at the mo-

ment the blocked path is recognized. All simulations are saved as pictures, data files, and

videos.

In Figures 12–19, each (a) is the result when 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐞𝑏 is applied, and each (b) is

the result when 𝑛𝑒𝑤 𝐞𝑏 is applied. They show that the moving distance can be signifi-

cantly reduced when determining the driving direction by comparing the degree of open-

ness of the two-way route regardless of the relative position of the robot and the goal. (c)

Shows the result of applying the dead-end algorithm when a route including a blocked

road is selected. It is possible to reduce the moving distance by more than about 4 m by

coming back without entering deep into the dead end. In the service environment, if the

mobile robot travels at a low speed of less than 0.2 m/s, it can save more than about 20 s.

The saving distance and time can vary depending on the measurable distance of the sensor

and control techniques. Very occasionally, the path along the 𝑛𝑒𝑤 𝐞𝑏 is more inefficient,

as shown in Figure 20. The maximum measurement distance of the sensor is 4 m. Since

the distance from the robot position in Figure 20c to the obstacle CD is about 4 m, it is

difficult for the robot to recognize the dead end road in the (+) direction. Unless the

Figure 20. For a map that contains a dead end: (a) The driving path determined by previous eb. The
path length is 29.41 [m]. (b) The driving path determined by new eb. The path length is 30.91 [m].
(c) The moment of the local minimum.

Table 1 shows how much the robot’s mileage is reduced by the proposed algorithm.
It represents the distance and ratio reduced by new eb and the dead-end algorithm based
on the path determined by previous eb for all simulations shown in the paper. The driv-
ing distance is reduced by up to 68 [%] using new eb and by up to 44 [%] using the
dead-end algorithm. It is confirmed that the virtual hill algorithm is improved by the
proposed method.

Appl. Sci. 2024, 14, 8292 15 of 17

Table 1. Reduction in mileage according to algorithms.

Mileage Using
Previous eb [m]

Mileage Using
New eb [m]

Mileage Using
Dead-End

Algorithm [m]

Reduction Proportion
Using New eb [%]

Reduction Proportion
Using Dead-End
Algorithm [%]

Figure 9 44.26 13.82 - 68.78 -
Figure 12 16.51 11 - 33.37 -
Figure 13 41.08 12.9 - 68.60 -
Figure 14 36.66 12.87 14.96 64.89 40.81
Figure 15 35.95 15.98 14.23 55.55 39.58
Figure 16 25.6 17.33 6.58 32.30 25.70
Figure 17 33.66 19.02 14.83 43.49 44.06
Figure 18 32.87 20.17 3.88 38.64 11.80
Figure 19 26.12 16.61 6.64 36.41 25.42
Figure 20 29.41 30.91 - −5.10 -

Average [%] - - - 43.69 31.23

5. Discussion

In order to compare with the previous virtual hill algorithm, simulations are performed
on the same environment for both previous eb and new eb. Also, the dead-end algorithm is
applied when entering a blocked road, and how the path changes is checked. The circle
mark is displayed at the position of P(t0) for visual confirmation at the moment the blocked
path is recognized. All simulations are saved as pictures, data files, and videos.

In Figures 12–19, each (a) is the result when previous eb is applied, and each (b) is the
result when new eb is applied. They show that the moving distance can be significantly
reduced when determining the driving direction by comparing the degree of openness of
the two-way route regardless of the relative position of the robot and the goal. (c) Shows
the result of applying the dead-end algorithm when a route including a blocked road is
selected. It is possible to reduce the moving distance by more than about 4 m by coming
back without entering deep into the dead end. In the service environment, if the mobile
robot travels at a low speed of less than 0.2 m/s, it can save more than about 20 s. The
saving distance and time can vary depending on the measurable distance of the sensor
and control techniques. Very occasionally, the path along the new eb is more inefficient, as
shown in Figure 20. The maximum measurement distance of the sensor is 4 m. Since the
distance from the robot position in Figure 20c to the obstacle CD is about 4 m, it is difficult
for the robot to recognize the dead end road in the (+) direction. Unless the robot has
map information in advance or creates a map while moving, it may encounter dead ends
when moving through an unknown space. The dead-end algorithm prevents the robot
from having to drive unnecessarily deep into dead ends.

6. Conclusions

The virtual hill technique, which moves along a nearby obstacle when a robot is
trapped in an LM, is easy to apply to an unknown variable environment. The virtual hill
technique does not require information about space and obstacles, does not create a new
the LM even in a complicated environment, and has the advantage of being easy to apply.
However, there is a problem in that the mileage can vary greatly depending on which
directional obstacle the robot moves along. In this study, the performance of the virtual
hill technique is improved by compensating for this shortcoming using new eb and the
dead-end algorithm. The enhanced virtual hill algorithm makes it possible for a robot to
reach its goal on a shorter path. Also, when a robot encounters blocked roads, it can come
back without entering through the dead-end algorithm.

In future research, when the robot is trapped in the LM and extra potential is generated,
it can be programmed to check in advance whether there is a dead end nearby and exclude
that direction. In cases like Figure 20a, it is necessary to recognize in advance that if the
robot moves in the (+) direction, it will lead to a dead end. In order to recognize dead

Appl. Sci. 2024, 14, 8292 16 of 17

ends from a long distance, the sensor’s obstacle measurement distance must be longer,
and more sensor data must be processed for accuracy. It is unnecessary to process this
much data in each control cycle. A method is needed to obtain detailed information
about distant obstacles only when needed. To verify the proposed algorithm, additional
simulations and experiments in diverse and dynamic environments are required. It is
also necessary to establish indicators to quantitatively evaluate the stability and flexibility
of robot driving. Through these, it is expected that the performance and limitations of
the proposed algorithm will be analyzed, and shortcomings can be resolved in various
conditions where static/dynamic obstacles exist in combination.

Author Contributions: Conceptualization, H.J.L. and M.C.L.; methodology, H.J.L.; software, H.J.L.;
validation, H.J.L., M.-S.K. and M.C.L.; formal analysis, H.J.L.; investigation, H.J.L.; resources, H.J.L.;
data curation, M.-S.K.; writing—original draft preparation, H.J.L.; writing—review and editing,
M.-S.K. and M.C.L.; visualization, H.J.L.; supervision, M.C.L.; project administration, M.-S.K.; funding
acquisition, M.-S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Development of High-Level Cognitive Prediction Sensor
Technology for Autonomous Driving Mobility (RS-2022-00144500, Development of 3D Ultrasonic
Sensor Technology for Vehicles based on Meta Structure) funded by the Ministry of Trade Industry &
Energy (MOTIE, Republic of Korea).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rimon, E.; Koditschek, D.E. Exact robot navigation using cost functions: The case of distinct spherical boundaries in En. In

Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988.
[CrossRef]

2. Kim, J.-O.; Khosla, P. Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Automat. Robot. Autom.
1992, 8, 338–349. [CrossRef]

3. Feder, H.J.S.; Slotine, J.-J.E. Real-time path planning using harmonic potentials in dynamic environments. In Proceedings of the
IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997. [CrossRef]

4. Chengqing, L.; Ang, M.H.; Krishnan, H.; Yong, L.S. Virtual obstacle concept for local-minimum-recovery in potential-field
based navigation. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000. [CrossRef]

5. Sfeir, J.; Saad, M.; Saliah-Hassane, H. An improved artificial potential field approach to real-time mobile robot path planning in
an unknown environment. In Proceedings of the IEEE International Symposium on Robotic and Sensors Environments (ROSE),
Montreal, QC, Canada, 17–18 September 2011. [CrossRef]

6. Chen, L. UUV path planning algorithm based on virtual obstacle. In Proceedings of the IEEE International Conference on
Mechatronics and Automation, Tianjin, China, 3–6 August 2014. [CrossRef]

7. Hossain, M.A.; Ferdous, I. Autonomous robot path planning in dynamic environment using a new optimization technique
inspired by bacterial foraging technique. Robot. Auton. Syst. 2015, 64, 137–141. [CrossRef]

8. Lin, P.; Choi, W.Y.; Lee, S.-H.; Chung, C.C. Model predictive path planning based on artificial potential field and its application to
autonomous lane change. In Proceedings of the 20th International Conference on Control, Automation and Systems (ICCAS),
Busan, Republic of Korea, 13–16 October 2020. [CrossRef]

9. Souza, R.M.J.A.; Lima, G.V.; Morais, A.S.; Oliveira-Lopes, L.C.; Ramos, D.C.; Tofoli, F.L. Modified artificial potential field for the
path planning of aircraft swarms in three-dimensional environments. Sensors 2022, 22, 1558. [CrossRef] [PubMed]

10. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
11. Khosla, P.; Volpe, R. Superquadric artificial potentials for obstacle avoidance and approach. In Proceedings of the IEEE

International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988. [CrossRef]
12. Volpe, R.; Khosla, P. Manipulator control with superquadric artificial potential functions: Theory and experiments. IEEE Trans.

Syst. Man Cybern. 1990, 20, 1423–1436. [CrossRef]
13. Weerakoon, T.; Ishii, K.; Nassiraei, A.A.F. An artificial potential field based mobile robot navigation method to prevent from

deadlock. J. Artif. Intell. Soft Comput. Res. 2015, 5, 189–203. [CrossRef]

https://doi.org/10.1109/ROBOT.1988.12325
https://doi.org/10.1109/70.143352
https://doi.org/10.1109/ROBOT.1997.620144
https://doi.org/10.1109/ROBOT.2000.844728
https://doi.org/10.1109/ROSE.2011.6058518
https://doi.org/10.1109/ICMA.2014.6885960
https://doi.org/10.1016/j.robot.2014.07.002
https://doi.org/10.23919/ICCAS50221.2020.9268380
https://doi.org/10.3390/s22041558
https://www.ncbi.nlm.nih.gov/pubmed/35214462
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1109/ROBOT.1988.12323
https://doi.org/10.1109/21.61211
https://doi.org/10.1515/jaiscr-2015-0028

Appl. Sci. 2024, 14, 8292 17 of 17

14. Xia, X.; Li, T.; Sang, S.; Cheng, Y.; Ma, H.; Zhang, Q.; Yang, K. Path planning for obstacle avoidance of robot arm based on
improved potential field method. Sensors 2023, 23, 3754. [CrossRef]

15. Li, X.; Li, G.; Bian, Z. Research on autonomous vehicle path planning algorithm based on improved RRT* algorithm and artificial
potential field method. Sensors 2024, 24, 3899. [CrossRef]

16. De Medio, C.; Oriolo, G. Robot obstacle avoidance using vortex fields. In Advances in Robot Kinematics; Springer: Vienna, Austria,
1991. [CrossRef]

17. Szczepanski, R. Safe artificial potential field—Novel local path planning algorithm maintaining safe distance from obstacles.
IEEE Robot. Autom. Lett. 2023, 8, 4823–4830. [CrossRef]

18. Melchiorre, M.; Scimmi, L.; Salamina, L.; Mauro, S.; Pastorelli, S. Robot collision avoidance based on artificial potential field with
local attractors. In Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics, Lisbon,
Portugal, 14–16 July 2022. [CrossRef]

19. Abdi, M.I.I.; Khan, M.U.; Güneş, A.; Mishra, D. Escaping local minima in path planning using a robust bacterial foraging
algorithm. Appl. Sci. 2020, 10, 7905. [CrossRef]

20. Montiel, O.; Orozco-Rosas, U.; Sepúlveda, R. Path planning for mobile robots using Bacterial Potential Field for avoiding static
and dynamic obstacles. Expert Syst. Appl. 2015, 42, 5177–5191. [CrossRef]

21. Lee, S.; Park, J. Cellular robotic collision-free path planning. In Proceedings of the Fifth International Conference on Advanced
Robotics ‘Robots in Unstructured Environments, Pisa, Italy, 19–22 June 1991. [CrossRef]

22. Li, Q.; Wang, L.; Chen, B.; Zhou, Z. An improved artificial potential field method for solving local minimum problem. In
Proceedings of the 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 25–28 July
2011. [CrossRef]

23. Findi, A.H.; Marhaban, M.H.; Kamil, R.; Hassan, M.K. Collision prediction based genetic network programming-reinforcement
learning for mobile robot navigation in unknown dynamic environments. J. Electr. Eng. Technol. 2017, 12, 890–903. [CrossRef]

24. Yao, Q.; Zheng, Z.; Qi, L.; Yuan, H.; Guo, X.; Zhao, M.; Liu, Z.; Yang, T. Path planning method with improved artificial potential
field—A reinforcement learning perspective. IEEE Access 2020, 8, 135513–135523. [CrossRef]

25. Li, Q.; Ma, Q.; Weng, X. Dynamic path planning for mobile robots based on artificial potential field enhanced improved
multiobjective snake optimization (APF-IMOSO). J. Field Robot. 2024, 41, 1843–1863. [CrossRef]

26. Kozhubaev, Y.; Yang, R. Simulation of dynamic path planning of symmetrical trajectory of mobile robots based on improved A*
and artificial potential field fusion for natural resource exploration. Symmetry 2024, 16, 801. [CrossRef]

27. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle avoidance path planning design for autonomous driving vehicles based on an
improved artificial potential field algorithm. Energies 2019, 12, 2342. [CrossRef]

28. Lv, Q.; Hao, G.; Huang, Z.; Li, B.; Fu, D.; Zhao, H.; Chen, W.; Chen, S. Localized path planning for mobile robots based on a
subarea-artificial potential field model. Sensors 2024, 24, 3604. [CrossRef]

29. Borenstein, J.; Koren, Y. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 1989, 19, 1179–1187.
[CrossRef]

30. Jung, J.-H.; Kim, D.-H. Local path planning of a mobile robot using a novel grid-based potential method. Int. J. Fuzzy Log. Intell.
Syst. 2020, 20, 26–34. [CrossRef]

31. Dalai, S.; Irfan, M.; Singh, S.; Kishore, K.; Akbar, S.A. Heuristic guided artificial potential field for avoidance of small obstacles. In
Proceedings of the 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15
October 2021. [CrossRef]

32. Park, M.G.; Lee, M.C. A new technique to escape local minimum in artificial potential field based path planning. KSME Int. J.
2003, 17, 1876–1885. [CrossRef]

33. Ren, J.; McIsaac, K.A.; Patel, R.V.; Peters, T.M. A potential field model using generalized sigmoid functions. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2007, 37, 477–484. [CrossRef] [PubMed]

34. Park, M.G.; Lee, M.C. Real-time path planning in unknown environment and a virtual hill concept to escape local minima. In
Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society, IECON 2004, Busan, Republic of Korea, 2–6
November 2004. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23073754
https://doi.org/10.3390/s24123899
https://doi.org/10.1007/978-3-7091-4433-6_26
https://doi.org/10.1109/LRA.2023.3290819
https://doi.org/10.5220/0011353200003271
https://doi.org/10.3390/app10217905
https://doi.org/10.1016/j.eswa.2015.02.033
https://doi.org/10.1109/ICAR.1991.240597
https://doi.org/10.1109/ICICIP.2011.6008278
https://doi.org/10.5370/JEET.2017.12.2.890
https://doi.org/10.1109/ACCESS.2020.3011211
https://doi.org/10.1002/rob.22354
https://doi.org/10.3390/sym16070801
https://doi.org/10.3390/en12122342
https://doi.org/10.3390/s24113604
https://doi.org/10.1109/21.44033
https://doi.org/10.5391/IJFIS.2020.20.1.26
https://doi.org/10.23919/ICCAS52745.2021.9649879
https://doi.org/10.1007/BF02982426
https://doi.org/10.1109/TSMCB.2006.883866
https://www.ncbi.nlm.nih.gov/pubmed/17416174
https://doi.org/10.1109/IECON.2004.1432144

	Introduction
	Simulation Environments
	Virtual Hill Concept and Open Path Indicator, New eb
	Virtual Hill Concept
	Problems with Previous eb
	Open Path Indicator, New eb
	Two-Directional Obstacle Measurement and New eb
	Dead-End Algorithm

	Simulations
	Discussion
	Conclusions
	References

