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Abstract: Machine learning, a rapidly growing field, has attracted numerous researchers for its
ability to automatically learn from and make predictions based on data. This manuscript presents
an innovative approach to estimating the covariance matrix of noise in radar measurements for
target tracking, resulting from collaborative efforts. Traditionally, researchers have assumed that
the covariance matrix of noise in sonar measurements is present in the vast majority of literature
related to target tracking. On the other hand, this research aims to estimate it by employing deep
learning algorithms with noisy measurements in range, bearing, and elevation from radar sensors.
This collaborative approach, involving multiple disciplines, provides a more precise and accurate
covariance matrix estimate. Additionally, the unscented Kalman filter was combined with the gated
recurrent unit, multilayer perceptron, convolutional neural network, and long short-term memory
to accomplish the task of 3D target tracking in an airborne environment. The quantification of the
results was achieved through the use of Monte Carlo simulations, which demonstrated that the
convolutional neural network performed better than any other approach. The system was simulated
using a Python program, and the proposed method offers higher accuracy and faster convergence time
than conventional target tracking methods. This is a demonstration of the potential that collaboration
can have in research.

Keywords: radar; Kalman filter; deep learning; multilayer perceptron; convolutional neural network;
long short-term memory

1. Introduction

A radar is a system that emits and receives electromagnetic waves (EMW), usually
a pulse, and determines the object’s distance, location, and size in an aerial environment
by using [1]. Systems use techniques such as pulse-echo measurement, phase-difference
measurement, and frequency-modulated continuous-wave (FMCW) to obtain those target
signatures. The distance to the target usually uses the pulse-echo technique, which mea-
sures the time it takes EMW to reflect on the transmitter. By measuring the phase difference,
the system can determine the direction of the reflecting object. FMCW is used to determine
the range and speed of the target by measuring the frequency shift of the received echo [2].
Radar target tracking uses sensor data to actively acquire target measurements where target
motion parameters are performed to estimate the underlying motion rule and predict the
target’s future trajectory and unknown states.
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Target tracking is a complex task requiring high precision and accuracy due to the
dynamic nature of targets, environmental factors, the tracking system’s complexity, and
the various types of data from many/different sensors that must be processed at a time.
Currently, target tracking research focuses on two key areas: enhancing filtering algorithms
and accurately characterizing the target motion state. The filtering algorithm plays a
vital role in improving the quality of the target state estimation. In contrast, accurately
describing the target’s motion state is critical for reliable trajectory prediction. Several
types of filters are commonly used in nonlinear estimation methods when numerical
measurements are available, mainly including the extended Kalman filter (EKF) [2–5], the
unscented Kalman filter (UKF) [5–10], Particle Filters (PFs) [8,11–15], and the cubature
Kalman filter (CKF) [4,16–18]. Recent research in radar systems has focused on using more
advanced signal processing techniques, such as beamforming, to improve the detection
and localization of targets.

1.1. Tracking Target in Aerial Environment

Radar tracking in an aerial environment is a complex task due to various factors
related to the air’s physical properties and the airborne object’s characteristics, such as
size, speed, materials used in manufacturing, altitude, latitude, and shape. Stealth aircraft
are more complex to track compared to non-stealth aircraft, while small and fast-moving
objects at high altitudes may be more challenging to track than a more significant and
slower object moving at a lower altitude [19]. These factors make radar tracking in an aerial
environment challenging and highly nonlinear. In Figure 1, the radar system is mounted on
a moving vehicle and used to track a single aerial target, and both the target and observer
are moving in the direction shown.
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Figure 1. Observer–target movement in an aerial environment. β: Bearing. tcrs: Target course,
obcrs: Observer course, r: Range. TBA: Target Bearing Angle, tpi: Target Pitch, obpi: Observer pitch,
ε: Elevation.

In a scenario shown in Figure 1, a radar sensor is mounted on a moving vehicle travel-
ing at speed vo and tracking an aircraft target moving at a constant speed vt. The sensor
will measure the target’s range, bearing, and elevation. The combination of the vehicle
and target’s relative motion and the measurement of these three parameters will allow the
radar to accurately track the position and movement of the aircraft target. The parameters
mentioned in the above figure are as follows: β: Bearing. tcrs: Target course, obcrs: Ob-
server course, r: Range. TBA: Target Bearing Angle, tpi: Target Pitch, obpi: Observer pitch,
ε: Elevation. To simulate a real-life scenario, the specified parameters for the target and
observer were initialized and fed into the Python-based simulator. These parameters in-
clude observer course, initial range, initial bearing, target velocity, observer velocity, target
course, standard deviation in range, standard deviation in bearing, elevation, standard
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deviation in elevation, observer pitch, and target pitch. The study by Nalini Santhosh
et al. [20] comprehensively describes the mathematical model used for 3D simulator design.

1.2. Significance of Unscented Kalman Filter

The basic algorithm for solving tracking problems in nonlinear systems is the EKF,
which effectively provides good results for first-order nonlinearity but is not robust [9].
The stability of the estimation process for low-order nonlinearity is enhanced by the
modified [21] and extended Kalman gain filter [21]. However, it performs poorly for more
complex, higher-order nonlinearity [13]. The UKF algorithm uses a set of sigma points
to approximate the nonlinear relationship between the state of the system, control input,
and noise by updating the state estimate and covariance at each time step based on a
measurement of the system, and the weights used in the algorithm are calculated based
on the mean and covariance of the predicted state distribution [21,22]. By doing so, the
UKF can accurately capture any nonlinear function’s posterior mean and variance up to the
second order. This feature makes the UKF particularly well-suited for solving higher-order
nonlinear problems where traditional linear approaches may fail.

The standard deviation depends on the material used in sensors and other factors
such as the design of the sensor, the operating conditions, and the measurement method.
Therefore, it affects variability or uncertainty within measurements [23]. The accuracy of
the standard deviation is crucial in UKF to ensure reliable and robust performance target
tracking tasks to update the system’s state in real-time, mainly when dealing with complex
nonlinear systems. Otherwise, the target states can never be accurately estimated [7].

1.3. Significance of Machine Learning

Advancements in computing power and access to large amounts of data have made
the development of new machine learning algorithms a rapidly growing field. For example,
Transformer-based models, such as GPT-3 [24–26], use attention mechanisms to process
input sequences and various natural language processing tasks. Graph Neural Networks
(GNNs) [27] are designed to handle graph-structured data and have shown promising
outcomes in fields such as drug discovery and recommendation systems. Few-shot learn-
ing [28,29], a relatively new area of study that has emerged in recent years, focuses on
developing models that can learn from limited examples, making it well-suited for tasks
where data are scarce. Gated Recurrent Units [30], first introduced in 2014, are a Recurrent
Neural Network that handles long data sequences and has been applied to time series
analysis, effectively capturing both short-term and long-term dependencies in the data.
Wulff et al. [31] utilized the Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm to identify the deformation state and controller coefficient of a quadrotor and
subsequently employed a deep neural network to estimate the change in moment of inertia
under deformation. Similarly, in Ref. [32], a deep neural network was employed to esti-
mate the moment of inertia and proportional integral derivative (PID) coefficient to obtain
several deformation states of a hex-rotor [33,34].

A Multilayer Perceptron (MLP) is a type of Artificial Neural Network (ANN) that is
commonly used in deep learning consisting of one or more layers of Artificial Neurons
(ANs), where each neuron is a simple mathematical function that takes in one or more
inputs, performs a weighted sum of those inputs, adds a bias term, and then applies
an activation function to the result [35–37]. On the other hand, CNN is a type of ANN
specifically designed to process data with a grid-like topology, such as images or time-
series data. The key feature of CNN is the use of convolutional layers, which apply a set of
learnable filters to the input data [37–41]. Each filter is convolved across the input data to
produce a set of feature maps, which capture different aspects of the input data. The feature
maps are then passed through activation functions and pooling layers to reduce the spatial
dimensionality of the data and increase their invariance to small spatial translations [42–45].
The application of CNN in time series prediction is demonstrated by Wibaw et al. [46].
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1.4. Challenges with Assuming Standard Deviation: Exploring Alternative Approaches

In Ref. [23], one challenge described with assuming standard deviation is that it
can lead to underestimation or overestimation of the uncertainty in the system state. If
the true standard deviation exceeds the assumed value, the filter may underestimate
the uncertainty and produce overconfident estimates. On the other hand, if the true
standard deviation is smaller than the assumed value, the filter may overestimate the
uncertainty and produce overly conservative estimates. Overall, the wrong assumption of
standard deviation limits the filter’s ability to effectively capture the system’s nonlinear
behavior [8]. Suppose researchers without expertise or materials attempt to assume the
standard deviation within data. In that case, they risk making inaccurate or unreliable
estimates, leading to severe consequences in applications where accuracy and reliability
are critical. To solve this problem, the author proposed a deep learning method to estimate
these standard deviations, which provides many benefits, such as accurate, robust, and
unbiased predictions. It can process large amounts of data, be updated, and be reused
across multiple scenarios, while human intuition can be hard to replicate.

The main problem of effectively predicting dynamic systems is the focus of this
research. It is concentrated on enhancing the target state prediction in particular. The
authors acknowledge that the covariance matrix, an essential part of many prediction
models, may be difficult to reliably estimate using conventional approaches. The interesting
aspect of the paper is how different deep learning models are combined with the UKF
to anticipate dynamic systems. Incorporating deep learning models facilitates a data-
driven methodology for estimating the covariance matrix, an undertaking frequently
arduous in conventional techniques. The authors are able to anticipate target states with
a high degree of accuracy and dependability by fusing deep learning with UKF. For this
particular application, the research presents a comparative examination of CNN, GRU,
LSTM, and MLP models, showing that CNN and GRU perform better in terms of accuracy
and dependability. Section 2 gives a detailed explanation of materials and methods. The
detailed simulation analysis and results are given in Section 3, followed by a conclusion in
Section 4.

2. Materials and Methods

This section presents the methods utilized for radar-based target tracking using UKF
and DL techniques. A detailed block diagram in Figure 2 outlines the various stages of
UKF processing. Additionally, it serves as a visual representation of the procedures carried
out during this process. The UKF algorithm, a nonlinear estimate method used in target
tracking, is depicted in the diagram. Its goal is to determine a system’s state from noisy
observations. Figure 2 shows that initial estimates are set for the system’s state mean (x)
and covariance matrix (P). These figures may be predicated on default assumptions or past
knowledge. Radar is the source of the present measurement data (z). There is uncertainty
and noise in this data. Weights for the sigma points are calculated (Wm and Wc). These
weights evaluate the significance of every sigma point in the estimating process. Sigma
points are produced around estimating the present state (x). These points represent the
system’s possible states.

To anticipate the system’s future states, the sigma points are transmitted through the
nonlinear state equation (f). The predicted state mean (x’) and error covariance matrix
(P’) are computed using the converted sigma points as a base. This step estimates the
system’s status at the following time step. The predicted sigma points are translated
using the measurement equation (h) to produce expected measurements. The anticipated
measurement (z’) is computed using the altered sigma points as a base. The predicted
mean and covariance values are used to update the sigma points. The cross-covariance
matrix (Pxy) and output estimate (y) are computed. The output covariance (Pyy) and the
expected error covariance (P’) are used to calculate the Kalman gain (K). The Kalman gain
determines the impact of the measurement update on state estimation. The difference
between the expected measurement (z’) and the actual measurement (z) is used to update
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the state estimate (x) along with the Kalman gain. The output covariance (Pxy) and the
Kalman gain are used to update the error covariance matrix (P). Acceptance criteria are
compared with the modified state and covariance values. The procedure ends if they satisfy
the requirements. If not, step 2 of the algorithm is repeated.
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Figure 2. UKF block diagram for target tracking.

Figure 3 provides descriptive insight into steps undertaken to train and test the DL
models, where the proposed system, a simulator, was developed to produce a dataset
for training and testing. Range (r), bearing (β), and elevation (ε) measurements were
used as input to the neural network, which forecasted the standard deviations of those
measurements. At each epoch, the predicted output of the neural network was compared
to the actual output using a mean squared error as a loss function. The error was calculated
and backpropagated in the network to adjust weights. Over time, once the error was
reduced to a minimum, models were exported to be integrated into UKF. In this study,
300 possible scenarios are carefully designed. Each of these scenarios is used to simulate
the target-observer movement dataset according to Figure 3.

In Table 1, scnr, δrng, δbrg, δelev, rng, brg, Vt, Vo, elev, tcr, tp, ocrs, op stands for sce-
nario number, the standard deviation in range, is standard deviation in bearing, standard
deviation in elevation, initial range, initial bearing, target speed, observer speed, target
course, target pitch, observer initial course, and observer pitch, respectively. This provides
a comprehensive description of the mathematical model used for 3D target tracking and
implements a clear explanation of the UKF algorithm. In this study, the observer and target
are again assumed to move with constant velocities and course, as specified in Table 1.
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Table 1. Scenario parameters and initial conditions.

scnr δrng (m) δbrg
(deg)

δelev
(deg) rng (m) brg

(deg) Vt (m/s) Vo
(m/s)

elev
(deg)

tcr
(deg) tp (deg) ocrs

(deg)
op

(deg)

1 13.949 0.03174 0.482 58,364 271 497 34 76.694 270.0 65 300.0 54.5

2 14.754 0.04715 0.477 48,773 154 275 26 57.621 89.99 53 119.9 116.4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

299 11.833 0.0375 0.617 56,903 66 400 35 68.734 90.00 53 60.00 64.5

300 14.718 0.0399 0.0794 48,641 33 405 37 51.063 89.99 120 119.9 124.5

2.1. Deep Neural Network Design

MLP and CNN are DNNs (Deep Neural Networks) typically used for supervised
learning tasks such as classification and regression. DNNs can be explained using the
following diagram. The following Figure 4 illustrates DNN.
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In a DNN, the network consists of multiple neuron layers, including input, hidden,
and output. Each neuron in the network applies an activation function to its inputs and
passes the result to the next layer of neurons. The equations for a feedforward DNN can be
written as:

zl = Wl ∗ al−1 + bl (1)

al = g(zl) (2)

where Wl is the weight matrix between layer l and layer l − 1, bl is the bias vector for layer
l, al is the output of layer l after applying the activation function g to its inputs zl . The
forward pass through the network can be computed recursively as:

a0 = x (3)

al = g(zl) = g(Wl ∗ al−1 + bl) for l = 1, 2, . . . , L (4)

where x is the input to the network and L is the number of layers in the network. During
training, the network is trained to minimize a loss function that measures the difference
between the predicted output of the network and the target output.

f (x) =
1

1 + e−x (5)

f (x) =
ex − e−x

ex + e−x (6)

f (x) = max(0, x) (7)

where e is again Euler’s number, and x is the input to the function; in this study, as it is
a regression problem, ReLU was preferred because it addresses the vanishing problem,
converges faster, and can help to produce sparse representations, where many of the
neurons in the network have zero activations.

2.2. Recurrent Neural Network (RNN) Design

LSTM and GRU are both types of RNNs designed to handle sequential data. An RNN
is a type of neural network designed to work with sequential data where the order of the
data matters. It is a neural network with a form of memory, allowing it to capture temporal
dependencies in the data. RNNs can receive inputs at each time step and use their internal
state (hidden layer) to process the current input and remember previous inputs [34]. They
are explained using Figure 5.

t f (λ) = σ(Whh ∗ t f (λ − 1) + Whx ∗ x(λ) + bh) (8)

o f (λ) = σ
(

Wyh ∗ t f (λ) + by

)
(9)

The key feature of an RNN is that the activation at each time step depends on the
previous activations. This allows the RNN to capture temporal dependencies in sequential
data. In particular, the previous activation tf (λ − 1) serves as a form of memory passed from
one time step to the next. Equation (1) computes the activation tf (λ), which is a function
of the previous activation tf (λ − 1), the current input x(λ), and biases bh. The equation
uses the σ activation function to squash the weighted sum of the previous activation and
current input. Equation (2) computes the output of (λ), a function of the current activation
and biases by. The equation uses the σ activation function to squash the weighted sum of
the current activation. The key feature of an RNN is that the activation at each time step
depends on the previous activations, allowing the RNN to capture temporal dependencies
in sequential data. In particular, the previous activation tf (λ − 1) serves as a form of
memory that is passed from one time step to the next.
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2.3. System Architectural Design

The 3D space target tracking simulator is designed to track a target initially located
at a distance “r” from an observer located at the origin. The observer and target then
move with velocities according to the initial data in Table 1. Range, bearing, and elevation
measurements are taken at regular intervals, and noise is added. The simulation ran for a
specified time interval of 10 s, the same time step used during training. For the first 10 s, the
measurements, such as bearing, range, and elevation, were stored in a buffer, and the UKF
did not operate. Afterward, the buffered measurements are combined with respective saved
models and scalers to make predictions depending on the model used to make a prediction.
The buffered data were first transformed into 3D data to meet the requirements of the GRU,
LSTM, and CNN models, but not MLP, as it required 2D data. Predictions were made
using each model separately, which were then used in the UKF to estimate the state of the
unknown target. The block diagram in Figure 6 provides a visual summary of these steps.
In this way, a data-driven approach of all mentioned algorithms (i.e., MLP, CNN, GRU,
LSTM) was successfully implemented to predict the standard deviation effectively without
relying on human experience or assumptions, which is crucial for the algorithm’s better
performance. The framework systematically produces scenarios, conducts simulations, and
then compares the measured values with the actual values. An error metric is computed,
and depending on a set of acceptance criteria, the procedure either halts or proceeds. While
the text mentions deep learning models’ involvement in standard deviation computation,
the integration of these models with UKF remains unclear. Deep learning models have the
ability to analyze raw data, such as time series, in order to provide early estimations of the
state of a system. These estimations can be used as the initial conditions for the UKF.

Overall, the proposed system significantly contributes to the field of target tracking by
replacing the need for the assumption of a covariance matrix based on human intuition
with the power of machine learning. The results from the above-mentioned algorithms
may show that using deep learning algorithms outperformed the traditional method,
demonstrating a promising approach to improve the accuracy and reliability of target
tracking by eliminating the reliance on subjective assumptions. This method provides a
more robust and efficient way to handle the complexity of target-tracking tasks.
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3. Simulation Analysis and Results

To provide a clear and objective standard for evaluating the quality and relevance of
the research conducted, referring to [35], the following acceptance criteria were considered,
as displayed in Table 2.

Table 2. Acceptance Criteria.

Criteria Single Monte Carlo Run 100 Monte Carlo Runs

Range Error ≤10% of true range ≤3.3% of true range

Course Error ≤5◦ ≤1.67◦

Speed Error ≤1 m/s ≤0.33 m/s

Pitch Error ≤5◦ ≤1.67◦

3.1. Model Training

This study used 300 carefully designed scenarios in which a target was tracked in 3D
to create a dataset for training a machine learning model (MLP, CNN, LSTM, and GRU).
The dataset contained columns for measured range, measured bearing, and measured
elevation as input features and standard deviation in range, standard deviation in bearing,
and standard deviation in elevation as output features. The simulation was performed
using a simulator designed in Python to create the dataset.

3.1.1. Multilayer Perceptron (MLP)

This paper presents a multilayer perceptron with four dense layers for solving a multi-
output regression problem using TensorFlow. The first layer has 128 neurons with ReLU
activation, 3 input features, and L1 regularization with a coefficient of 0.001 to prevent
overfitting. The second and third layers have 64 and 32 neurons, respectively, with the
same activation and regularization. The output layer has three neurons for the three output
features with linear activation (Figure 7a). The image depicts a feedforward neural network
architecture in deep learning. It consists of an input layer, dense layers, three thick layers, a
ReLU activation function, L1 regularization, and an output layer. The input layer accepts
data, dense layers connect neurons, and the output layer aggregates information from the
previous layers for the final output.
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3.1.2. Convolutional Neural Network (CNN)

This paper proposes a Convolutional Neural Network (CNN) for a multi-output
regression problem. The model consists of several components: a Conv1D layer, a Max-
Pooling1D layer, a Flatten layer, two Dense layers, and an output layer. The input shape is
(10, 3), where 10 is the number of time steps and 3 is the number of features. The Conv1D
layer applies 1D convolution to the input and uses a ReLU activation function, while the
MaxPooling1D layer performs max pooling to reduce spatial dimensions. The Flatten
layer converts the multi-dimensional feature maps into a 1D vector, as the Dense layers
require a 1D input. The first Dense layer has 100 neurons, and the second has 64 neurons,
with ReLU activation and L1 regularization of 0.001. The output layer has three neurons
representing the final predictions (Figure 7b). The image depicts a 1D CNN architecture
that processes sequential data. It is made up of an input layer, convolution 1D layer, ReLU
activation, max-pooling 1D layer, flatten layer, dense layers 1 (100 neurons), dense layers 2
(64 neurons), and an output layer (3 neurons). The first layer has 100 neurons, whereas the
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second layer has 64 neurons with L1 regularization to avoid overfitting. The output layer
represents the output classes from a classification task.

3.1.3. Long Short-Term Memory (LSTM)

This paper presents a deep learning model for time series prediction using LSTM
networks. The model has four layers, including three LSTM layers and one dense layer.
The first LSTM layer has 200 units, the second has 100 units, and the third has 64. All
three LSTM layers use the ReLU activation function. This model can also learn hierarchical
representations of input data with multiple time steps and features (Figure 8a). The image
depicts a recurrent neural network (RNN) architecture for processing 3D input data that
employs Gated Recurrent Units (GRUs). The architecture is made up of five layers: input,
GRU, dropout, batch normalization, and dense. The GRU layers handle sequential data
well, extracting higher-level features while reducing overfitting and enhancing training
stability. The final layer is a fully linked layer with three units representing output classes
from a classification operation.
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3.1.4. Gated Recurrent Unit (GRU)

This paper proposed a deep learning model with 5 GRU layers, and techniques to
avoid overfitting and underfitting were implemented. The data were structured into 3D
for use with the GRU layers, and the model had a Dense output layer with three units as
several output features (Figure 8b). The network architecture has an input layer capable
of processing sequential data and accommodating numerous features at each time step.
The LSTM layers, specifically designed to efficiently process sequential data, extract more
complex features by utilizing three layers with progressively decreasing numbers of units.
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The network employs LSTM layers, Rectified Linear Unit (ReLU) activation functions, and
a concise output layer to produce complex patterns. Deep learning frameworks such as
TensorFlow/Keras and PyTorch are employed to build comparable network structures.
Factors such as the number of LSTM layers, the number of units in each layer, the choice of
activation functions, and the configuration of the output layer are of utmost importance.

3.2. Results of DL

When training DL models, the true value (label) refers to the actual value of the output
variable for input in the dataset. On the other hand, the predicted value refers to the output
value predicted by the deep learning model for the same input. The true values were
typically known during training because they were included in the labeled dataset used
to train the model. The predicted values are obtained by feeding the input data into the
model and observing its output.

Figures 9–12 show the performance of MLP, CNN, LSTM, and GRU models during
training by comparing the true unseen data to predicted data. Only 100 data points were
plotted to have a clear view. (a) Shows True against predicted standard deviation in bearing,
(b) True against predicted standard deviation in elevation, and (c) True against predicted
standard deviation in range. After training, each model was tested and evaluated using
mean squared error as evaluation metrics according to Equation (10).

MSE =
1
n∑n

i=1(yi − ŷi)2 (10)

where n is the total number of samples, yi and ŷi be the true and predicted value of the ith

sample, respectively.
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A comparative analysis of the actual and predicted values of standard deviations for
specific parameters in a system is presented in Figure 9a–c. These parameters appear to be
associated with bearing, elevation, and range values, potentially in the context of object
tracking or localization. The model’s ability to predict bearing values’ variability (standard
deviation) is contrasted with the actual variability observed in the data in Figure 9a. The
model’s capacity for predicting the variability of elevation values is illustrated in Figure 9b.
The model’s ability to predict the variability of range values is evaluated in Figure 9c.

The parameters of bearing, elevation, and range are the primary focus of each subplot
in Figure 10a–c. It represents the sequence of data points, denoted by the sample number,
as well as the standard deviation’s magnitude for the specific parameter along with the
anticipated standard deviation for the given range, elevation, or bearing with the genuine
or true standard deviation for range, elevation, or bearing, respectively.

The model’s ability to predict each parameter’s variability (standard deviation) com-
pared to the actual variability observed in the data is illustrated in Figures 11 and 12. The
plots demonstrate that the actual standard deviations (orange lines) do not precisely align
with the predicted standard deviations (blue lines) for any of the parameters. This implies
that the model may not effectively represent the actual variability in the data. The sample
range is characterized by fluctuations in the standard deviations, both predicted and actual.
This implies that the data’s variability is not constant. The model used to generate the
predictions may have limitations in accurately estimating the standard deviations for these
parameters, as evidenced by the discrepancies between the predicted and actual values.

Table 3 below provides an overview of the models’ performance. After testing, the
new dataset shows each model’s overall mean squared error.
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Table 3. Performance comparison of LSTM, GRU, CNN, and MLP Models during training.

Parameters
MSE

MLP CNN LSTM GRU

δrng (in m) 1.81981 1.45124 0.54328 0.3335
δbrg (in deg) 1.59 × 10−08 1.32 × 10−08 4.84807 × 10−09 3.2981×10−09

δelev (in deg) 1.61 × 10−08 1.37 × 10−08 5.46733 × 10−09 4.0326×10−09

Hybrid (DL-UKF)

The average distance to a traceable target is about 65,000 m, and the average velocity
of moving aircraft is 130 m/s. These measurements are used to compute the initial target’s
state vector, and they are assumed to follow Gaussian distribution with zero mean; therefore,
the following expression is derived.

Xs(0) =



130
130
130

65,000 ∗ sin β ∗ sin ε
65,000 ∗ sin β ∗ sin ε

65,000 ∗ sin ε



T

(11)

Moreover, from Equation (11), the initial covariance matrix P
(0

0
)
= diagonal

[
4 ∗ Xs(k)2

12

]
.

For evaluating the performance of the system, which incorporates DL models with UKF,
five different scenarios were designed. Table 4 shows the values for those scenarios.

Table 4. Scenario parameters and initial conditions for DL-UKF.

scnr δrng (m) δbrg
(deg)

δelev
(deg) rng (m) brg

(deg)
Vt

(m/s)
Vo

(m/s)
elev

(deg)
tcr

(deg) tp (deg) ocrs
(deg)

op
(deg)

1 11.4183 0.0576 0.073 49,076 44 319 41 68 89.90 120 119 116.4

2 13.2466 0.0424 0.041 45,972 268 507 33 54 269.9 100 239 115.5

3 12.4102 0.0617 0.071 56,902 330 213 38 76 270.0 60 300 55.5

4 9.8108 0.0448 0.085 47,861 137 651 31 43 90.00 53 60 56.4

5 11.6255 0.0821 0.076 57,338 351 287 37 58 270.0 65 300 63.6

The fifth scenario from Table 4 is chosen to display the simulation result. The Monte
Carlo method was used to model the nonlinearities in the target motion and measurement
models, which allows for more accurate predictions of the target’s state. The following
graphs present the results of this study.

Figure 13a displays the true path of both the target and observer, as well as the
estimated path of the target achieved through the utilization of the UKF algorithm. The
standard deviations implemented in the UKF algorithm are determined based solely on
human intuition and experience, with an assumption of being within the range of 0 to
3 degrees. The UKF algorithm alone has demonstrated efficaciousness in estimating the
unknown states of the target as expected. Where xo, yo, and zo are the observers’ x, y, and
z coordinates. xt, yt, and zt are the target’s x, y, and z coordinates. prxt, pryt, and przt are
the estimated x, y, and z coordinates.

Figure 13b–e depict the true path of both the target and observer, as well as the
estimated target path achieved through the integration of GRU, LSTM, MLP, and CNN,
respectively, into UKF. For comparative purposes, the accompanying graphs depict a
combination of the mean square error for range, bearing, elevation, course, and speed of all
model predictions.
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Figure 14 showcases a comparative model performance analysis integrated into the
UKF algorithm. The predictions made by the UKF algorithm were used as the benchmark to
establish a reference for analysis. The efficacy of the alternative algorithms was evaluated



Appl. Sci. 2024, 14, 8332 17 of 20

based on their ability to predict values that closely agreed with the UKF’s predictions.
Results indicated that both LSTM and GRU models showed high effectiveness in their
predictive performance, which can be further explained in Table 5. Based on the available
data and information, it can be concluded that using a UKF with the predicted standard
deviations from various machine learning models led to accurate prediction of target states.
Among the models, CNN showed faster convergence in its predictions, followed by GRU,
LSTM, and MLP.
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Table 5. Convergence times.

SN
UKF MLP CNN LSTM GRU

C S P TC C S P TC Dif C S P TC Dif C S P TC Dif C S P TC Dif

1 109 230 85 230 99 177 46 177 53 113 197 57 197 33 113 185 49 185 45 106 192 57 192 38

2 30 167 59 167 28 170 72 170 3 29 187 83 187 20 30 166 68 166 1 30 173 69 173 6

3 40 196 40 196 122 186 20 186 10 123 184 20 184 12 136 199 39 199 3 128 190 20 190 6

4 116 184 68 184 130 209 40 209 25 129 207 53 207 23 95 186 52 186 2 115 196 49 196 12

5 145 253 63 253 127 224 51 224 29 127 224 51 224 29 152 262 64 262 9 145 252 62 252 1

Integrating deep learning algorithms with UKF has shown tremendous success in
target-tracking applications. In this context, multiple presents the performance of this
approach in 5 scenarios. It reports the convergence time for range (R), course (C), speed (S),
elevation (E), and pitch (P) for each scenario based on the acceptance criteria specified for
all algorithms.
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Scenario 2 was used as an example, where the UKF’s Total Convergence (TC) was
considered ideal since it was simulated using the standard deviation provided in Table 4.
By incorporating DL models into the UKF and simulating without assuming the standard
deviation, the authors aimed to obtain the same standard deviation, implying that the
convergence time should be identical to that obtained when using UKF alone. The results
in Table 4 indicate that the LSTM model’s predictions were almost similar to the UKF’s
predictions, with only a one-second difference, followed by the GRU, CNN, and MLP
models, respectively. This pattern was consistent across most of the cases examined. Table 3
corroborates these results by showing that the LSTM model had the lowest MSE, followed
by the GRU, CNN, and MLP models.

4. Conclusions

Combining an unscented Kalman filter with various deep learning models represents
a viable approach for accurately predicting dynamic systems in multiple applications. This
approach is beneficial when a data-driven approach is required to estimate the covariance
matrix. It was possible to achieve forecasts of target states that were extremely accurate and
reliable by integrating the strengths of UKF and deep learning models. When it comes to
nonlinear state estimation, UKF offers a framework that is both robust and adaptable. At the
same time, deep learning models can learn from enormous datasets and produce accurate
predictions. Among deep learning models, CNN and GRU models have been observed
to outperform LSTM and MLP models in terms of accuracy and reliability. Specifically,
CNN and GRU models estimated a one-meter-per-second speed less than LSTM and MLP
models at the 100th second. It is possible to impart the improved performance of CNN
and GRU models to their capacity to process sequential input and maintain long-term
dependencies. Additionally, these models are well-suited for this task because of their
ability to handle sequential data. In contrast to MLP models, often utilized for more generic
classification tasks, CNN models are built specifically for image processing.
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