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Abstract: The existence of noise is inherent to most real data that are collected. Removing or reducing
noise can help classification algorithms focus on relevant patterns, preventing them from being
affected by irrelevant or incorrect information. This can result in more accurate and reliable models,
improving their ability to generalize and make accurate predictions on new data. For example,
among the main disadvantages of the nearest neighbor classifier are its noise sensitivity and its
high computational cost (for classification and storage). Thus, noise filtering is essential to ensure
data quality and the effectiveness of supervised classification models. The simultaneous selection of
attributes and instances for supervised classifiers was introduced in the last decade. However, the
proposed solutions present several drawbacks because some are either stochastic or do not handle
noisy domains, and the neighborhood selection of some algorithms allows very dissimilar objects to
be considered as neighbors. In addition, the design of some methods is just for specific classifiers
without generalization possibilities. This article introduces an instance and attribute selection model,
which seeks to detect and eliminate existing noise while reducing the feature space. In addition, the
proposal is deterministic and does not predefine any supervised classifier. The experiments allow us
to establish the viability of the proposal and its effectiveness in eliminating noise.

Keywords: noise filtering; instance selection; feature selection; nearest neighbor

1. Introduction

The k nearest neighbor (NN) classifier [1] is currently still a good option when looking
for a simple and effective classification model, especially in problems where interpretability
and flexibility are important. Its logic is easy to explain to non-technical people, making
it easy to communicate results, and it does not assume any specific distribution of data,
making it flexible for different types of data. This classification model is easy to understand
and implement; it does not require a training process as it is a lazy classifier, and it works
well in situations where local similarity is relevant, allowing the use of different distance or
dissimilarity functions according to the needs of the user.

However, one of the major disadvantages of NN classifiers is their computational cost,
which grows as the training data increase. In addition, the existence of mislabeled objects
or instances can affect the quality of classification. The existence of noise is inherent to most
real data that are collected. There are several well-known sources of noise, such as people
giving false information in some scenarios (i.e., increasing salary, decreasing age or weight,
lying about health), data having transmission errors for some sensors and leading to outlier
values, human errors in manual annotation, and many others. Removing or reducing noise
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can help classification algorithms focus on relevant patterns, preventing them from being
affected by irrelevant or incorrect information. This can result in more accurate and reliable
models, which in turn improves their ability to generalize and make accurate predictions
on new data. Thus, noise filtering is essential to ensure data quality and the effectiveness of
supervised classification models. Several approaches have been followed for noise removal
by instance selection in the context of imbalanced data [2], deep neural networks [3], and
regression [4].

Data reduction and noise filtering for instance-based classifiers have been addressed in
the literature by selecting features [5], selecting objects or instances [6], and also by selecting
both features and instances [7–10]. This last approach can lead to better results than the
sequential selection of features and instances [7] because, in the sequential selection, the
first applied method can access the whole training data, but the second can only access the
results of the application of the first method. On the other hand, the simultaneous (often
called “dual”) approach can access all training data.

Several algorithms for selecting both instances and features have been proposed,
mostly following an evolutive approach [10–12]. However, such methods are focused on
reducing the data cardinality and not on noise filtering, sometimes resulting in huge drops
in classifier performance. In addition, most methods are specific to certain classifiers and are
not directly applicable to others. To address such issues, we use the experimental method,
and the main objective of this paper is to propose a novel algorithm for simultaneous
instance and feature selection that is able to detect and filter noise and reduce the training
data without sacrificing classifier performance.

The contributions of this paper are as follows:

• We introduce ROFS, a deterministic method for simultaneously selecting features and
instances in hybrid and incomplete data.

• The proposed model does not predefine any supervised classifier and, therefore, can
be applied to different supervised classifiers.

• We analyze the performance of the compared algorithms under noisy environments
and can ensure our proposal overpasses others in recognizing and deleting
noisy instances.

• The statistical analysis concludes our proposal obtained significantly more accurate
results while using a fraction of instances and attributes.

The remainder of this paper is as follows: Section 2 presents the datasets and the algo-
rithms used in the experimental analysis, as well as the performance measures. Section 3
introduces the novel Robust Objective and Filtering Selection (ROFS) algorithm for simulta-
neously selecting attributes and instances. Section 4 discusses the experimental results and
provides the corresponding statistical analysis, and Section 5 presents the conclusions and
avenues of future research. The Abbreviations provides a list of all mathematical symbols
used in the paper.

2. Materials and Methods
2.1. Algorithms for Simultaneous Instance and Feature Selection

There are three major approaches for simultaneous features and instances selec-
tion: evolutionary, embedding editing, and fusion. In the following, we detailed their
main characteristics.

An evolutionary approach to instance and feature selection consists of the application
of evolutionary methods, such as Genetic Algorithms, to select simultaneously both fea-
tures and objects. This is the oldest yet still used approach for simultaneous data processing,
dating back to 1994 when Skalak proposed the first method in this strategy, the RMHC-
FP1 [13]. It used a Random Mutation Hill-Climbing strategy to choose the best subset of
features and instances by generating a binary string of length number of features + number
of objects, which represents the inclusion/exclusion of each feature and instance in the
result. Then, this initial solution evolves until a termination criterion is fulfilled. With simi-
lar representation, several authors used Genetic Algorithms for simultaneously selecting
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features and instances. These GAs have an encoding strategy similar to the RMHC-FP1
algorithm, an elitist selection strategy, and they usually differ in fitness functions and
parameters [7,8,11,12,14,15].

The embedded editing strategy consists of embedding the instance selection process
into a feature selection method. It applies an error-based editing method and a condensation
method to each candidate feature set into a wrapper feature selection method. Dasarathy’s
method [16] (here referred to as DS) combines the Sequential Backward Search (SBS) [17]
method with the application of two instance selection methods: the Proximity Graph-
based Editing using Relative Neighborhood Graphs (RNG-Edt) [18] and the Minimal
Consistent Subset method (MCS) [19]. DS uses as a fitness function for the SBS method a
combined measure of the 1-NN accuracy with respect to a validation set and the amount of
instance reduction achieved by the sequential application of the RNG-Edt + MCS methods.
To combine the accuracy and reduction, he uses the Euclidean distance between both
measures. The sequential application of two instance selection methods allows important
instance reduction as well as atypical and mislabeled object filtering. This strategy is
time-consuming but has good experimental results.

Fusion is a deterministic strategy and is based on obtaining small sets of candidate
features and instances. Then, it uses different approaches for merging those candidate
sets in order to obtain an optimal set of features and instances. The first realization of this
strategy is the SOFSA method [20]. Similar to TCCS [21], SOFSA uses the Compact Set
Editing [22] and the LEX [23] algorithms for obtaining the small candidate sets of instances
and features (called submatrices). It uses a merging strategy based on the individual quality
of the submatrices. Other methods of fusion are SHERA [9], designed for educational
classification, and AFIS [24], focused on imbalanced data.

In this paper, we experimentally analyze the performance of different methods for
simultaneously selecting features and instances in noisy environments. We choose RMHC-
FP1 [13], AKH-GA [12], KJ-GA [7], IN-GA [11] (evolutive approach), DS [16] (embedded
editing approach), and SOFSA [20] and TCCS [21] (fusion approach) to ensure the repre-
sentativity of the different simultaneous attribute and instance selection strategies.

2.2. Datasets

We selected 15 well-known hybrid and incomplete datasets (Table 1) from the Machine
Learning Repository of the University of California at Irvine (UCI) [25], having multiple
decision classes, to show that the proposed method can handle diverse datasets, such as
hybrid, incomplete, and multiclass.

Table 1. Description of the datasets.

Datasets Instances Numerical
Features

Categorical
Features Classes Missing

Values

autos 205 15 10 7 x
breast-w 699 9 0 2
credit-a 690 6 9 2 x
diabetes 768 8 0 2
heart-c 303 6 7 5
hepatitis 155 6 13 2 x
iris 150 4 0 3
labor 57 8 8 2 x
lymph 148 3 15 4
post-operative 90 0 8 3 x
primary-tumor 339 1 16 22 x
vehicle 946 18 0 4
vote 435 0 16 2 x
wine 178 13 0 3
zoo 101 1 16 7
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We use 10-fold cross-validation and inject mislabeled instances into each dataset by
randomly changing the class of a percent of objects: 5%, 10%, and 15% in the training set.
By using cross-validation, we ensure that the training and testing sets are disjoint sets and
that no testing data were used for training during the experiments.

2.3. Performance Measures

We analyze the performance of the different methods using three magnitudes: instance
retention ratio, feature retention ratio, and classifier error. Let T be the instances in the
training data described by a set of features A = {A1, . . . , An}, and let P be the set of
instances returned by the simultaneous instance and feature selection algorithm, described
by a set of features B ⊆ A. The instance retention ratio is given by:

InstanceRetention =
|P|
|T| (1)

The feature retention ratio is given by:

FeatureRetention =
|B|
|A| (2)

Finally, the classifier error is computed as the ratio of incorrectly classified testing instances.
Let X be the testing set, where each instance x ∈ X has a true class label α(x). The classifier
error is computed as:

Error =
|{x ∈ X | α(x) ̸= clasi f (x)}|

|X| (3)

where clasi f (x) is the class label assigned by the corresponding classifier.
The main problem we are addressing is to obtain a reduced dataset by selecting a

relevant set of features and instances without sacrificing classifier accuracy.
Considering these three objectives, we treat the methods’ performance results as a

multi-objective optimization problem with three functions to minimize instance retention,
feature retention, and classifier error.

We execute the experiments on a laptop with a Windows 8 operating system, an AMD
Sempron SI-42 processor at 2.1 GHz, and usable RAM of 2.75 GB, and under low priority.
This is why we cannot compute the time used by the compared algorithms.

3. Results

This section introduces the proposed Robust Objective Filtering Selection (ROFS) al-
gorithm. ROFS has three main phases. The first phase considers the parallel computation
of candidate feature sets and adaptative noise filtering; the second phase deals with ob-
taining small pieces of information in the form of attributes and instances; and the third
phase comprises the final integration of the small pieces. Therefore, ROFS belongs to the
fusion approach to instance and feature selection. Figure 1 presents the flowchart of the
proposed ROFS.

The idea of using candidate feature sets is inspired by Voting Algorithms [26] and the
multi-view learning paradigm [27]. Having several possible sets of relevant attributes al-
lows the simultaneous procedure to have a better data representation in terms of descriptive
characteristics and helps discriminate between relevant and irrelevant attributes.
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Figure 1. Flowchart of the proposed ROFS.

To obtain candidate feature sets, we can use deterministic algorithms (e.g., typi-
cal testors computation) or stochastic algorithms that return several attribute sets (e.g.,
evolutionary algorithms). Each possibility has its own advantages and disadvantages.
Deterministic algorithms ensure finding all relevant attribute sets, but they can be compu-
tationally expensive for some datasets. On the other hand, stochastic algorithms do not
always guarantee finding relevant feature sets. We do not impose any strategy for finding
candidate feature sets in ROFS; on the contrary, we consider that as an algorithm parameter.

The main issue with existing noise filtering algorithms is that they can delete an entire
class if considered noise. This is especially hazardous in imbalanced data with highly
overlapped instances or when small disjoints appear. To avoid this situation, we introduce
an adaptative noise filtering method inspired by the All-KNN editing method [28].

The All-KNN algorithm deletes the instances misclassified by one of the k-NN classi-
fiers from k = 1 to kMax. Our variant (named Adaptive All-KNN) consists of deleting the
instances misclassified by one of the k-NN classifiers, but with a k value that guarantees
no class is entirely deleted (see Algorithm 1). The Adaptive All-kNN considers all classes,
guaranteeing that no class will be entirely deleted. So, we stop increasing k if there is a
class with all instances misclassified. By doing this, we avoid an entire class deletion and
adjust the algorithm parameter to better fit each dataset’s specific conditions.
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Algorithm 1. Adaptive All-KNN method

1. For k = 1 to kMax

1.1. Mark every instance misclassified by a k-NN classifier
1.2. Set flag to false
1.3. For each class Ci

1.3.1. If all objects belonging to Ci are marked, unmark the objects marked by the
last k-NN and set flag to true

1.4. If flag is true, break and goto step 2

2. Return the unmarked objects

The second phase of ROFS receives the candidate feature sets and the filtered data as
inputs. Then, it first obtains candidate sets of instances and attributes (small pieces of in-
formation) by using the filtered instances and attribute sets and condenses them using a
condensation algorithm (see Figure 2). As for feature selection, we do not impose any conden-
sation algorithm in ROFS or any supervised classifier. Those are user-defined parameters.
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instances by applying a condensation method, finally obtaining a small piece.

The third phase of ROFS receives the small pieces of information and fuses them into
a single set of relevant features and instances. To do so, it applies a sophisticated fusion
strategy. The idea is that to improve the classifier accuracy of the best small piece, it is
necessary to correctly classify the instances already misclassified. Therefore, it makes no
sense to integrate with another small piece if these misclassified instances will not be well
classified after fusion. The ROFS integration process analyzes if there exists a small piece
such that it correctly classifies the misclassified instances. If found, it then analyzes if the
integration improves accuracy. If not, it does not carry the fusion process. This process
avoids unnecessary integrations and contributes to obtaining small sets of instances and
features. In addition, this strategy facilitates improving the desired supervised classifier
(user-defined parameter) and not only the 1-NN. A complete description of the ROFS
process appears in Algorithm 2.

The complexity of the proposed ROFS depends on several factors: (a) the complexity
of the method to obtain candidate feature sets (CF), (b) the complexity of the condensing
method (D), (c) the complexity of the supervised classifier used (S), and (d) the complexity
of the sorting algorithm (R). Let m be the number of instances, and let f be the number
of candidate attribute sets. The complexity of phase 1 comprises the computation of the
candidate attribute sets and the computation of the Adaptive All-kNN algorithm and,
therefore, is bounded by O

(
CF + m2). Phase 2 comprises the computation of the small

pieces, and its complexity is bounded by the execution of the condensing algorithm over
each projection as O( f ∗ D). Finally, the third phase consists of the fusion procedure and
is bound by the sorting procedure and the complexity of the supervised classifier used
over each small piece, being O(R + f ∗ S). Finally, the complexity of ROFS is given by
O
(
CF + m2 + f ∗ D + R + f ∗ S

)
.



Appl. Sci. 2024, 14, 8459 7 of 18

In addition, its ability to handle diverse types of data (e.g., numeric, categorical,
missing, multiclass) will depend on the method used to obtain candidate feature sets, the
condensation method used, and the supervised classifier selected.

Algorithm 2. Robust Objective Filtering Selection

Inputs: Training set: T
Method to compute candidate attribute sets: CA
Method to condense instances: Cond
Supervised classifier: classif

Output Selected instances and attributes: E
Initialization

1. Obtain a validation set V from T
2. Compute the initial classifier accuracy with respect to the validation set as

ini_acc = classi f (V, T)

Phase 1

3. Apply the method to compute candidate attribute sets, as CAS = CA(T)
4. Apply the All-KNN method for noise filtering as F = AdaAllKNN(T)

Phase 2

5. SP = ∅
6. For each candidate attribute set cai ∈ CAS

6.1. Project the instances in F using the features in to obtain an initial small piece cai to
obtain an initial small piece spi

6.2. Apply the condensation method as cspi = Cond(spi)
6.3. Add the current condensed small piece to SP as SP = SP ∪ {cspi}

Phase 3

7. Sort the set SP according to the classifier accuracy with respect to the validation set V of
each of the small pieces

8. Consider the best small piece as the current solution E
9. While the accuracy of the current solution is lower than the initial accuracy and there exist

small pieces that can improve the accuracy

9.1. Find the instances misclassified by the current solution (Miss)
9.2. Find the small pieces cspi ∈ SP that correctly classify the misclassified instances

(only consider the small pieces that contribute with at least one attribute)
9.3. Consider the candidate integration EI = E ∪ {cspi}
9.4. If the fusion of the current solution with one of the found small pieces leads to better

accuracy, consider it as the current solution E = EI.
10. Return E

The advanced nature of the proposed ROFS is supported by the incorporation of the
Adaptive All-kNN algorithm for noise filtering, the computation of candidate attribute sets,
and the iterative process to fuse small pieces of instances and features. These novel charac-
teristics make ROFS suitable for obtaining high-quality subsets of attributes and instances.

The theoretical justification of the design choices made in ROFS is supported by
the following:

(a) The use of candidate attribute sets is inspired by Voting Algorithms [26] and has
obtained good results by supporting multiple views of the existing data.

(b) The design of the Adaptive All-kNN maintains the desired characteristic of the pre-
vious All-kNN algorithm of reducing the Bayes error and solves the drawback of
deleting too many instances.

(c) The use in the experiments of a baseline algorithm (the Condensed Nearest Neighbor,
CNN) as a condensation method preserves the decision boundary of the data and
leaves room for further improvement because there has been plenty of research in
data condensation techniques since 1968.
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(d) The obtention of candidate small pieces guarantees having multiple views of the same
dataset, and the posterior fusion procedure allows selecting relevant attributes and
instances with minimum information loss.

To assess the proposed ROFS’s performance, we compared it to existing algorithms
for simultaneous instance and feature selection of hybrid data. Such results are analyzed in
the next section.

4. Discussion

In the experimental analysis, we considered different levels of noise (5%, 10%, 15%,
and the original training data). We applied the classifier under each of those conditions
(Figure 3) before and after preprocessing the training data with the simultaneous instance
and feature selection algorithms. We use the HOEM dissimilarity [29] in all comparisons.
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Figure 3. Experimental configuration for each dataset. The 1-NN classifier was trained before
(baseline) and after each preprocessing algorithm, considering four scenarios: without noise and with
noise of 5%, 10%, and 15%. Then, the performance over the testing set was computed.

We show that the 1-NN classifier degrades as noise increases, and using the proposed
algorithm contributes to diminishing the classifier’s error (Figure 4). Considering the
data without noise and with 5% noise, the averaged classifier error with and without
preprocessing is similar (0.211 vs. 0.227 and 0.250 vs. 0.249, respectively). However, as
the noise increases, the error results with preprocessing are much lower than the results
without it (0.291 vs. 0.254 and 0.308 vs. 0.268, respectively).
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Table 2 shows the detailed classifier error results for the 1-NN classifier after prepro-
cessing with ROFS. The detailed results for the 1-NN without preprocessing and after
preprocessing with other compared algorithms can be found in the Supplementary Materi-
als under the folders “summaries” and “results per fold”.

Table 2. Detailed classifier error for 1-NN with ROFS preprocessing.

Datasets 0% Noise 5% Noise 10% Noise 15% Noise

autos 0.444 0.509 0.507 0.430
breast-w 0.060 0.054 0.046 0.059
credit-a 0.174 0.201 0.188 0.197
diabetes 0.293 0.299 0.298 0.319
heart-c 0.254 0.284 0.286 0.290
hepatitis 0.226 0.226 0.221 0.273
iris 0.107 0.080 0.040 0.080
labor 0.137 0.233 0.213 0.207
lymph 0.181 0.291 0.270 0.298
post-operative 0.333 0.311 0.422 0.444
primary-tumor 0.623 0.634 0.640 0.655
vehicle 0.336 0.359 0.364 0.348
vote 0.062 0.065 0.090 0.110
wine 0.073 0.068 0.085 0.112
zoo 0.098 0.126 0.138 0.198

As mentioned in the Materials and Methods section, we compare the results of ROFS
with respect to the following exiting algorithms for simultaneous instance and feature
selection: AKH-GA [12], DS [16], IN-GA [11], KJ-GA [7], RMHC-FP1 [13], SOFSA [20],
TCCS [21], and the classifier without preprocessing (baseline). All methods were executed
with their default parameters, as in the EPIC software version 1.0.0.7 [30]. We did not
fine-tune the parameters of any algorithm (ROFS included).

Figure 5 shows the averaged classifier error of the 1-NN after using the preprocessing
algorithms and the ones for the 1-NN classifier without any preprocessing (baseline). As
shown, the proposed ROFS beats all other preprocessing algorithms and improves the 1-NN
in all noisy scenarios. It is only slightly surpassed by 1-NN in noise-free environments.
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Figure 5. Comparison of the averaged classifier error obtained by 1-NN with and without
preprocessing.

While comparing ROFS with other algorithms according to classifier error, Figure 6
presents the results of ROFS minus the best-performing algorithm for each noise percent
analyzed. As shown, the worst results of ROFS were obtained for the autos dataset
without noise and with 5% noise, in which ROFS had a drop of 18% in performance. For
the remaining datasets, ROFS had very good results with respect to the best-performing
method (including the baseline classifier) with less than 7% noise.
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Figure 6. Subtraction of the classifier error obtained by 1-NN with ROFS preprocessing with respect
to the classifier error obtained by the best-performing algorithm (with and without preprocessing)
for the analyzed scenarios.

We believe the reasons why ROFS had bad results for the autos dataset and no so
good results for iris and labor datasets for noise-free scenarios do not depend on the
characteristics of the overlapping region of the data but on the results of the condensing
algorithm. We hypothesize that the more representative the results of the condensation
method, the more accurate ROFS will be. We will need more datasets and more controlled
experiments to test that hypothesis, and we will address that behavior in future works.
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In addition, we want to evaluate each algorithm’s ability to remove or not remove
each of the noisy instances. We then computed the percentage of noise removal for each of
the compared algorithms.

In Table 3, we summarize the averaged percent of noisy instances filtered by each
method (algorithms appear in alphabetical order).

Table 3. Summary of averaged noise detection and filtering for the compared algorithms.

Methods 5% Noise 10% Noise 15% Noise

AKH-GA 0.521 0.514 0.513
DS 0.907 0.911 0.899
IN-GA 0.522 0.500 0.510
KJ-GA 0.503 0.489 0.492
RMHC-FP1 0.513 0.493 0.501
ROFS 0.931 0.927 0.930
SOFSA 0.136 0.169 0.178
TCCS 0.161 0.186 0.183

Both DS and ROFS were able to effectively deal with noisy environments, having
noise filtering percents around 90%. This behavior is expected because Ds uses RNG-Edt +
MCS for instance selection, and RNG-Edt is designed for noise filtering. The evolutionary
methods have noise detection rates around 50%, while SOFSA and TCCS almost do not
detect noise at all (less than 20% of noise was detected). Evolutionary methods have a
combination of objectives in their fitness functions, and they tend to keep half of instances
and features. On the other hand, SOFSA and TCCS do not include any mechanism to
detect noise.

In selecting both features and instances to improve training data, our first concern is to
keep the classifiers’ performance as high as possible. However, we also want to minimize
the number of features and instances in the training data. Tables 4 and 5 present the
averaged results, for instance, retention and feature retention of the compared preprocessing
methods, respectively.

Table 4. Averaged instance retention of the compared preprocessing methods.

Methods 0% Noise 5% Noise 10% Noise 15% Noise

AKH-GA 0.502 0.500 0.502 0.496
DS 0.130 0.125 0.125 0.130
IN-GA 0.481 0.474 0.478 0.475
KJ-GA 0.489 0.485 0.49 0.486
RMHC-FP1 0.494 0.492 0.499 0.502
ROFS 0.135 0.134 0.134 0.137
SOFSA 0.609 0.592 0.608 0.631
TCCS 0.547 0.545 0.572 0.607

Table 5. Averaged feature retention of the compared preprocessing methods.

Methods 0% Noise 5% Noise 10% Noise 15% Noise

AKH-GA 0.509 0.513 0.506 0.511
DS 0.937 0.931 0.931 0.933
IN-GA 0.451 0.451 0.446 0.456
KJ-GA 0.475 0.468 0.465 0.490
RMHC-FP1 0.500 0.497 0.512 0.506
ROFS 0.604 0.613 0.619 0.619
SOFSA 0.809 0.799 0.804 0.813
TCCS 0.758 0.767 0.775 0.791
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According to instance retention, the best method is DS (12.5–13% of retained instances),
closely followed by ROFS (13.4–13.7% of retained instances). The remaining methods re-
tained around 50% of instances. For feature selection, the methods keeping the lowest
number of features are the evolutionary ones, preserving around 50% of them. The pro-
posed ROFS retained around 60% of all features, followed by TCCS and SOFSA (around
80%), and finally, DS (over 90% of retained features).

Despite the promising results obtained by ROFS and outlined before, to determine
the best methods in each scenario, we applied the Friedman test followed by the Holm
post hoc test at a 95% confidence level. This combination of non-parametric statistical tests
is suggested in [31]. We used the KEEL software (v.3.0) [32] for the statistical analysis. In
Supplementary Materials, under the folder “statistics”, interested readers can find the full
documentation reported by KEEL.

In all cases, we select as null hypothesis H0 that there are no differences in the
performance of the compared algorithms and as alternative hypothesis H1 that there
are differences in the performance of the compared algorithms. In the comparisons, we
include the classifier error with no preprocessing as a baseline.

Table 6 presents the results of the statistical analysis for classifier error, considering the
four scenarios. For each scenario, we include Friedman’s ranking as well as the probability
values (p-values) obtained by Holm’s post hoc tests comparing the first-ranked algorithm
with respect to all others.

Table 6. Friedman + Holm results for classifier error of 1-NN. Rejected hypotheses are in italics.

Methods

0% Noise 5% Noise 10% Noise 15% Noise

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Baseline 2.467 - 2.900 0.594 3.767 0.067 3.567 0.042
ROFS 3.633 0.243 2.367 - 1.933 - 1.533 -
SOFSA 4.167 0.089 4.633 0.023 4.900 0.003 5.600 0.000
AKH-GA 4.400 0.053 4.833 0.014 4.567 0.008 5.033 0.000
DS 4.433 0.049 3.167 0.424 2.667 0.463 2.900 0.172
TCCS 4.867 0.016 5.067 0.007 5.500 0.000 5.667 0.000
RMHC-FP1 6.333 0.000 6.933 0.000 6.233 0.000 5.867 0.000
KJ-GA 7.067 0.000 7.900 0.000 7.567 0.000 7.133 0.000
IN-GA 7.633 0.000 7.200 0.000 7.867 0.000 7.700 0.000

However, we also want to minimize the number of features and instances in the
training data. Tables 7 and 8 present the respective statistical analyses. In Tables 6–8,
the compared methods are ordered according to the ranking obtained by Friedman’s test
considering the noise-free scenario, and the cases in which the null hypothesis was rejected
are highlighted in italics.

For the noise-free scenario, the best result was obtained by the baseline 1-NN (the first
in Friedman’s ranking). ROFS, SOFSA, AKH-GA, DS, and TCCS had classifier error results
without significant differences. However, RMHC-FP1, KJ-GA, and IN-GA had significantly
worse performance than the baseline 1-NN. For 5% of noise, ROFS had the best result,
without significant differences with the baseline classifiers SOFSA, AKH-GA, and DS. These
results point out that some evolutionary algorithms do not accurately represent the data,
therefore increasing classifier error after preprocessing.

The methods TCCS, RMHC-FP1, KJ-GA, and IN-GA had significantly worse perfor-
mance than the proposed ROFS. As the noise increases to 10% and 15%, ROFS remains the
best-performed method, without significant differences in classifier error with DS and the
baseline classifier. All remaining preprocessing algorithms obtained significantly higher
results for the classifier error measure.
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Table 7. Friedman + Holm results, for instance, retention of 1-NN. Rejected hypotheses are in italics.

Methods

0% Noise 5% Noise 10% Noise 15% Noise

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

ROFS 1.467 - 1.667 0.947 1.667 0.947 1.600 -
DS 1.533 0.947 1.600 - 1.600 - 1.667 0.947
IN-GA 4.000 0.011 3.933 0.020 3.533 0.053 3.667 0.039
KJ-GA 4.667 0.001 4.600 0.003 4.400 0.005 4.200 0.009
RMHC-FP1 5.400 0.000 5.400 0.000 5.200 0.000 5.067 0.001
AKH-GA 5.867 0.000 5.933 0.000 5.400 0.000 5.600 0.000
TCCS 6.033 0.000 6.233 0.000 6.933 0.000 6.967 0.000
SOFSA 7.033 0.000 6.633 0.000 7.267 0.000 7.233 0.000
Baseline 9.000 0.000 9.000 0.000 9.000 0.000 9.000 0.000

Table 8. Friedman + Holm results for feature retention of 1-NN. Rejected hypotheses are in italics.

Methods

0% Noise 5% Noise 10% Noise 15% Noise

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

Friedman’s
Ranking

Holm’s
p-Value

IN-GA 2.633 - 2.567 - 2.267 - 2.167 -
KJ-GA 3.100 0.641 2.767 0.841 2.800 0.594 2.867 0.484
RMHC-FP1 3.400 0.443 3.667 0.271 3.833 0.117 3.533 0.172
AKH-GA 3.667 0.301 3.600 0.301 3.767 0.134 3.700 0.125
ROFS 3.733 0.271 4.167 0.110 4.100 0.067 4.133 0.049
TCCS 5.467 0.005 5.567 0.003 5.633 0.001 6.100 0.000
SOFSA 6.867 0.000 6.600 0.000 6.667 0.000 6.800 0.000
DS 7.333 0.000 7.333 0.000 7.200 0.000 6.967 0.000
Baseline 8.800 0.000 8.733 0.000 8.733 0.000 8.733 0.000

The statistical analysis shows that noise significantly affects preprocessing algorithms
but not ROFS and DS, therefore supporting the hypothesis that using an error-based
editing approach contributes to maintaining classification performance. In addition, using
heuristics does not provide evidence of obtaining highly accurate preprocessed training sets.

Regarding instance retention, the best algorithms were ROFS (first in Friedman’s rank-
ing for 0% and 15% and second in the ranking for 5% and 10%) and DS (first in Friedman’s
ranking for 10% and 5% and second in the ranking for 0% and 15%). There were no statisti-
cally significant differences between ROFS and DS in any of the four analyzed scenarios.

For noise-free and 5% noise, all remaining algorithms kept a significantly larger
number of instances. However, for the 10% and 15% noise scenarios, the IN-GA algorithm
did not show statistically significant differences with respect to the first-ranked algorithm.
Unfortunately, it was significantly less accurate, as shown in Table 6. All remaining
algorithms kept a significantly larger number of instances than the first-ranked algorithm
for 10% and 15% noise.

The statistical analysis regarding instance selection concludes that using a combi-
nation of an error-based editing method followed by a condensation method leads to
results retaining significantly fewer instances than using evolutive approaches or only
condensation approaches.

Regarding feature retention, the evolutive algorithms had the best performance, fol-
lowed by ROFS and without statistically significant differences between them. The remain-
ing algorithms kept a significantly larger number of features in all scenarios. TCCS and
SOFSA do not include strategies to reduce features besides using typical testors, and DS
uses SBS that starts with all features and then tries to reduce them.

These results show that evolutionary strategies lead to preprocessed data that retain
significantly fewer features than using typical testors, wrapper feature selection algorithms,
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or computing candidate feature sets. Unfortunately, these results were obtained at the cost
of significantly increasing the classification error.

Considering three performance measures leads us to a multi-objective optimization
problem. For this task, we employ the Pareto optimality criterion to assess the overall
performance of the compared algorithms. The Pareto frontier finds the optimal results in
multi-objective problems. A result is Pareto optimal if there is no other result that improves
it simultaneously in all objectives. In our case, the three objectives are minimizing the
classifier error and the number of features and instances in the training data.

Figure 7 presents the methods without significant differences in performance, accord-
ing to the analyzed measures. The only algorithm in the Pareto frontier is ROFS because no
other algorithm appears in the pool of best-performed methods for the three measures (i.e.,
it equates or surpasses all other compared algorithms).
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Figure 7. Comparison of preprocessing algorithms according to their overall performance regarding
classifier error, instance selection, and feature selection measures.

In addition, we also applied the Kolmogorov–Smirnov statistical test to compare the
distributions of ROFS’s averaged performance with respect to state-of-the-art methods.
For this statistical analysis, we used the graphical interface available at https://www.
statskingdom.com/kolmogorov-smirnov-two-calculator.html (accessed on 13 September
2024), including the computation’s R code. Table 9 presents the results.

Table 9. p-value results of the Kolmogorov–Smirnov statistical test comparing the averaged perfor-
mance of the algorithms.

ROFS vs. Classifier Error Instance Retention Feature Retention

AKH-GA 0.2286 0.0286 0.013
DS 0.7714 0.0286 0.013
IN-GA 0.0286 0.0286 0.013
KJ-GA 0.0286 0.0286 0.013
RMHC-FP1 0.0286 0.0286 0.013
SOFSA 0.2286 0.0286 0.013
TCCS 0.2286 0.0286 0.013

The statistically significant results at 95% confidence are highlighted in italics.

Regarding the average performance distributions, the test found significant differences
between the distributions of ROFS and all other methods in the Instance Retention and
Feature Retention measures. It also found significant differences with IN-GA, KJ-GA, and
RMHC-FP1 according to classifier error.

https://www.statskingdom.com/kolmogorov-smirnov-two-calculator.html
https://www.statskingdom.com/kolmogorov-smirnov-two-calculator.html
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Table 10 summarizes the parameters of the compared algorithms. The values were
selected as suggested in the existing papers. We did not fine-tune the parameters of any
algorithm (ROFS included).

Table 10. Parameters of the compared preprocessing methods.

Methods Parameters

AKH-GA population: 200, iterations: 50, crossover probability: 0.7, mutation
probability: 0.1

DS None

IN-GA population: 50, iterations: 500, crossover probability: 1.0, mutation
probability from 0 to 1: 0.1, mutation probability from 1 to 0: 0.01

KJ-GA population: 10, iterations: 100, crossover probability: 1.0, mutation
probability: 0.1

RMHC-FP1 population: 10, iterations: 100
ROFS CA: RoPM [33], Cond: CNN [34], clasif : 1-NN
SOFSA None
TCCS None

The statistical analysis of the compared algorithms under noisy environments con-
cludes our proposal obtained significantly more accurate results while using a fraction of
instances and attributes. In addition, our proposal surpasses others in recognizing and
deleting noisy instances. As shown, the proposed ROFS always obtained good results
according to the classifier error measure while keeping only a fraction of the instances and
features in the datasets. As a key contribution, ROFS is deterministic, can handle hybrid
and incomplete data, does not predefine any supervised classifier, and, therefore, can be
applied to different supervised classifiers.

Regarding scalability, the proposed ROFS depends on the complexity of the com-
putation of the candidate attribute sets and the instance-selection procedures. There are
several possibilities for parallel implementation of such algorithms, making them suitable
for handling big data.

In addition, regarding the types of real-world problems where ROFS would be most
beneficial, we consider that our proposal is particularly useful for social data because it is
able to handle hybrid (numeric and categorical) data with multiple decision classes. The
main potential limitations it might face in practice are related to handling big data because
it will need parallel implementations of the proposal.

5. Conclusions

In this paper, we analyzed some of the strategies for simultaneously selecting features
and instances and proposed a novel method for this task. We conducted wide numeri-
cal experimentation over 15 well-known repository datasets and compared the overall
performance of several methods in different scenarios.

Our experimental analysis shows that using error-based editing methods contributes
to classifier performance. In addition, using a combination of error-based editing followed
by a condensation algorithm leads to highly accurate training sets with fewer instances.
However, using evolutionary preprocessing can lead to significant drops in classifier
accuracy. Regarding the proposed algorithm, it had the best results by having a good
tradeoff between reduction in both features and instances, as well as keeping classifier
accuracy as high as possible.

The ROFS method filters noisy instances and focuses on the correct classification
of misclassified objects. This method is also deterministic, and it is able to deal with
hybrid and incomplete data, as well as using any supervised classifier. Our method
outperformed others according to classifier error, retaining a significantly smaller number
of instances and features. We believe the main reason ROFS obtained such good results
is related to the computation of candidate attribute sets, the use of error-based editing
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plus a condensing algorithm, and the intelligent fusion procedure focused on the correct
classification of instances.

In future work, we want to explore the use of strategies for making ROFS suitable to
deal with big data, such as parallel computation of candidate attribute sets. In addition, we
want to test other condensation methods besides CNN to evaluate the impact of specific
techniques on the results of the ROFS preprocessing.

Supplementary Materials: The supporting information can be downloaded at: https://github.com/
yenny-villuendas/ROFS (accessed on 15 September 2024).
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Abbreviations
In the following, we list all mathematical symbols used in this paper.

Symbol Description
T Training set
X Testing set
x Testing instance, x ∈ X
α(x) True label of x
classif Supervised classifier
clasif(x) Label assigned to x by the supervised classifier
P Instance set returning by data preprocessing, P ⊆ T
V Validation set, V ⊆ T
F Instance resulting from applying Adaptive All kNN algorithm, F ⊆ T
A Attribute set describing the instances, A = {A1, . . . , An}
n Number of attributes describing the instances
B Attributes selected by preprocessing algorithms, B ⊆ A
k Number of neighbors
kMa Maximum number of neighbors
CAS Candidate Attribute Sets, CAS =

{
ca1, . . . , cap

}
, where cai ⊆ A

Cai Candidate attribute set, element of CAS
CA Method to compute Candidate Attribute Sets
Cond Condensation method, for instance, selection
Ci The i-th decision class
SP Small pieces of instances and attributes
csp Result of condensing an SP

https://github.com/yenny-villuendas/ROFS
https://github.com/yenny-villuendas/ROFS
https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/datasets
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Miss Misclassified instances by the current solution
EI Candidate integration
E Set of selected instances and features returned by ROFS algorithm
m Number of instances
CF Computational complexity of the procedure to obtain candidate feature sets
D Computational complexity of the condensing algorithm
S Computational complexity of the supervised classifier
R Computational complexity of the sorting algorithm
f Number of obtained candidate attribute sets, f = |CAS|
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