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Abstract: To address the problem of predicting machining quality for critical features in the manufac-
turing process of mechanical products, a method that combines information entropy and XGBoost
(version 2.1.1) hyperparameter optimization is proposed. Initially, machining data of mechanical
products are analyzed based on information entropy theory to identify critical quality characteristics.
Subsequently, a quality prediction model for these critical features is established using the XGBoost
machine learning framework. The model’s hyperparameters are then optimized through Bayesian
optimization. This method is applied as a case study to a medium-speed marine diesel engine piston.
After the critical quality characteristics in the machining process are identified, the machining quality
of these vital characteristics is predicted, and the results are compared with those obtained from a
machine learning model without hyperparameter optimization. The findings demonstrate that the
proposed method effectively predicts the machining quality of mechanical products.

Keywords: critical quality characteristics; machining quality prediction; information entropy; XG-
Boost; Bayesian optimization

1. Introduction

In the modern manufacturing industry, the quality of mechanical products is of
paramount importance. The manufacturing of these products involves complex processes
that demand stringent control measures to ensure accuracy and consistency throughout
production. Critical quality characteristics are particularly significant, as they directly influ-
ence the final product’s performance, reliability, and lifespan [1]. Consequently, accurately
predicting the processing quality of these critical characteristics is vital for maintaining a
competitive edge and adhering to industry standards.

In recent years, scholars have extensively explored the identification of key quality
features and the prediction of processing quality in machining. The machining process
of mechanical parts typically involves multiple steps, each targeting different quality
characteristics. It is essential to identify the most significant quality characteristics based on
specific evaluation criteria to enable in-depth analysis in subsequent studies. The Analytic
Hierarchy Process (AHP), developed by Thomas L. Saaty in 1971, is a multi-criteria decision-
making method that assists decision makers in ranking the pros and cons of different
options by hierarchically decomposing complex problems [2]. For example, Deng et al. [3]
applied AHP to identify key influencing factors in the complex deformation of flexible
materials during processing. They developed a model with importance as the target layer,
processing attributes as the criterion layer, and deformation influencing factors as the index
layer, systematically analyzing the relative importance of each factor. Zhang et al. [4]
introduced the fuzzy consistent matrix and fuzzy analytic hierarchy process (FAHP), which,
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by incorporating a fuzzy function, enhances the consistency of the judgment matrix in
the traditional AHP, thereby reducing the impact of subjective factors and uncertainty.
Additionally, the causal matrix method identifies key influencing factors based on the
degree of influence that input variables have on output variables [5]. Zhang utilized the
causal matrix method to evaluate the manufacturing process of conical picks, treating each
process as an input and the critical quality characteristics as outputs [6]. However, current
analysis methods, such as AHP, FAHP, and the causal matrix method, are significantly
affected by subjective factors, highlighting the urgent need for a quantitative approach to
enhance the objectivity and consistency of the analysis.

Shannon introduced information entropy in information theory, originally applying
it to communication to measure the average uncertainty of discrete random variables.
When calculated using a base-2 logarithm, the unit of information entropy is expressed in
bits [7]. Qu et al. [8] applied information theory to establish a reliability analysis model
for the machining process, where the uncertainty of machining quality is assessed using
vertex entropy, and the error transfer effect is quantified by the mutual information transfer
coefficient. Wang et al. [9] developed a “stability entropy” method based on information
entropy, which enables real-time calculation of cutting stability through spindle load data.
Additionally, Zhang et al. [10] proposed a method based on information transfer entropy
that achieved early fault warning and root cause tracking of CNC lathes using net entropy
calculation and a sliding window method. While information entropy theory has been
widely employed to analyze error transmission, evaluate CNC machining stability, and
diagnose faults, there is a noticeable gap in research regarding the identification of crucial
quality features in machining. To address this gap, the present study introduces information
entropy as a tool for quantitatively screening crucial quality features.

Machining quality prediction aims to evaluate potential quality issues during ma-
chining, identify process defects in advance, and implement early warning measures to
enhance product quality and reliability. However, due to the numerous features involved
in machining, comprehensively predicting each quality feature incurs high computational
costs. To address this, the present study focuses on analyzing key machining quality
features based on information entropy and predicting these features to achieve a balance
between efficiency and accuracy. Common machining methods for parts include turning,
milling, drilling, and grinding. For example, Zajac et al. [11] successfully predicted tool
performance during turning by conducting experiments on C45 material using cutting tools
with various materials and coatings, employing the Taylor model and least squares method.
Makhfi et al. [12] evaluated eight machine learning models to assess their performance in
predicting the cutting force for AISI 52100 bearing steel hard turning through five-fold cross-
validation. Their findings revealed that Gaussian process regression (GPR) and decision
tree regression models performed best, with GPR also providing prediction uncertainty,
thereby aiding in optimizing cutting parameters and reducing tool wear. Additionally,
Alajmi and Almeshal [13] utilized the ANFIS-QPSO method to successfully predict and
optimize the surface roughness of AISI 304 stainless steel during turning, showcasing the
method’s high accuracy and robustness. Nonetheless, each processing quality prediction
method has its own strengths and limitations, making it essential to select the most suitable
method to ensure the accuracy and applicability of the prediction results.

Common quality prediction methods include time series prediction [14], regression
analysis, the Taylor model [11], and machine learning techniques [15]. Time series pre-
diction, while valuable, encounters practical challenges such as difficulties in addressing
nonlinear relationships, high data requirements, and the need for long, complete historical
datasets, which are often difficult to obtain [16]. Regression analysis is straightforward and
easy to implement, but when dealing with a large number of explanatory variables, the
model can easily suffer from overfitting or underfitting issues [17]. The Taylor model is
frequently used to predict tool life and cutting force, yet it struggles to cope with complex
or dynamic machining environments due to its limited scope, lack of dynamic response,
and reliance on experimental data. On the other hand, machine learning, a branch of
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artificial intelligence, excels at handling complex tasks by uncovering hidden patterns and
associations within datasets [18]. Popular machine learning methods for quality prediction
include decision trees [19], random forests [20], support vector machines (SVMs) [21], and
XGBoost [22]. For example, Ahmed et al. [23] applied the decision tree algorithm to analyze
resistance spot welding (RSW) data from an automobile manufacturer, constructing a
regression tree and extracting decision rules to predict nugget width, which highlighted the
influence of design and process parameters. Similarly, Ye et al. [24] employed the weighted
random forest (WRF) algorithm to develop a slab quality prediction model based on multi-
ple process parameters, effectively addressing sample imbalance in the continuous casting
process and validating the method’s effectiveness through real-time data. Furthermore,
Yu et al. [25] proposed a method to obtain contour error of tool rotation via a workpiece
shape-tool contour mapping identification test. They optimized the least squares support
vector machine (LS-SVM) model using a genetic algorithm (GA), demonstrating that the
GA-LS-S5VM model outperformed the unoptimized LS-SVM model in error prediction.
Among these methods, XGBoost stands out for its ability to handle complex nonlinear
relationships, automatically select features, and perform efficiently and accurately with
large-scale datasets [26]. In this study, the XGBoost method is employed to predict and
analyze machining quality, with the goal of improving prediction model accuracy and
reliability, thereby supporting quality control and optimization in actual production.

XGBoost captures complex data patterns through the gradient boosting framework
and includes built-in functions such as missing value processing, parallel processing, and
regularization, which effectively prevent overfitting and enhance generalization capability.
Additionally, XGBoost’s automatic feature selection and hyperparameter optimization fur-
ther contribute to improving the model’s performance. For these reasons, this study selects
XGBoost to predict the quality of crucial processing features based on information entropy
analysis, aiming to achieve efficient and accurate predictions, early warning, and enhanced
product processing quality and reliability. Liao et al. [27], for instance, proposed an XGBoost
load forecasting model based on similar days by analyzing the influence of meteorology
and day type, using regularization terms to control complexity and prevent overfitting.
Their simulation results demonstrated the model’s effectiveness in short-term load fore-
casting. However, the performance of the XGBoost model is significantly influenced by
hyperparameter settings. Without proper hyperparameter optimization, the model may
experience poor performance, including reduced prediction accuracy, severe overfitting or
underfitting, and extended training times [28]. Hyperparameter optimization is essential
to balance model complexity and generalization capability, thereby enhancing prediction
effectiveness and computational efficiency. Therefore, optimizing hyperparameters is criti-
cal to fully leverage XGBoost’s strengths in quality prediction [29]. Standard methods of
hyperparameter optimization include grid search and random search. Grid search exhaus-
tively explores a predefined range of parameters to find the optimal combination, which is
suitable for small datasets but computationally expensive [30]. In contrast, random search
explores a broader range of combinations by randomly selecting hyperparameter values
within predefined iterations, though it may struggle to find the global optimal solution.
Bayesian optimization, based on Bayes’ theorem, can identify the global optimal solu-
tion for complex objective functions with fewer sampling iterations. For example, Xiong
et al. [31] proposed an XGBoost algorithm based on Bayesian optimization (BH-XGBoost)
for short-term wind power prediction in wind farms. Compared with XGBoost, SVM,
KELM, and LSTM, BH-XGBoost demonstrated higher prediction accuracy under various
conditions, especially in extreme weather and low wind speed situations, highlighting its
significant advantages. Despite the proven effectiveness of combining Bayesian optimiza-
tion with XGBoost in other fields, there is limited research on its application in predicting
crucial quality features in machining. Therefore, this study aims to fill this gap by applying
this combined approach to enhance the accuracy and reliability of quality predictions in
machining processes.



Appl. Sci. 2024, 14, 8317

4 0f 20

This study focuses on identifying key quality features in the machining of mechanical
products and predicting their processing quality. As the manufacturing industry advances,
the demand for higher product quality has significantly increased, particularly in the
machining of parts with complex structures and multiple processes. Accurate identification
and prediction of these key quality features are crucial for ensuring the performance and
reliability of the final product. Traditional quality control methods often struggle to manage
the complexities of modern machining environments, underscoring the need for more
advanced prediction techniques.

In the second chapter, the concept of information entropy is introduced to quantita-
tively screen key quality features, effectively addressing the uncertainty introduced by
subjective factors in traditional methods. The third chapter applies the XGBoost machine
learning framework to predict the processing quality of these key features. A predic-
tion model is developed, and Bayesian optimization is utilized to fine-tune the model’s
hyperparameters, thereby enhancing both the model’s efficiency and prediction accuracy.

The fourth chapter validates the effectiveness of the proposed method through a case
study involving a medium-speed marine diesel engine piston. In the fifth chapter, the case
study results are analyzed and discussed, with potential directions for future research being
explored. Finally, the sixth chapter summarizes the study, highlighting its contributions to
scientific applications and the broader field of quality control in manufacturing.

2. Identification of Machining Key Quality Features Based on Information Entropy

In this study, information entropy is introduced to achieve quantitative screening of
crucial quality features. It measures the average uncertainty of discrete random variables.
When the base of the logarithm is 2, the unit of information entropy is a bit (bit) [8].
Information entropy is a function of the distribution of a random variable X, which depends
on its probability distribution rather than any particular observation of X [32]. The more
dispersed the probability distribution of the random variable, the higher its uncertainty
and, consequently, the greater its information entropy. The entropy H(X) of any random
variable X is defined by the following Formula (1):

H(X) = - ZX p(x)log p(x) 1)

where X is the value space of X, and x is the observed value of X.

Random variables represent the outcomes of random tests. Before the machining
process concludes, the quality of each feature is uncertain. Thus, the machining quality
for each feature can be considered a discrete random variable. Critical quality features are
determined by calculating the entropy of these random variables. Entropy measures the un-
certainty of a random variable [32]. A smaller entropy value indicates lower uncertainty of
the discrete random variable and better processing consistency of the quality characteristics
related to the random variable.

3. Machining Quality Prediction Method Based on XGBoost Hyperparameter Optimization

Establishing a processing quality prediction model for key quality characteristics al-
lows for evaluating processing quality before production, thereby reducing economic losses
caused by substandard processing quality. This study utilized the eXtreme Gradient Boost-
ing (XGBoost) machine learning framework to develop the prediction model. Bayesian op-
timization is employed to optimize the hyperparameters during the model’s construction.

3.1. XGBoost Algorithm

Ensemble learning has become a prominent research direction in machine learning
in recent years. Its core concept is to combine multiple weak learners to leverage the
strengths of each. The XGBoost algorithm is a type of ensemble learning. It consists of
multiple Classification and Regression Tree (CART) decision trees, where each tree predicts
the difference between the current predicted value and the actual value. The predictions
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from each decision tree are accumulated to obtain the final predicted value. The XGBoost
modeling process is illustrated in Figure 1.

D = {(x1,y1), (x2,¥2), L, (xn,yn) } 2)

Training data

. Calculate Calculate .
T del M del M. Trainin del M
[ FAIng mode l] resxdual error raining mode resxdual error [ TAING mMOcer - n]
[ Weak learner Sq Resmlual error Eq Weak learner Sp Resuiual error E2 ------ ﬁ\leak learner Sn]

Assign weights Wy,

Assign weights W1 Assign weights Wy

\ 4
Strong Learner S @

Suppose the training dataset is denoted as D, defined by (2), where x; € R" and y; € R.
Here, x; is an M-dimensional vector representing the input features, and y; is the sample’s
label. If the XGBoost model contains k regression trees, the model can be expressed as
shown in the following Formula (3):

Figure 1. XGBoost modeling process.

W = g%V () + filx) 3)

where fi(x) represents the k-th regression tree, which can be abbreviated as f} in subsequent
formulas. The regression tree filters the features of the samples, making each sample fall
into the corresponding regression tree leaf nodes based on the feature filtering results.
Each leaf node of the regression tree has a weight value w, representing the leaf node’s
predicted value.

Like other machine learning algorithms, XGBoost also has an objective function. By
minimizing the objective function, the optimal parameters of the machine learning model
can be obtained. The objective function of XGBoost is defined by the following Formula (4):

ob] ZL yl/yzk) + ZQ fl (4)

where Z L(yl,yf )) is the sum of the loss function (the cost function), used to evaluate
i=1

the degree of conformity between the predicted value and the actual value, and Z Q(fy)
=1

is the sum of regularization terms, representing the model’s complexity. The larger this

value is, the more complex the model becomes, and the more prone it is to overfitting. The

definition of regularization is shown in the following Equation (5), where the first term

controls the complexity of the regression tree, and the second term controls the weight
value w of the leaf nodes of the regression tree:

Q(f) =T+ A w |7 (5)

where T represents the number of leaf nodes, and <y and A are coefficients used to balance
the proportion of the first and second terms.
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In solving the objective function with the minimum value as the criterion, the objec-
tive function shown in Formula (4) is challenging to solve in Euclidean space. Therefore,
XGBoost uses the Taylor series expansion to approximate the objective function. By substi-
tuting Formula (3) into Formula (4), the following can be obtained:

Bl = £ [0 + )] + 000 + 04

é { (yi/ﬁgkfl) + fk(xi))] +Q(fy) +C

(6)

where f; is the predicted value of the output of the k-th round, ]ng*l)

; is the prediction of

the model for data sample i in the k-th round, L(y;, 95"‘” + fr(x;)) is the error between the
predicted value and the actual value of data sample i in the k-th round, and C; = k ! = Q(fi)
are constants.
To meet the accuracy requirements, the second-order Taylor series expansion is used
to approximate the original objective function as follows:
F) = L) 3 L) o) + 5220 L )efR ) + Q) | + €1 ?)

1

where ay<k yL(y;, y(k D ) and BZA(,H) L(y;, yAl(k_l)) represent the first and second derivatives

of the loss function with respect to the model, respectively

plk 2 (k
Let g; = % and h; = % be substituted into Formula (7), where

L(y;, ﬁgkil)) is a constant, and the constant has no effect on the solution of the objective
function. Therefore, Formula (7) can be rewritten as follows:
K _ v L
Fooj = 22| 8ifi(xi) + Shifi (xi) | +OQ(fi) ®)

i=1

Bringing Formula (5) into Formula (8) can obtain the following:

1
= [ngk<xz>+ hfk<xz>]+fyT+A||w||2

" ©)
=i§1[gifk< )+ G| 9T+ AL oF

For a regression tree model, each input sample is assigned to a specific leaf node of the
tree, where it is associated with a weight value w of that leaf node. Consequently, the regres-
sion tree model fi(x;) can be represented by the weight value w; of the corresponding leaf
node j. The sample set assigned to leaf node j is defined as I;, which satisfies Formula (10).

I = {ilfi(x:) = j} (10)

Bringing w; and (10) into Formula (9), we can obtain the following;:

Ob] Z{[(;gl)w] (;h —H\)w

Formula (11) can be regarded as a quadratic function with w; as the independent
variable, assuming that the quadratic function has a minimum value when w; = w]’f. For

+1T (11)

the convenience of solving w]?*, let Gj =) ic I 8i and H; =} ;c 5 h;.
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Bring G; and H; into the following Formula (11):
) _y 1 2
Eyj = 21 (Gj)w; + E(H]-JFA)w]- +9T (12)
]:

According to the formula of the most value of the quadratic function, wj can be obtained.

wr = [
I —2x 3(Hj+A) Hj+A
The minimum of the objective function F 0(;;]) is as follows:
1 T G2
r— 2y T 4 oT 14
obj 2];Hj+/\+7 (14)

Equation (14) can be used to evaluate the performance of the regression tree model.

)

A smaller value of FO(;; y indicates better performance of the model. During the training

process, Equation (14) is used to assess various regression tree models, allowing for the
selection of the optimal model.

3.2. Bayesian Optimization of Hyperparameters

In the XGBoost model, hyperparameter settings directly impact the model’s predictive
performance. Bayesian optimization (BO) is a sequential model optimization method
used for black-box function optimization. The pseudocode for the Bayesian optimization
algorithm is shown in Table 1. It primarily consists of two core components: the probabilistic
surrogate model and the acquisition function. The surrogate model fits the objective
function and is recursively estimated based on the known data-optimal value [33]. Common
surrogate models include the Gaussian process, random forest, Beta—Bernoulli model, etc.
Among these, the Gaussian process has a significant advantage due to its integration of
parameter uncertainty [34]. Therefore, this study employs the Gaussian process as the
surrogate model for Bayesian optimization. A Gaussian process is characterized by its
mean function y(x) and covariance function k(x, x), as follows:

f(x) ~ GP(u(x),k(x,x")) (15)

where the mean function y(x) satisfies y(x) = E[g(x)], and the covariance function k(x, x")

satisfies k(x,x") = E[(q(x) — u(x))(q(x") — u(x"))].

Table 1. Bayesian optimization pseudocode.

The Initial Sample Number N, the Maximum Number of Iterations T, the

Input: Decision Space ¥, and the Optimal Sampling Point x* Are Initialized.
S In the decision space ¥, N sample points are extracted according to
tep 1 . e
uniform distribution.
Step 2 The objective function value is obtained by evaluating the initial sample
points, and the dataset  is constructed to obtain the current optimal x*.
Step 3 The Gaussian surrogate model GP is constructed.
Step 4 Fort=1,2,3,---,Tdo
S The maximum value of the acquisition function is calculated, and a new
tep 5 . s . .
sampling point is obtained at the maximum value.
Step 6 Evaluate the new sampling point, update the dataset 7, and update the
optimal sampling point x*.
Step 7 Update the Gaussian surrogate model GP.
Step 8 End For
output: Optimal sampling point x*
input: The initial sample number N, the maximum number of iterations T, the

decision space ¥, and the optimal sampling point x" are initialized.




Appl. Sci. 2024, 14, 8317

8 of 20

In practical engineering applications, it is often challenging to provide a highly rea-
sonable prior mean function, so j(x) is frequently set to 0 [34]. The covariance function
characterizes the degree of correlation between two points in the decision space. The norm
is commonly used to measure the distance between two points. A smaller norm between
two points indicates a higher correlation and a larger value of the covariance function,
which satisfies the following Equation (16):

k(x,x1) > k(x, x2), if [|x — 2 [[<[[x — 22 (16)

Selecting an appropriate covariance function is crucial. Common stationary covari-
ance functions include the Matérn, exponential, and Gaussian kernel functions. This paper
chooses the Matérn function for its flexibility [35], as shown in Equation (17). The hy-
perparameters in the following Equation (17) are optimized by maximizing the marginal

likelihood [35]: )
p 2l-v 2ur 2ur
k(x,x") = ) ( ; > K,,< ; ) (17)

where I'(+) is the I function; r = |x — x’|; v, is a constant greater than 0; Ky, is the improved
Bessel function.

In iterative Gaussian process regression, the actual function value g(x) of the in-
put x can be theoretically calculated. However, in practical applications, q(x) is often
not calculated but observed. The observed data typically contain noise, represented by
Yn=q(x)+€ (e~ N(0, arzlois .)), where the noise € epsilone is assumed to be independently
and identically distributed.

Common acquisition functions include the probability improvement (PI) acquisition
function, the expectation improvement (EI) acquisition function, and the upper confidence
boundary (UCB) acquisition function [36]. This study selects the expectation improvement
acquisition function agg(x; {), whose mathematical expression is shown below. The observa-
tion formula indicates that the expectation improvement acquisition function can provide
both the probability of improvement from sampling at new points and the magnitude of
the improvement obtained, as follows:

- ()T n(x)—7
“El(x; g) = { é]’li’l (x) T)ftglzzn(x) ) +0n (x)(P(HUn(x) ) Un(x) >0 (18)

where { is the sample dataset, @(-) is the cumulative distribution function of standard
normal distribution, ¢(-) is the standard normal distribution probability density function,
1(+) is the posterior mean function, oy (+) is the posterior variance function, and 7 is the
current optimal value.

The pseudocode of Bayesian optimization is as follows:

4. Validation of the Effectiveness of a Processing Quality Prediction Method Based on
XGBoost Hyperparameter Optimization

The complex geometry of marine diesel engine pistons necessitates numerous pro-
cessing procedures and sophisticated technologies. Each process’s parameters contribute
differently to the piston’s overall quality. Unlike other diesel engine pistons, marine diesel
engine pistons are produced and processed in smaller batches, complicating and destabiliz-
ing the process. Currently, there is no systematic method for identifying key processing
features, and the control effect on processing quality is inadequate. Therefore, identifying
the critical quality characteristics that significantly impact piston processing quality is
crucial. Based on this identification, applying advanced quality prediction methods can
enhance the stability of the processing process and the reliability of product quality. To
clearly illustrate the identification and prediction process of key quality characteristics,
this paper introduces a flowchart (Figure 2) to enhance understanding and facilitate the



Appl. Sci. 2024, 14, 8317

9 of 20

application of these methods. This approach aims to optimize the processing quality of
marine diesel engine pistons.

Selection of Key Quality Characteristics
Establish a machining quality prediction model.

| |
I
| |
Obt S Processg’\g Diata for Marine | Establish a dataset for the selected
Diesel Engine Pistons | | , . .
| |
| |
|
|

v

Process the data and calculate the
distribution frequency of machining quality.

¢ —>

A
Define the feature set (including
n, {, ap, etc.).

Y
Dataset division (training set,
validation set).

Calculate the entropy value of the
machining quality random variables
corresponding to each quality characteristic.

|
|
|
; |
|
|

Select the key quality characteristics. I Construct the XGBoost model. |

Model training and testing. Hyperparameter optimization.

training data.

v

Validate the model's performance

(such as eta, max_depth,
min_child_weight, etc.).

I |
! |
I |
Train the model using the |
| | Select important hyperparameters
|
I |
|
|

on the test set.
f——

v

Analyze feature importance
using the weight metric in
XGBoost.

Optimize hyperparameters using the|
Bayesian optimization algorithm.

|

Obtain the optimal hyperparameter

combination.

Evaluate the model's prediction
accuracy and generalization

ability.

Figure 2. Flowchart of key quality characteristic identification and quality prediction method for
marine diesel engine piston machining based on information entropy and XGBoost hyperparameter
optimization.

4.1. Identification of Key Processing Characteristics of Marine Diesel Engine Piston

A piston can be divided into three parts: the top, the head, and the skirt. Figure 3
shows the piston’s structure. Due to the large size of marine medium-speed diesel engine
pistons, they are typically processed in two parts. The piston skirt, being a thin-walled part
with poor rigidity and a complex structure, requires a more intricate machining process. For
crucial quality characteristics, it is essential to control the size, shape, and surface roughness
within tight tolerance ranges to ensure the piston’s machining quality and performance.

The arrangement of piston process procedures should follow basic principles: rough
machining first, then finishing, and processing the benchmark first, then other features. The
machining process of a piston can be broadly divided into three stages: rough machining,
semi-finishing, and finishing. The main processes of rough machining include rough
turning of the outer circle and end face, rough boring, and milling of both sides of the plane.
Semi-finishing processes involve semi-finish turning of the cylindrical end face and ring
groove and semi-finish boring. Finishing processes include finishing the end face and stop
and fine model line and fine boring. After these primary processes, auxiliary processes
such as trimming and deburring, coloring, and flaw detection in the skirt are necessary.
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The inner surface of the skirt must be free of defects like cracks and cold scars. Additionally,
the skirt undergoes graphitization treatment, and the surface receives anti-rust treatment.

——> piston top

— piston head

- piston pin bore

—> piston skirt

Figure 3. Piston structure.

The comprehensive process card for a specific type of marine medium-speed diesel

engine piston is shown in Table 2.

Table 2. Piston comprehensive process card.

Process Number Description of Operation

Processing Units

1 Forging blank
Rough turning of the outer diameter and end
2 s
face and drilling

Ultrasonic inspection is carried out according to
GB/T 6519-2000 Grade A. If oxide films,
non-metallic inclusions, pores, and cracks in the

3 macrostructure are non-compliant, an inspection

can be performed according to GB/T 6519-2000
Grade AA

4 Scribing

5 Rough boring

6 Finish turning of the end face and shoulder

7 Semi-finish turning of the outer diameter and
end face, grooving, counterboring, and reaming

8 Drilling and reaming

9 Semi-finish boring of holes, milling oil grooves,

and arcs

10 Milling of two side planes

11 Vibration stress relief

12 Finishing the shoulder

13 Precision turning of the contour line

14 Finish boring of holes

15 Milling of two side planes and rounded corners

16 Finishing and deburring

17 Dye penetrant inspection of the skirt interior

18 Final inspection

19 Cleaning and packaging

20 Skirt graphite treatment

Lathe

Scribing table
Digital display
boring machine

CNC lathe
Turn-mill center

CNC vertical milling
machine

Machining center

Digital display
boring machine
Lathe
CNC lathe
Horizontal
machining center
Digital display
boring machine
Benchwork finishing
Inspection platform
Cleaning machine

The proposed method was applied to analyze a sample of machining data from
29 marine medium-speed diesel engine pistons processed by a particular company in the
same batch. Table 3 shows a portion of the organized data, with the header including
process, workstation, dimension type, design dimension, upper deviation, lower deviation,
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and each part number. Among these, the data for upper deviation and lower deviation
significantly impact subsequent calculations.

Table 3. Partially organized piston machining data.

Operstion OPSSON  amcarisic  DeSEY - Upper | Lower by s
Number

1 1 80.000 —0.200 —0.300 79.700 79.800 79.700

2 2 283.000 0.150 —0.150 283.100 283.080 283.100

2 3 299.000 0.300 —0.300 299.200 299.100 299.200

4 105.000 0.100 —0.100 104.960 104.980 104.960

° ! 5 163.500 0.300 —0.300 163.620 163.600 163.620

6 250.500 0.045 0.000 250.530 250.530 250.540

° ! 7 283.500 0.100 0.000 283.600 283.500 283.600

To analyze the machining quality, divide the length of each machining quality distri-
bution interval corresponding to each quality characteristic in Table 3 into multiple equally
spaced sub-intervals. Consider machining quality observations falling into the same sub-
interval as belonging to the same category. Each characteristic’s machining quality can be
viewed as a discrete random variable denoted by uppercase English letters. By examining
the distribution of machining quality observations falling into sub-intervals for parts 1
to 29, the distribution frequencies of machining quality in each sub-interval can be deter-
mined, as shown in Figure 4. According to the law of large numbers, frequencies converge
to probabilities as the sample size increases, implying that frequencies approximate the
corresponding probabilities in this context.

Distribution interval

€

Figure 4. Distribution frequency of quality characteristic observations.

Bringing the approximate machining quality distribution probabilities of each quality
characteristic from Table 3 into Equation (1) allows us to calculate the entropy values of the

machining quality random variables corresponding to each quality characteristic, as shown
in Figure 5.

®

Entropy (bit)

o
n

IRHATCE |

12345678910111213141516171819202122232425262728293031323334353637383940414243
Quality characteristic serial number

o
=3

Figure 5. Entropy values of each quality characteristic.
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As seen in Figure 5, the entropy value corresponding to the 43rd quality feature in
Table 3 is the largest (marked by a red circle). The machining quality of the No. 43 quality
feature fluctuates significantly, indicating poor machining consistency. Therefore, we select
this quality feature as the critical quality feature.

Critical quality characteristics are not fixed. Once key quality features are identified,
we need to optimize their processing parameters. After optimization, the entropy value
corresponding to the quality feature decreases, and it may no longer be a critical quality
feature. In other words, the screening process for crucial quality characteristics is dynamic
and iterative.

4.2. Quality Prediction of Key Machining Characteristics of Marine Diesel Engine Piston

Establishing a processing quality prediction model for key quality characteristics can
evaluate the processing quality before machining and reduce the economic losses caused
by substandard processing quality in production. Based on information entropy, the critical
quality feature identified is the No. 43 quality feature in process 15 (milling the plane and
fillet on both sides). The processing equipment used in process 15 is a T611C digital display
boring and milling machine, with its basic parameters shown in Table 4.

Table 4. Parameters of T611C digital display boring machine.

Spindle Diameter Spindle Motor Power = Machining Height  Table Load Capacity

110 mm 6.5-8 Kw 1800 mm 5t
Boring spindle speed Facing head tool
Three-axis travel 8P P Table size holder machining
range di

l1ameter

800 x 1200 x 1100 mm 12-950 rpm 1010 x 1320 mm 630 mm
Forming Lathe Tool Forming Lathe Tool . .

R16 (Left) R16 (Right)

16 mm 16 mm - -

To reduce processing times and economic costs and to obtain a training dataset uni-
formly distributed in the sample space, an orthogonal experiment with three factors and
five levels is used. This results in 125 experimental schemes, from which five sets of non-
training data are selected as verification datasets. Cutting speed (1), feed speed (f), and
depth of cut (ap) significantly influence the machining process. Su et al. [37] and Yang
et al. [38] studied the relationship between these factors and machining error, while Qu
et al. [8] analyzed the influence of interactions between processes on machining accuracy.
Cutting speed is also an important factor affecting machining quality during the processing
of parts, and it can be calculated using the following Formula (19):

t-n-D

Y= 000 (19)

where v represents the cutting speed in m/min, # is the spindle speed in r/min, and D is
the machining diameter of the boring tool in mm.

Therefore, each data point in the dataset should include features such as spindle
speed 1, feed rate f, and depth of cut a,, as well as cutting speed v and factors from prior
machining operations that influence the current machining process. In Section 4.1, the
screening of key quality characteristics of marine medium-speed diesel engine pistons was
completed. Based on Table 2 and the piston machining process card, we can abstract the
machining process, features, and quality characteristics into vertices in a graph, with the
relationships among processes, machining features, and quality features as edges between
vertices [39]. Finally, the machining process network of the piston is illustrated in Figure 6.
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Figure 6. Partial piston machining process network.

As shown in Figure 5, both the preceding machining feature 10A and the machining
feature 13A influence the machining feature 15A. The machining feature 10A serves as the
positioning reference for the machining feature 15A, while the roughing process of the ma-
chining feature 15A affects the machining feature 13A. Consequently, the machining error
£1 and the roughing error ¢; of the positioning reference are the other two characteristics of
each piece of data. The data are labeled with the machining quality of the critical quality
feature, i.e., the actual machining dimension measurement.

Since the XGBoost machine learning algorithm used in this paper is based on the
decision tree algorithm, the dataset does not need normalization during preprocessing; it
only requires anomaly detection. The box plot method is used to detect abnormal data
in the training dataset. Some of the training data after anomaly detection are shown in
Table 5.

Table 5. Partial training dataset after anomaly detection.

Input Output
Serial Number . ) ) Processing
n (r/min) v (m/min)  f (mm/min) a, (mm) &1 (mm) & (mm) Quality (mm)
1 500 50.265 20 0.30 —0.035 0.064 80.211
2 500 50.265 25 0.40 —0.032 0.117 80.209
3 500 50.265 30 0.50 —0.030 0.174 80.207
25 900 90.478 40 0.5 —0.024 0.103 80.258

Before training the model, it is necessary to identify which hyperparameters should
be optimized. XGBoost has many hyperparameters, and some of the more critical ones are
listed in Table 6. When using Bayesian optimization to optimize the hyperparameters of the
XGBoost model, the more hyperparameters that are optimized, the greater the computing
power required. Therefore, optimizing essential hyperparameters can significantly improve
model performance with less computation. This paper focuses on optimizing the first five
hyperparameters—eta, min_child_weight, max_depth, alpha, and lambda—as shown in
Table 6.
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Table 6. XGBoost partial hyperparameters.

Parameter Name Default Value Parameter Description
eta 0.3 Learning rate, eta € [0, 1], commonly used values are 0.01~0.2.
. . . Child nodes contain the smallest sum of instance weights,
min_child_weight 1

min_child_weight € [0, co].
max_depth 6 Maximum depth of tree, max_depth € [1, o], commonly used values are 3~10.
N 1 The L1 regular term of the weight, the larger the value, the more conservative

the model is.

The L2 regular term of the weight, the larger the value, the more conservative
the model is.

0% 0 Minimum loss reduction required for leaf node splitting, gamma € [0, o].

Maximum incremental step size allowed for each tree weight estimation,

A 1

max_delta_step 0 max_delta_step € [0, c0].
. The balance of positive and negative sample weights is controlled when the
scale_pos_weight 1 .
categories are unbalanced.
subsmaple 1 Sampling rate of training samples, subsmaple € (0,1].

The dataset in Table 5 is divided, and the model’s hyperparameters are optimized with
the minimization of the evaluation results of five-fold cross-validation as the optimization
goal. During the hyperparameter optimization process, each parameter’s setting is shown
in Table 7.

Table 7. Parameter settings of Bayesian optimization.

Initial Random Maximum Number  Selected Acquisition Eta Optimization
Sampling Count of Iterations Function Interval
10 50 EI 0,1]
min_child_weight max_depth « optimization A optimization
optimization interval optimization interval interval interval
(0, 10) (3,10) (1,5) (1,5)

Table 8 records the data of the first five iterations of Bayesian optimization and the
obtained optimal hyperparameters (last row). The objective function values corresponding
to different hyperparameter combinations vary, and the hyperparameter set corresponding
to the smallest objective function value is considered optimal. It should be noted that
the objective function value is the negative of the five-fold cross-validation test results.
This transformation is necessary because the optimization program aims to maximize the
objective function, so taking its negative converts it into the minimization of the five-fold
cross-validation test results.

Table 8. Data of the first five iterations of Bayesian optimization and optimal solutions of

hyperparameters.
Objective . . .

Function Value Eta Max_Depth Min_Child_Weight « A
—0.031 1.000 8.206 7.092 1.646 3.499
—0.039 1.000 9.282 5.922 3.498 1.988
—0.037 0.038 9.092 4.810 1.000 3.789
—0.030 0.635 8.231 6.586 4916 2.985
—0.033 1.000 10.000 4.326 3.799 3.000
—0.013 0.447 5.710 4.894 2.457 1.288

After obtaining the optimal hyperparameters, the XGBoost model can be trained, with
the training process illustrated in Figure 7.
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Figure 7. XGBoost model training process.

The XGBoost model needs to be verified on the training set, and its prediction accuracy
and generalization ability on datasets other than the training set must be tested. The test
set data is shown in Table 9. For testing the XGBoost model and finding the optimal
parameters, it is necessary to predefine the testing range. Therefore, we set five groups of
variables for parameter optimization, as shown in Table 9.

Table 9. Test dataset.

Serial Number n (r/min) v (m/min) f (mm/min) a, (mm) &1 (mm) & (mm) Ql;r:g:;s(ﬁlrgn )
1 500 50.265 25 0.30 0.117 —0.033 80.211
2 600 60.319 30 0.40 0.099 —0.017 80.217
3 700 70.372 40 0.50 0.023 —0.027 80.238
4 800 80.425 20 0.45 0.126 —0.030 80.200
5 900 90.478 35 0.35 0.019 —0.044 80.283

The XGBoost model is trained iteratively 50 times. As the number of iterations
increases, the change in root mean square error (RMSE) of the model on the training set and
test set is shown in Figure 8. It can be seen from the figure that, with an increasing number
of training iterations, the RMSE of the model on both the training set and the test set shows
a decreasing trend. In the first 30 iterations, the RMSE of the model on both sets decreases
rapidly. With the same number of iterations, the RMSE of the model on the training set is

smaller than that on the test set.
Test set
Training set

0.07 4

0.06

Root mean square error

e e b o
o o o o
¥ @ = 511
1 1 1 1

0.01

0.00 T T T T T
Number of training iterations

Figure 8. Change of root mean square error during model training.
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The predicted and actual values of the trained XGBoost model on the test set are
shown in Figure 9. The predicted values are consistent with the trends of the actual values,
and the numerical differences are slight. The RMSE of the XGBoost model on the test set is
0.0307, which meets the accuracy requirements.

—&— Predicted value

80.28 4 |—e&—True value

mm)

80.26 |

80.24

80.22

Mass characteristic size

80.20

Test sample serial number

Figure 9. Predicted and true values of the model on the test set.

XGBoost provides five indicators to measure the importance of features: the number
of times a feature is used as a split feature (weight), the average feature return (gain), the
average feature usage coverage (cover), the total feature return (total_gain), and the total
feature usage coverage (total_cover). In this paper, weight is used as the evaluation index
of feature importance, and each feature is sorted according to its importance in the XGBoost
model. The ranking results are shown in Figure 10.

ap + 27

Trait
il
s

errorl - 13

error2 - 11

0 10 20 30

Importance assessment score

Figure 10. Ranking of importance of model features.

Default values are assigned to each hyperparameter in the XGBoost framework, as
shown in Table 6. To verify the effectiveness of hyperparameter optimization based on
Bayesian optimization, the model is re-trained (referred to as Model 2) using default
hyperparameters and compared with the previously trained model (referred to as Model 1).
The root mean square error (RMSE) of Model 2 on the test set is 0.042, which is 0.03 higher
than that of Model 1 (0.012). The prediction results of Models 1 and 2 on the test set are
shown in Figure 11. From both the figure and the RMSE values, it is evident that Model 1,
which uses Bayesian optimization, outperforms Model 2 in terms of generalization ability
and prediction accuracy. This demonstrates the effectiveness of Bayesian optimization.
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Figure 11. Prediction comparison of Models 1 and 2 on the test set.

5. Results and Discussion

In this study, we use the machining of a marine diesel engine piston as an example to
demonstrate our proposed method for identifying key machining features and constructing
a machining quality prediction model. Through the information entropy method, we
identified the 43rd quality feature as the key quality feature. Subsequently, we employed
the XGBoost algorithm to establish the corresponding machining quality prediction model.
The optimal hyperparameters for this model were determined using Bayesian optimization
and validated on a test set, resulting in relatively accurate prediction outcomes.

The analysis indicates that the 43rd quality feature has the highest entropy value,
suggesting significant quality fluctuations during the machining process, which establishes
it as the key quality feature. These large fluctuations in the 43rd quality feature are
associated with various factors, including machining processes, equipment stability, and
process parameter settings. By further optimizing these factors, we expect to enhance the
consistency of machining quality.

Through training the XGBoost model, we observed a decreasing trend in the root
mean square error (RMSE) on both the training and test sets. During the first 30 iterations,
the RMSE decreased rapidly for both sets, with the RMSE on the training set consistently
lower than that on the test set. After 50 iterations, the model’s RMSE reached 0.0307,
meeting the required accuracy threshold. The observed decreasing trend in RMSE across
different iterations indicates that XGBoost is highly adaptable in addressing machining
quality prediction problems. Notably, the model optimized through Bayesian optimization
outperformed the model with default parameter settings on the test set, underscoring the
significance of hyperparameter optimization in enhancing model accuracy.

An analysis of the feature importance indicators in the XGBoost model revealed
that the feature ranking met our expectations, further validating the model’s reliability.
Key process parameters, including spindle speed, feed rate, and cutting depth, signifi-
cantly impacted machining quality. Adjustments to these parameters during optimiza-
tion directly influenced the model’s prediction accuracy, reinforcing their crucial role in
machining quality.

Future research should aim to expand the scale of the training dataset to enhance the
model’s generalization capabilities. Additionally, factors such as ambient temperature and
tool wear, which may also affect machining quality, should be considered to improve the
model’s applicability. Furthermore, integrating other machine learning algorithms, such as
deep learning models, for multi-model comparisons could lead to more effective machining
quality prediction methods.
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6. Conclusions

This study examines key quality characteristics during the machining process of
mechanical products and predicts their processing quality. We propose a method for
identifying these key machining quality characteristics and predicting their quality using
information entropy and hyperparameter optimization of the XGBoost algorithm. The
XGBoost model demonstrates effective prediction of the machining quality of marine diesel
engine pistons while also identifying essential quality characteristics. The results and
discussions indicate that optimizing both process parameters and model hyperparameters
can significantly enhance the consistency of processing quality and the predictive accuracy
of the model. This research provides a scientific basis for further optimizing the machin-
ing process of marine diesel engine pistons. The main content of this study is outlined
as follows:

1. Key machining quality characteristics are identified using information entropy,
effectively addressing the shortcomings of other commonly used analytical methods that
are heavily influenced by subjective factors from decision makers.

2. In constructing the quality prediction model, this study integrates the XGBoost
algorithm with Bayesian hyperparameter optimization for the first time, achieving a balance
between prediction efficiency and accuracy of results.

3. Using the machining process of a marine diesel engine piston as an example, the
model is evaluated using the root mean square error (RMSE). The results indicate that the
RMSE of the model on the training dataset is 0.012, while on the testing dataset, it is 0.0307,
demonstrating high predictive accuracy. Experimental results further validate the excellent
performance and strong generalization ability of the proposed prediction model.

The research results present an effective quality prediction model specifically designed
for multi-process machining. This model addresses the shortcomings of traditional quality
prediction methods, such as their complex calculations and limited applicability. It is partic-
ularly beneficial for analyzing and predicting the machining of parts with intricate quality
characteristics, which are often challenging for traditional models to handle. Moreover,
this model not only facilitates the analysis and prediction of machining quality but also
serves as a tool for optimizing machining processes in the future, thereby enhancing quality
control in intelligent manufacturing. Furthermore, this method has shown significant
potential to enhance machining quality while also reducing rework and scrap rates in the
quality control of ship piston machining. This improvement is crucial for boosting the
overall competitiveness of the manufacturing industry.
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