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Abstract: The association between genetics and lifestyle factors is crucial when determining breast
cancer susceptibility, a leading cause of deaths globally. This research aimed to compare the body
mass index, smoking behavior, hormonal influences, and BRCA gene mutations between affected
patients and healthy individuals, all with a family history of cancer. All these factors were then
utilized as features to train a machine learning (ML) model to predict the risk of breast cancer
development. Between 2020 and 2023, a total of 1389 women provided detailed lifestyle and risk
factor data during visits to a familial cancer center in Italy. Descriptive and inferential statistics were
assessed to explore the differences between the groups. Among the various classifiers used, the
ensemble of decision trees was the best performer, with a 10-fold cross-validation scheme for training
after normalizing the features. The performance of the model was evaluated using the receiver
operating characteristic (ROC) curve and its area under the curve (AUC), alongside the accuracy,
sensitivity, specificity, precision, and F1 score. Analysis revealed that individuals in the tumor group
exhibited a higher risk profile when compared to their healthy counterparts, particularly in terms
of the lifestyle and genetic markers. The ML model demonstrated predictive power, with an AUC
of 81%, 88% sensitivity, 57% specificity, 78% accuracy, 80% precision, and an F1 score of 0.84. These
metrics significantly outperformed traditional statistical prediction models, including the BOADICEA
and BCRAT, which showed an AUC below 0.65. This study demonstrated the efficacy of an ML
approach in identifying women at higher risk of breast cancer, leveraging lifestyle and genetic factors,
with an improved predictive performance over traditional methods.

Keywords: breast cancer risk; risk factors; machine learning; statistical models

1. Introduction

Breast cancer is the prevalent form of tumor affecting women globally [1,2]. In Italy
alone, in 2020, there were 55,700 new cases, representing 30% of all cancer diagnoses and
the leading cause of cancer death in the country [3]. Despite the increased awareness of
breast cancer [4–6], significant public focus, and improvements in breast imaging tech-
niques for early detection [7–9], death rates due to breast cancer continue to be worryingly
high worldwide.
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While screenings are a fundamental pillar of the early diagnosis of tumors in the
general population, it is now possible to investigate subjects with an elevated risk of tumor
development even before the cancer has developed. In a portion of the population, certain
genetic mutations can predispose individuals to the development of tumors. While cancer
typically arises from the gradual and random accumulation of multiple genetic mutations,
there are instances where it is linked to specific driver mutations or monogenic changes.
These genetic factors can substantially increase the likelihood of developing certain types
of cancer in comparison to the general population. These cancers, commonly known
as hereditary–familial tumors, represent roughly 15% of all cancer cases [10] and occur
in individuals with an inherited genetic variant that directly contributes to the onset of
the disease.

Among these identified genes, the mutation of the BRCA1 and 2 genes significantly
elevates the risk of developing breast and ovarian cancers [11]. High-risk individuals
can be identified through current breast cancer screening risk stratification models, based
on statistics, which pinpoint women eligible for additional screening or preventive inter-
ventions [12–14]. The risk models widely used in clinical settings are typically based on
statistics and primarily rely on factors such as genetics, family history of breast cancer,
prior benign breast diseases, and reproductive history. However, these variables may not
always be readily available during routine screening procedures. Additionally, some risk
models may exhibit limited discriminatory capability, with area under the curve (AUC)
values below 0.7 [15–20]. Among them is the BCRAT, also known as the Gail model, which
is designed as a breast cancer risk assessment tool to predict the probability of a woman
developing invasive breast cancer within the next 5 years and up to the age of 90. This tool
considers various risk factors, including age at menarche, age at first childbirth, ethnicity,
race, history of breast cancer and the number of breast biopsy examinations. Another
model, the BOADICEA, predicts individual risks for breast and ovarian cancer based
on both family history and BRCA1 and BRCA2 mutations. Unlike the Gail model, the
BOADICEA takes into account a detailed family history, encompassing first-, second-, and
third-degree relatives, and can also integrate genetic test results considering other rare
yet highly penetrant genes, such as PALB2, CHEK2, and ATM, employing a polygenic
model [21]. Consequently, the BOADICEA indicates a more substantial decrease in the
relative risk as the age of the affected relative increases, aligning more closely with the
existing literature [22].

Other commonly used models include the BRCAPRO, which assesses the risk of having
BRCA1/2 mutations (https://projects.iq.harvard.edu/bayesmendel/brcapro, accessed on
15 April 2024), and the IBIS, which calculates the breast cancer risk using the Tyrer–Cuzick
index in percentage form (https://ibis-risk-calculator.magview.com/, accessed on 15 April
2024). The BRCAPRO calculates the breast cancer risk primarily by assessing the probability
of carrying major genes based on personal and family histories of breast, ovarian, or related
cancers associated with these genes [23]. It incorporates pedigree information, including
age at onset, and the outcomes of genetic testing for BRCA1 and BRCA2 in both women
and their relatives. However, these models are less suitable for assessing the breast cancer
risk in the general population, as they do not account for other unknown genetic factors.

The Tyrer–Cuzick model [24], instead, combines two widely used sub-models for
assessing the breast cancer risk. It integrates a genetic segregation model for familial risk
with a proportional hazards regression model for other risk factors. The risk factors in
the model can be broadly categorized into five main groups: i. family history and highly
penetrant dominant genetic mutations; ii. factors related to estrogen exposure, such as
age at first childbirth, age at menopause, menarche (onset of periods), use of hormone
replacement therapy, height, and weight; iii. specific types of prior benign breast disease; iv.
breast imaging features observed on mammograms, notably the amount of dense tissue; and
v. common but individually less impactful genetic differences, specifically single nucleotide
polymorphisms (SNPs). These SNPs, comprising several hundred relatively common
genetic variants, each with a modest impact on disease, collectively contribute significantly
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to the overall risk assessment through a “polygenic risk score” [25]. Additionally, there are
other potential risk factors that are challenging to quantify but may enhance the model
performance.

Other models, including the Breast Cancer Surveillance Consortium (BCSC) [20,26]
and Rosner–Colditz models [27,28], rely solely on a regression function. The Rosner–
Colditz model includes terms for the same broad risk factors as the Tyrer–Cuzick model,
along with additional factors such as alcohol consumption, adolescent body somatotype,
and hormone levels. However, these models differ in the assumptions regarding the risks
and prevalence of risk factors, as well as the utilization of interaction terms [22].

Despite the widespread use of these risk models, each of them presents significant
limitations that can affect their predictive accuracy and generalizability. The Gail model, for
example, exhibits low AUC values in non-white populations, particularly among African
American and Asian women, as it was initially developed using data from predominantly
white women [12,29]. Furthermore, it fails to incorporate crucial high-risk factors such as
genetic mutations, including BRCA1/2, or a more extensive family history, and it overlooks
important risk modifiers like breast density and lifestyle factors. Similarly, the BOADICEA,
while more inclusive of a detailed family history and genetic factors, suffers from its
complexity, making it less accessible for widespread clinical use. Moreover, its reliance
on data from European populations limits its applicability to other ethnic groups [30,31].
The BRCAPRO model, while focusing on BRCA1/2 mutations, does not account for other
significant risk factors and heavily depends on a detailed and accurate family history, which
may not always be available or reliable [32,33]. The Tyrer–Cuzick model (IBIS), on the other
hand, is known to overestimate the risk in certain populations, such as women with benign
breast disease or those using hormone replacement therapy, and requires complex, detailed
data inputs [22,24]. Additionally, the Breast Cancer Surveillance Consortium (BCSC) model
is limited by its reliance on U.S. mammography screening data, making it less relevant for
international populations, while its focus on breast density often overlooks other genetic or
non-genetic risk factors [34,35]. Lastly, the Rosner–Colditz model, though comprehensive,
is data-intensive and challenging for routine clinical use, while it underestimates the genetic
risk by prioritizing modifiable risk factors [36,37]. These limitations highlight the need for
more adaptable and inclusive models that integrate a wider array of genetic, environmental,
and lifestyle factors to enhance the breast cancer risk prediction accuracy.

In conclusion, although traditional statistical tools are widely used for identifying
target populations for screening, they often show weak correlations with actual screening
outcomes. More advanced methods, such as machine learning (ML) algorithms trained on
the same data, may offer superior predictive capacity [38], as suggested by successful ML
applications in various domains, underscoring the potential of these methods to enhance
the predictive accuracy across different areas, including healthcare [39]. Several factors
explain why ML models may outperform traditional statistical models. Firstly, ML handles
complex, non-linear relationships by incorporating a vast range of risk factors (genetic,
lifestyle, and environmental), without oversimplifying their relationships. Algorithms
like random forests or neural networks can model complex non-linear interactions be-
tween variables, which traditional models often miss. For example, [40] demonstrated
that ML models, due to their inherent non-linearity, achieved equivalent (and superior)
performance across different ethnicities compared with the Tyrer–Cuzick model, which
showed significant differences in the AUC values for white and African American women.
The same paper also showed another strong point of ML models, i.e., the capability of
incorporating high-dimensional data, such as extensive genomic information, providing a
more comprehensive risk prediction. Another advantage of ML is the ability to address data
completeness issues [41]: ML models are better equipped to handle missing or incomplete
data through advanced imputation techniques, by the definition of dummy variables, and
by architectures natively capable of facing missing data issues, such as decision-tree-based
approaches. This makes ML models more robust in real-world settings where perfect
data are rarely available. ML can also be continuously updated as new data are collected,
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ensuring they remain accurate or improve over time and adapt to changes in population
health dynamics [42]. Additionally, ML can work with unstructured data, such as images,
text, or audio, and deep learning (DL) methods can automatically identify and construct
features from raw data, reducing the need for manual feature extraction and selection.
Overall, ML models and other artificial intelligence (AI) approaches may indeed show
significant potential for improving the accuracy of classifying women with and without
breast cancer.

In this scenario, the aim of our study was firstly to thoroughly examine the differences
between healthy subjects and those with diagnosed breast cancer, all with a family history
for cancer. Similar to traditional statistical models, we focused on lifestyle factors such as
the BMI, voluntary habits like smoking, hormonal influences and the mutational status of
the BRCA genes. This approach allowed for the collection and utilization of the majority
of predictive variables known to increase the risk of developing breast cancer. Secondly,
utilizing the capabilities of AI, risk factors served [42] as features to predict subjects at high
risk of breast cancer. Unlike traditional statistical models, the proposed model harnesses
more advanced predictive models in the AI domain, enabling increasingly personalized
preventive interventions and treatments.

2. Materials and Methods
2.1. Design

This retrospective study spanned from January 2020 to December 2023, focusing on
individuals with cancer familiarity who attended the familial cancer center of the local
health authority of Lecce, Italy. In this study, only women were included as subjects, given
that the investigation also focused on hormonal and reproductive factors, which are crucial
for a comprehensive understanding of the breast cancer risk and prevention. Participants
were referred to the clinic by specialists or general practitioners, or attended spontaneously.
They were asked to complete the questionnaire independently before the oncogenetic
counseling session and submit it at the time of the consultation. The questionnaire was
developed to include several sections, each targeting different aspects of lifestyle and
medical history that could influence the breast cancer risk. These sections encompassed
socio-demographic information, reproductive history, and family history of cancer, among
others. Details of the survey are provided in the next section.

In adherence with the criteria for conducting genetic testing, some women underwent
blood sampling to determine the presence of mutations in the BRCA1 and BRCA2 genes,
as well as variants of uncertain significance (VUSs).

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were as follows: women of reproductive age as well as those who
were postmenopausal were selected, with an age cutoff of 45 years to distinguish between
women of childbearing age and those beyond it. Only women with a family history of
cancer were included in this study, as the objective was to analyze the risk in genetically
predisposed individuals. Women with specific medical conditions that could confound the
study outcomes were excluded. Additionally, patients with other concomitant tumors or
metastases were excluded, as only primary breast cancer was considered for this analysis.

2.3. Survey Instrument

Our survey was organized into two main sections to gather comprehensive data. The
first section focused on demographics and exposure to risk factors. This section covered
topics such as age, body weight, height, body mass index (BMI), and smoking habits. The
second section aimed to collect information on specific female characteristics. This included
hormonal dynamics details, including menarche, pregnancies, abortions, breastfeeding
practices, and information related to menopause.
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2.4. Ethical Considerations

Ethical clearance for this retrospective study was secured from the Bioethical Commit-
tee of the IRCCS Tumor Institute “Giovanni Paolo II”, Bari, Italy, under the protocol number
1695/CEL, dated 10 June 2024. The ethical framework governing this study was thoroughly
outlined at the outset of the questionnaire, ensuring alignment with the guidelines set forth
by the Italian Data Protection Authority. We underscored to potential participants that their
involvement in the study was entirely voluntary, allowing the freedom to withdraw at any
stage without consequence. An informed consent document was provided to all interested
individuals, reiterating the voluntary basis of their participation, alongside assurances
regarding the confidentiality and anonymity of the data collected. To further safeguard
participant anonymity, all the collected responses were subjected to a de-identification
process.

2.5. Statistical Analysis

The dataset encompassing the responses from a total of 1389 participants was evalu-
ated by employing a blend of descriptive and inferential statistical techniques. The cohort
was divided into two distinct groups for the analysis: Group A, comprising 473 healthy sub-
jects with a family history of cancer, and Group B, consisting of 916 participants diagnosed
with breast cancer. Continuous variables were summarized using the mean values and
standard deviations, while categorical variables were quantified through the frequencies
and percentage distributions. The Mann–Whitney test was used to assess the differences
in responses between the two groups. Additionally, for hormonal dynamics variables,
statistical differences according to the Mann–Whitney test were also calculated by dividing
the women from both groups into those younger or older than 45 years of age. The age
of 45 was chosen as a cutoff to distinguish between women of childbearing age and those
who have presumably surpassed the age of having children, aiming to further refine the
analysis based on potential differences in the risk factors or genetic predisposition associ-
ated with age. The Mann–Whitney non-parametric test was used instead of a parametric
one because both the Shapiro–Wilk and Kolmogorov–Smirnov tests showed significant
p-values, indicating that the data were not normally distributed.

The statistical analyses were executed using the MATLAB software, 2023b version,
adhering to a significance threshold of p < 0.05 to validate the reliability and significance of
the findings.

2.6. Machine Learning

A supervised ML approach was employed to predict the likelihood of developing
breast cancer based on the risk factors collected. These risk factors, serving as features,
were used to train several ML classifiers, including decision tree, support vector machine
(SVM), naive Bayes, ECOC, discriminant analysis, linear models, ensemble of trees, artificial
neural networks (ANNs), and k-nearest neighbors (KNNs). Among these, the ensemble
of decision trees emerged as the best performer. This model was chosen not only for its
superior performance but also for its ability to handle missing values effectively and to
combine multiple weak learners into a stronger predictive model, which is particularly
advantageous given the nature of the dataset. The training process used a 10-fold cross-
validation scheme to partition the data into training and validation sets. To optimize the
performance of the best model, we employed the MATLAB automatic hyperparameter
optimization feature. This process automatically tuned the parameters of the ensemble of
decision tree models to find the optimal configuration for our dataset. The optimization
procedure selected the AdaBoostM1 method, configured with 11 as the number of trees
and a learning rate of 0.42. The number of trees and the learning rate were determined
as the most effective parameters to balance the trade-off between model complexity and
performance. The ensemble method, AdaBoost, enhanced the performance of these decision
trees by iteratively focusing on difficult-to-classify instances, thus improving the overall
accuracy of the model. AdaBoost’s capability to combine weak learners into a strong
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classifier and its inherent robustness against overfitting made it the preferred choice for
this study. For completeness, it is important to mention that other classifiers, including
artificial neural networks with missing data imputation, were also used, but their results
were inferior. To evaluate the classifier performance and to determine the optimal threshold
for predictions, the receiver operating characteristic (ROC) curve was employed. It plots the
true positive rate (sensitivity) on the Y-axis against the false positive rate (1—specificity) on
the X-axis across different threshold values. The curve provides a comprehensive overview
of the trade-off between sensitivity and specificity at various thresholds. Based on the
optimal working point of the ROC curve, a binary classifier was derived. The ROC curve
was utilized to assess the classifier performance with the area under the curve (AUC) figure
of merit and to determine an “optimal” prediction threshold that maximizes the accuracy.
At this optimal threshold, the sensitivity, specificity, and accuracy of the classifier were
calculated. The sensitivity, representing the true positive rate, and specificity, representing
the true negative rate, were derived directly from the confusion matrix at this threshold.
The accuracy was computed as the proportion of true results (both true positives and true
negatives) relative to the total number of cases examined. To further assess the performance
of the model, particularly in the context of imbalanced classes, the precision–recall (PR)
curve was employed. The PR curve plots the precision (the proportion of true positive
results relative to all positive predictions) against the recall (the proportion of true positive
results relative to all actual positives) at various threshold levels.

The F1 score, which is the harmonic mean of the precision and recall, was calculated
at specific thresholds to provide a balanced measure of the model’s accuracy. The F1 score
offers insight into how well the model balances the trade-off between precision and recall,
especially when the goal is to minimize both false positives and false negatives.

To ensure a robust and unbiased classification, the features were normalized to a
range of 0–1 using min–max normalization on the training dataset [43–45]. The same
normalization parameters were then applied to the validation set samples. This proce-
dure ensured that each feature contributed equally to the model training process. This
scaling method is crucial for preventing features with larger ranges from dominating the
decision-making process of the ensemble decision trees used in the AdaBoost model. For
instance, without normalization, features such as age, which can vary significantly, might
have disproportionately influenced the model, overshadowing other important features
like the BMI or number of pregnancies. Similar considerations hold for the z-score stan-
dardization, which scales features to have a mean of 0 and a standard deviation of 1. The
z-score normalization is typically more appropriate for datasets where the distribution of
features is approximately normal, and in the presence of outliers because extreme values
do not disproportionately affect the range of transformed data. Given the non-Gaussian
distributions of our dataset’s features, min–max normalization was more appropriate to
maintain consistency and improve model performance.

The computation was performed with MATLAB software, 2023b license.

3. Results
3.1. Baseline Characteristics and Exposure to Risk Factors

A total of 1389 women chose to participate. The responses from the group with a
family history of cancer were separately analyzed for two groups: Group A, which included
women who had not been diagnosed with cancer, and Group B, consisting of those who had
received a cancer diagnosis. Table 1 presents the demographics and risk factor exposure for
the participants. The median age in Group A was 46 years old compared to 54 in the tumor
group (p < 0.001). The BMI further differentiated the groups (p = 0.01).
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Table 1. Socio-demographic characteristics and risk factor exposure. *p < 0.05; ***p < 0.001.

Group A Healthy Subjects
with a Family History of
Breast Cancer (n = 473)
N (%)

Group B Subjects
with Cancer
(n = 916)
N (%)

p-Value

Age
<0.001
***

Range 18–93 26–95
Median 47.00 55.53
STD 16.47 12.44

Indicate body weight (kg)

0.26
Range 40–130 42–154
Median 64.00 67.00
STD 15.44 14.22

Indicates height (cm)

0.02 *
Range 146–183 144–188
Median 165.00 162.00
STD 6.20 6.42

Body mass index (BMI)

0.01 **
Range 16–48 17–69
Median 23.45 25.87
STD 6.08 5.34

Being a smoker

0.28
No 130 (27.5) 455 (49.7)
Yes 36 (7.6) 100 (10.9)
Ex-smoker 24 (5.1) 106 (11.6)
Missing 283 (59.8) 255 (27.8)

Smoking duration (years)

0.009 **
Range 1–46 2–61
Median 15.00 20.00
STD 11.99 11.90

Number of cigarettes
smoked

0.91Range 1–30 1–40
Median 10.00 10.00
STD 6.26 6.56

* p < 0.05; ** p < 0.01; *** p < 0.001.

Similar results were found in both groups regarding smoking habits, with more
smokers and ex-smokers in the tumor group. Group A also had a lower median of long-
term smokers (17.02) compared to Group B (21.52), (p = 0.009). No difference was found in
the number of cigarettes smoked. As shown in Table 1, the demographic characteristics
of the study participants revealed key differences between the healthy group and those
diagnosed with breast cancer. The mean age of participants in Group B was significantly
higher than that in Group A, which aligns with the understanding that the breast cancer
risk increases with age. Additionally, the BMI distribution suggests a potential link between
a higher body mass and the breast cancer incidence (p = 0.01). Figure 1 shows that the BMI
was slightly higher in Group B, supporting this association. Smoking habits, while not
significantly different in terms of the number of cigarettes smoked, showed a trend toward
a longer smoking duration in Group B, which could indicate a cumulative risk factor.
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Figure 1. Boxplot comparing the body mass index (BMI) between Group A (healthy) and Group B
(cancer-affected). The red horizontal line inside each box represents the median BMI for each group,
while the edges of the box indicate the first and third quartiles. The whiskers extend to the most
extreme values that are not considered outliers (with respect to a 1.5 × IQR threshold, where IQR is
the interquartile range). Outliers are represented by the + symbols. The reported p-value (p = 0.01)
indicates a statistically significant difference between the two groups.

Table 2 provides an in-depth look at the hormonal dynamics and reproductive histories
of the participants.

Table 2. Hormonal dynamics among respondents. A cutoff of 45 years old was utilized to distin-
guish between women of childbearing age and those potentially beyond childbearing age, near-
ing menopause.

Group A Healthy Subjects with a
Family History of Breast Cancer
(n = 473)
N (%)

Group B Subjects
with Cancer
(n = 916)
N (%)

p-Value

Age at menarche
<45
Range
Median
STD

≥45
Range
Median
STD

9–16
12.00
1.43

9–17
12.41
12.00

9–16
12.00
1.53

9–18
12.44
12.00

0.40

0.79
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Table 2. Cont.

Group A Healthy Subjects with a
Family History of Breast Cancer
(n = 473)
N (%)

Group B Subjects
with Cancer
(n = 916)
N (%)

p-Value

Number of pregnancies
<45
Range
Median
STD

≥45
Range
Median
STD

0–3
1.00
0.96

0–11
2.00
1.48

0–4
1.00
0.96

0–9
2.00
1.31

0.65

0.28

Age at first pregnancy
<45
Range
Median
STD

≥45
Range
Median
STD

18–38
29.00
4.78

16–44
25.00
5.93

13–42
29.00
5.80

13–55
26.00
6.01

0.55

0.20

Number of abortions
<45
Range
Median
STD

≥45
Range
Median
STD

0–3
0.29
0.56

0–6
0.71
1.07

0–4
0.39
0.76

0–10
0.72
1.20

0.62

0.74

Did you breastfeed your children?
<45
No
Yes

≥45
No
Yes

Missing

182 (85)
32 (15)

180 (74.1)
63 (25.9)

16 (3.4)

108 (57.8)
79 (42.2)

342 (47.9)
372 (52.1)

15 (1.6)

<0.001 ***

<0.001 ***

If you answered yes to the
previous question, please indicate
the duration in months
<45
Range
Median
STD

≥45
Range
Median
STD

1–44
11.00
13.75

1–50
6.00
11.42

1–66
9.00
13.87

1–60
8.00
9.31

0.74

0.49
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Table 2. Cont.

Group A Healthy Subjects with a
Family History of Breast Cancer
(n = 473)
N (%)

Group B Subjects
with Cancer
(n = 916)
N (%)

p-Value

Are you in the age of menopause?
<45
No
Yes

≥45
No
Yes

Missing

212 (99.1)
2 (0.9)

183 (75.3)
60 (24.7)

16 (3.4)

148 (79.1)
39 (20.9)

323 (45.2)
391 (54.8)

15 (1.6)

<0.001 ***

<0.001 ***

Indicate the age at menopause
<45
Range
Median
STD

≥45
Range
Median
STD

39–41
40.00
1.41

30–59
50.00
5.10

33–44
39.00
2.93

33–66
50.00
4.47

0.71

0.12

Contraceptives assumption
<45
No
Yes

≥45
No
Yes

Missing

189 (88.3)
25 (11.7)

224 (92.2)
19 (7.8)

16 (3.4)

135 (72.2)
52 (27.8)

592 (82.9)
122 (17.1)

15 (1.6)

<0.001 ***

<0.001 ***

Hormonal stimulation for assisted
reproduction (PMA)
<45
No
Yes

≥45
No
Yes

Missing

211 (98.3)
3 (1.4)

242 (99.6)
1 (0.4)

16 (3.4)

178 (95.2)
9 (4.8)

700 (98)
114 (2)

15 (1.6)

0.05 *

0.98

Hormonal replacement therapy
<45
No
Yes

≥45
No
Yes

Missing

212 (99.1)
2 (0.9)

241 (99.2)
2 (0.8)

16 (3.4)

172 (92)
15 (8)

668 (93.6)
46 (6.4)

15 (1.6)

<0.001 ***

<0.001 ***

* p < 0.05; *** p < 0.001.
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The average age at which menstruation began and the age of menopause showed no
difference between the groups. However, Group B reported more women in menopause
compared to Group A (p < 0.001).

There was no great difference in the number of pregnancies between the groups. Group
B more frequently reported breastfeeding their children (42.2% vs. 15% under 45 years old
and 52.1% vs. 25.9 over 45 years old, p < 0.001). A similar duration of breastfeeding was
found between the two groups.

Regarding contraceptive usage, a higher percentage of the healthy subjects reported
using contraceptives compared to the affected group (11.7% vs. 27.8% for under 45 years
old and 7.8% vs. 17.1% for over 45 years old, p < 0.001).

Group B also reported a slightly higher hormonal stimulation for assisted reproduction
(PMA) compared to the healthy group (p = 0.05). A significant difference was noted in the
hormonal replacement therapy usage, with Group A being less likely to have used this
therapy compared to the affected group (p < 0.001).

The genetic status of the participants, focusing on the outcomes of the BRCA1 and
BRCA2 mutations, was assessed for subjects who underwent blood sampling in adherence
with the criteria for conducting genetic testing (Table 3). Positive mutation statuses were
reported in 41% (n = 194) of t Group A and in a lower percentage of 12.6% (n = 115)
within the affected group. Also, VUSs were observed in 1.7% (n = 8) of the healthy group,
contrasting with 5.5% (n = 50) in Group B (p < 0.001). The specific mutation analysis
revealed that 58.4% of the healthy subjects and 45.4% of the affected group had BRCA1
mutations, while BRCA2 mutations were identified in 41% of Group A and 52.7% of the
affected group; a small fraction (0.5% vs. 1.8%) had mutations in both BRCA1 and BRCA2
(p < 0.001).

Table 3. Mutational status of the respondents *** p < 0.001.

Group A Healthy Subjects with
a Family History of Breast
Cancer (n = 473)
N (%)

Group B Subjects
with Cancer
(n = 916)
N (%)

p-Value

Mutation outcomes

<0.001 ***
Negative 162 (34.2) 640 (69.9)
Positive 194 (41.0) 115 (12.6)
VUSs 8 (1.7) 50 (5.5)
Not screened 109 (23) 111 (12.1)

Specific found
mutations

<0.001 ***BRCA1 118 (58.4) 75 (45.4)
BRCA2 83 (41.0) 87 (52.7)
BRCA1/2 1 (0.5) 3 (1.8)

3.2. Machine Learning Predictive Model

The risk factors collected were employed to train several classifiers with the aim
of predicting the risk of developing cancer. Figure 2 presents the ROC curves of all the
classifiers, along with their corresponding AUC values. The ensemble of decision trees
was the best performer. Key metrics such as the AUC, accuracy, specificity, and sensitivity
provide a comprehensive overview of the model effectiveness. An average AUC of 81%
was found in distinguishing between those at risk of developing cancer and those not at
risk, with 88% sensitivity, 57% specificity, 78% accuracy, 80% precision, and an F1 score of
0.84, as computed at the optimal cutoff point, which maximizes the classifier’s accuracy. To
assess the stability and reliability of our machine learning model, we conducted a 10-fold
cross-validation, calculating the AUC for each fold. As depicted in Figure 3, the AUC values
demonstrated consistent performance across all the folds, with only minor fluctuations
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observed. The AUC values ranged from approximately 0.78 to 0.88, indicating a robust and
reliable model performance.
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AUC values for each classifier are displayed in the legend, with the ensemble of trees achieving the
highest AUC of 0.81, indicating the best predictive performance among the models tested.
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Figure 4. Precision–recall (PR) curve on the left and receiver operating characteristic (ROC) curve on
the right, representing the performance of the ensemble of decision trees classifier in predicting the
breast tumor risk.

Using the predictor importance function from the decision tree ensemble, we identified
the most significant predictors of the breast cancer risk. The analysis highlighted that the
genetic mutation status (e.g., BRCA), menopausal status, BMI, age, years of smoking, and
breastfeeding history were the top factors influencing the model’s predictions.

4. Discussion

This study provides significant insights into the risk factors associated with breast
cancer, particularly within a population of women with a family history of the disease. By
focusing on women of reproductive age and postmenopausal women, this study specif-
ically targeted a group where hormonal dynamics play a critical role in breast cancer
development. Participants were categorized into two distinct groups: Group A, made
up of individuals who had not been diagnosed with cancer, and Group B, comprising
those who had a prior history of cancer diagnosis. The purpose of this study was to
compare these two groups: we examined various aspects of lifestyle, such as the BMI and
smoking, hormonal influences and the mutational status of the BRCA genes. These risk
factors were used as features to develop an ML model capable of predicting individuals
at an increased risk of developing breast cancer. The most influential predictors included
the genetic mutation status (e.g., BRCA), menopausal status, BMI, age, years of smoking,
and breastfeeding history. The identification of these factors as the top predictors aligns
with existing research, highlighting the significant impact of both genetic predispositions
and lifestyle factors on the breast cancer risk. The Group B participants were generally
older than those in the general population group, highlighting a significant age-related
susceptibility to breast cancer, which is consistent with existing research [46]. In the context
of the investigated lifestyle factors, Group A and Group B showed a difference in the
BMI. The relationship between the BMI and the breast cancer risk has been extensively
studied [47–51]. Notably, obesity has been linked to an increased risk of breast cancer in
postmenopausal women, a relationship that underscores the significance of body weight
management in cancer prevention strategies. This association is thought to be mediated
through various mechanisms, including hormonal changes, inflammation, and insulin
resistance, which are known to influence cancer pathogenesis. Moreover, the adipose tissue
in obese individuals is not merely a passive storage of fat but an active endocrine organ that
secretes estrogen, adipokines, and inflammatory markers, all of which have been implicated
in cancer development and progression [47]. The stark contrast in the BMI between the two
groups highlights the importance of incorporating regular physical activity and a correct
diet into daily routines as a potentially effective strategy for lowering the breast cancer
risk. Furthermore, it underscores the need for targeted public health strategies aimed at
increasing well-being levels, especially among populations at a higher risk of breast cancer.
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The observed differences in smoking habits between the two groups highlight intrigu-
ing behavioral patterns that merit a deeper analysis within the context of breast cancer
risk and survivorship. Specifically, the group with a history of breast cancer showed a
greater incidence of long-term smoking compared to the healthy group. Smoking has been
identified as a significant risk factor for breast cancer development, particularly for women
who begin smoking in adolescence, around the time of menopause, or before having their
first child, or those with a familial predisposition to the disease [52]. Smoking has also been
linked to an increased likelihood of breast cancer recurrence [53]. It can negatively affect
the outcomes of surgical procedures and heighten the chances of complications during
breast reconstruction surgeries [54]. Offering smoking cessation support to breast cancer
patients is crucial. This intervention can lower the risks tied to radiotherapy and potentially
decrease mortality rates, emphasizing the importance of targeted support programs for
these individuals [55].

Significant differences were also observed in relation to hormonal factors, including
the age at menopause, PMA and use of hormonal replacement therapy. These results are
in line with the literature, including the prolonged exposure to endogenous hormones in
women with a later onset of menopause [56].

Surprisingly, the affected group reported a higher likelihood of breastfeeding com-
pared to the healthy subjects. This result does not align with research suggesting the
protective effects of full-term pregnancies and breastfeeding against breast cancer [57–61].
It is possible that this is a consequence of the higher number of children among the women
in Group B compared to Group A. A history of medical abortions, along with the use
of multiple contraceptive methods, has been associated with an increased risk of post-
menopausal breast cancer [59]. Interestingly, women who have used intrauterine devices
for contraception for over twenty years tend to have a lower likelihood of developing
breast cancer compared to others in their age group [59]. However, research consistently
shows that oral contraceptives can significantly elevate the breast tumor risk. Despite
this increased risk, it is essential to recognize the benefits that oral contraceptives provide,
which must be weighed against their potential risks [60].

The significant disparity in hormonal replacement therapy (HRT) usage between the
two groups highlights the ongoing debate around HRT and the breast cancer risk. With
the affected group more likely to have used HRT, this finding aligns with the literature
suggesting a potential association between HRT, especially combined estrogen–progestogen
therapies, and an increased breast cancer risk [62,63].

Lastly, the observed differences in the BRCA mutation statuses between Group A and
Group B underline the critical role of genetic factors in the breast cancer risk. It is normal
to observe a higher number of mutations among healthy patients, since for each affected
patient, one or more healthy blood relatives are sent for genetic testing to determine their
risk. The presence of VUSs in a larger portion of the affected group also highlights the
challenges in genetic testing and interpretation, emphasizing the complexity of genetic
contributions to breast cancer and the need for further research in this area.

By using factors that significantly differed between Group A and Group B as features,
we trained different ML models that were able to predict subjects at an increased risk of
developing a breast tumor. The best performer was the ensemble of decision trees. To
assess the stability and reliability of the model’s performance, we conducted a 10-fold
cross-validation procedure and analyzed the distribution of the AUC values across each
fold. As shown in Figure 2, the AUC values consistently ranged between approximately
0.78 and 0.88, with minor fluctuations. This consistency across the different folds indicates
that the model’s ability to discriminate between those at risk and those not at risk of
developing breast cancer is robust and not overly dependent on any particular subset of
the data. Building on these cross-validation results, the model achieved an overall AUC of
81%. An AUC of 0.5 indicates no discrimination ability, equivalent to random guessing,
while an AUC of 1.0 represents a perfect classifier. In our model, the AUC of 81% suggests
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a strong ability to distinguish between individuals with and without the risk of developing
breast cancer.

To identify the optimal cutoff point, we analyzed the ROC curve to find the threshold
that maximizes the classifier’s accuracy. This optimal point balances the trade-off between
sensitivity and specificity, aiming to maximize the model’s effectiveness in correctly identi-
fying true positives while minimizing false positives. At this threshold, the model achieved
a sensitivity of 88%, meaning it correctly identified 88% of those at risk, and a specificity
of 57%, indicating its moderate ability to correctly identify those not at risk. The overall
accuracy at this point was 78%, reflecting the proportion of correct classifications (both true
positives and true negatives) across all the cases examined.

In addition to these metrics, the model’s precision at the optimal threshold was 80%,
which indicates that 80% of the positive predictions were indeed correct. The F1 score,
calculated as the harmonic mean of the precision and recall, was 0.84. This high F1 score
demonstrates the balanced performance of the model in terms of the precision and recall,
highlighting its strength in identifying true positives while maintaining a reasonable level
of false positives.

These outcomes indicate the commendable capability of our model to differentiate
between women at risk of developing breast cancer, although there is room for improve-
ment in minimizing the false positives. Upon comparing our ML-based model with
traditional statistical-based models referenced in the introduction, such as the Gail model,
BOADICEA, BRCAPRO, and IBIS, we observed the notable superiority of our ML ap-
proach. Traditional models, such as the BOADICEA and BCRAT, have shown an AUC
between 0.53 and 0.64 [16–20]. There is a 36 to 47% chance that these models will not iden-
tify high-risk women, while some low-risk women may receive unnecessary preventive
treatments [19,38].

Our analysis underscores how our ML model surpasses these constraints, offering a
more accurate and personalized risk prediction, potentially enhancing the identification
of women who would benefit most from targeted screening or preventive interventions.
Moreover, the inclusion of lifestyle variables, hormonal dynamics, and mutational status
in our model emphasizes the importance of considering a broad spectrum of risk factors,
beyond those traditionally used in statistical models.

Our study offers valuable insights, but it is important to acknowledge certain limita-
tions that should be taken into account when interpreting the findings. Firstly, this study is
focused on a single familial cancer center, limiting the generalizability of the findings to
broader populations. Secondly, we lack information on diet and physical activity, which
play a central role in lifestyle factors and especially in breast cancer [50,64]. In addition,
the exclusion of patients with concomitant tumors or metastases ensures that the study
focuses solely on primary breast cancer, which is crucial for understanding the specific risk
factors associated with the initial onset of the disease. However, this exclusion may limit
the generalizability of the findings to those with more complex cancer histories, where
multiple malignancies could interact in ways not captured by this study. Furthermore, by
excluding younger and older women, as well as those with other tumors or metastases, the
generalizability of the findings is limited. This specific focus provides valuable insights
into the breast cancer risk for the selected demographic but may not fully apply to broader
populations. Consequently, while our findings are significant for understanding the risk
in genetically predisposed women, further studies are needed to explore these factors in
more diverse groups. Another significant limitation is the assessment of only one mutation
(BRCA genes). Genetic factors are crucial to understanding the cancer risk; however, our
work does not delve deeply into this aspect. Not collecting extensive genetic data on a
large scale restricts our capacity to thoroughly investigate the relationship between genetic
factors and lifestyle influences.
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5. Conclusions

Early identification of women at exceptionally high risk of developing breast cancer is
pivotal, offering them opportunities for risk-reducing surgery, preventive treatments, and
tailored screening programs. While breast cancer screening risk stratification models exist,
they primarily rely on factors such as genetics, family history, and reproductive factors.
Moreover, these statistical models might lack real-time availability during routine screen-
ings and could exhibit limited discriminatory capabilities. Many of these models focus on
BRCA1 and BRCA2 mutations, which may introduce bias by overlooking other genetic vari-
ations that contribute to the breast cancer risk. This narrow focus could limit the model’s
applicability to individuals with less common mutations and reduce its generalizability.

Our study, which also incorporates lifestyle factors and hormonal influences, attempts
to address some of these issues by providing a more nuanced understanding of the dif-
ferences between healthy individuals and those already diagnosed with breast cancer. By
leveraging the power of ML, we have surpassed the limitations of traditional statistical
models. However, the reliance on BRCA mutations as a primary genetic factor may reduce
the model’s comprehensiveness. The AI-driven model developed in our study, unlike
existing statistical tools such as the Gail model, BOADICEA, BRCAPRO, and IBIS, offers a
more advanced and personalized approach to predicting high-risk patients. Still, to further
enhance the accuracy, future research should consider the inclusion of additional genetic
factors beyond the BRCA genes, such as PALB2, CHEK2, and other rare mutations. More-
over, incorporating a wider range of lifestyle and environmental variables could provide a
more holistic understanding of the breast cancer risk. In conclusion, the integration of ML
into breast cancer risk prediction offers significant advantages over traditional statistical
methods. The ability of our model to integrate and analyze a vast array of risk factors,
coupled with its superior accuracy and discriminative power, lays the groundwork for
future developments in personalized medicine and breast cancer prevention.
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